Influence of Salinity, Temperature, Photoperiod, and Isochrysis galbana Microalgal Cell Density on the Growth of the Marine Copepod Oithona nana
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Experimental Trials
2.2.1. Experiment 1: Temperature
2.2.2. Experiment 2: Salinity
2.2.3. Experiment 3: Photoperiod
2.2.4. Experiment 4: Microalgal Density
2.3. Determination of Growth and Population Composition
2.4. Data Analysis
3. Results
3.1. Temperature
3.2. Salinity
3.3. Photoperiod
3.4. Microalgal Density
3.5. Multivariate Analysis
4. Discussion
4.1. Temperature
4.2. Salinity
4.3. Photoperiod
4.4. Microalgal Density
4.5. Multivariate Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richon, C.; Aumont, O.; Tagliabue, A. Prey Stoichiometry Drives Iron Recycling by Zooplankton in the Global Ocean. Front. Mar. Sci. 2020, 7, 451. [Google Scholar] [CrossRef]
- Ratnarajah, L.; Abu-Alhaija, R.; Atkinson, A.; Batten, S.; Bax, N.J.; Bernard, K.S.; Canonico, G.; Cornils, A.; Everett, J.D.; Grigoratou, M.; et al. Monitoring and Modelling Marine Zooplankton in a Changing Climate. Nat. Commun. 2023, 14, 564. [Google Scholar] [CrossRef]
- Bettinetti, R.; Manca, M. Understanding the Role of Zooplankton in Transfer of Pollutants Through Trophic Food Webs. In Zooplankton Species Diversity Distribution and Seasonal Dynamics; Kehayias, G., Ed.; Nova Publisher Inc.: Hauppauge, NY, USA, 2013; pp. 1–18. ISBN 9781629486802. [Google Scholar]
- Conceição, L.E.C.; Yúfera, M.; Makridis, P.; Morais, S.; Dinis, M.T. Live Feeds for Early Stages of Fish Rearing. Aquac. Res. 2010, 41, 613–640. [Google Scholar] [CrossRef]
- Abate, T.G.; Nielsen, R.; Nielsen, M.; Drillet, G.; Jepsen, P.M.; Hansen, B.W. Economic Feasibility of Copepod Production for Commercial Use: Result from a Prototype Production Facility. Aquaculture 2015, 436, 72–79. [Google Scholar] [CrossRef]
- Williams, J.A.; Muxagata, E. The Seasonal Abundance and Production of Oithona nana (Copepoda: Cyclopoida) in Southampton Water. J. Plankton Res. 2006, 28, 1055–1065. [Google Scholar] [CrossRef]
- Huanacuni, J.I.; Pepe-Victoriano, R.; Lora-Vilchis, M.C.; Merino, G.E.; Torres-Taipe, F.G.; Espinoza-Ramos, L.A. Influence of Microalgae Diets on the Biological and Growth Parameters of Oithona nana (Copepoda: Cyclopoida). Animals 2021, 11, 3544. [Google Scholar] [CrossRef]
- Alajmi, F.; Zeng, C.; Jerry, D.R. Domestication as a Novel Approach for Improving the Cultivation of Calanoid Copepods: A Case Study with Parvocalanus crassirostris. PLoS ONE 2015, 10, e0133269. [Google Scholar] [CrossRef] [PubMed]
- GrØnning, J.; Doan, N.X.; Dinh, N.T.; Dinh, K.V.; Nielsen, T.G. Ecology of Pseudodiaptomus annandalei in Tropical Aquaculture Ponds with Emphasis on the Limitation of Production. J. Plankton Res. 2019, 41, 741–758. [Google Scholar] [CrossRef]
- Samsing, F.; Oppedal, F.; Dalvin, S.; Johnsen, I.; Vågseth, T.; Dempster, T. Salmon Lice (Lepeophtheirus salmonis) Development Times, Body Size, and Reproductive Outputs Follow Universal Models of Temperature Dependence. Can. J. Fish. Aquat. Sci. 2016, 73, 1841–1851. [Google Scholar] [CrossRef]
- de Juan, C.; Traboni, C.; Calbet, A.; Saiz, E. Metabolic Balance of a Marine Neritic Copepod under Chronic and Acute Warming Scenarios. Mar. Environ. Res. 2025, 203, 106827. [Google Scholar] [CrossRef] [PubMed]
- Tyrell, A.S.; Fisher, N.S.; Fields, D.M. Separating Thermal and Viscous Effects of Temperature on Copepod Respiration and Energy Budget. Biol. Bull. 2020, 239, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Horne, C.R.; Hirst, A.G.; Atkinson, D.; Almeda, R.; Kiørboe, T. Rapid Shifts in the Thermal Sensitivity of Growth but Not Development Rate Causes Temperature–Size Response Variability during Ontogeny in Arthropods. Oikos 2019, 128, 823–835. [Google Scholar] [CrossRef]
- Forster, J.; Hirst, A.G.; Woodward, G. Growth and Development Rates Have Different Thermal Responses. Am. Nat. 2011, 178, 668–678. [Google Scholar] [CrossRef]
- Matias-Peralta, H.; Yusoff, F.M.; Shariff, M.; Arshad, A. Effects of Some Environmental Parameters on the Reproduction and Development of a Tropical Marine Harpacticoid Copepod Nitocra affinis f. Californica Lang. Mar. Pollut. Bull. 2005, 51, 722–728. [Google Scholar] [CrossRef]
- Vu, Q.; Pham, L.; Truong, O.; Tran, S.; Bui, C.; Le, M.-H.; Dang, B.; Dinh, K. Extreme Temperatures Reduce Copepod Performance and Change the Relative Abundance of Internal Microbiota. Ecol. Evol. 2024, 14, e70408. [Google Scholar] [CrossRef] [PubMed]
- Teraoka, T.; Nagao, S.; Matsuno, K.; Yamaguchi, A. The Modified Artificial Cohort Method for Three Dominant Pelagic Copepods in the Northern North Pacific Revealed Species-Specific Differences in the Optimum Temperature. Front. Mar. Sci. 2024, 11, 1397721. [Google Scholar] [CrossRef]
- De Juan, C.; Calbet, A.; Saiz, E. Shifts in Survival and Reproduction after Chronic Warming Enhance the Potential of a Marine Copepod to Persist under Extreme Heat Events. J. Plankton Res. 2023, 45, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Saiz, E.; Griffell, K.; Olivares, M.; Solé, M.; Theodorou, I.; Calbet, A. Reduction in Thermal Stress of Marine Copepods after Physiological Acclimation. J. Plankton Res. 2022, 44, 427–442. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.; Huang, X.; Gu, B. Influences of Temperature on Development and Survival, Reproduction and Growth of a Calanoid Copepod (Pseudodiaptomus Dubia). Sci. World J. 2009, 9, 866–879. [Google Scholar] [CrossRef]
- Bonnet, D.; Harris, R.P.; Yebra, L.; Guilhaumon, F.; Conway, D.V.P.; Hirst, A.G. Temperature Effects on Calanus helgolandicus (Copepoda: Calanoida) Development Time and Egg Production. J. Plankton Res. 2009, 31, 31–44. [Google Scholar] [CrossRef]
- Melão, M.D.G.G.; Rocha, O. Life History, Biomass and Production of Two Planktonic Cyclopoid Copepods in a Shallow Subtropical Reservoir. J. Plankton Res. 2004, 26, 909–923. [Google Scholar] [CrossRef]
- Barth-Jensen, C.; Koski, M.; Varpe, Ø.; Glad, P.; Wangensteen, O.S.; Præbel, K.; Svensen, C. Temperature-Dependent Egg Production and Egg Hatching Rates of Small Egg-Carrying and Broadcast-Spawning Copepods Oithona similis, Microsetella norvegica and Microcalanus pusillus. J. Plankton Res. 2020, 42, 564–580. [Google Scholar] [CrossRef] [PubMed]
- Mathews, L.; Faithfull, C.L.; Lenz, P.H.; Nelson, C.E. The Effects of Food Stoichiometry and Temperature on Copepods Are Mediated by Ontogeny. Oecologia 2018, 188, 75–84. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, M.-C.; Puthumana, J.; Park, J.C.; Kang, S.; Hwang, D.-S.; Shin, K.-H.; Park, H.G.; Souissi, S.; Om, A.-S.; et al. Effects of Salinity on Growth, Fatty Acid Synthesis, and Expression of Stress Response Genes in the Cyclopoid Copepod Paracyclopina nana. Aquaculture 2017, 470, 182–189. [Google Scholar] [CrossRef]
- Xue, Z.; Zhu, L.-Y.; Wang, B.-Y.; Liu, Z.-Y. Effects of Temperature and Salinity on Feeding and Metabolism of Two Marine Copepods. Oceanol. Limnol. Sin. 2020, 51, 95–102. [Google Scholar] [CrossRef]
- Isinibilir, M.; Svetlichny, L.; Hubareva, E. Competitive Advantage of the Invasive Copepod Oithona davisae over the Indigenous Copepod Oithona nana in the Marmara Sea and Golden Horn Estuary. Mar. Freshw. Behav. Physiol. 2016, 49, 391–405. [Google Scholar] [CrossRef]
- Magouz, F.I.; Essa, M.A.; Matter, M.; Mansour, A.T.; Gaber, A.; Ashour, M. Effect of Different Salinity Levels on Population Dynamics and Growth of the Cyclopoid Copepod Oithona nana. Diversity 2021, 13, 190. [Google Scholar] [CrossRef]
- Martínez, M.; Rodríguez-Graña, L.; Santos, L.; Denicola, A.; Calliari, D. Long-Term Exposure to Salinity Variations Induces Protein Carbonylation in the Copepod Acartia tonsa. J. Exp. Mar. Biol. Ecol. 2020, 526, 151337. [Google Scholar] [CrossRef]
- Beyrend-Dur, D.; Kumar, R.; Rao, T.R.; Souissi, S.; Cheng, S.-H.; Hwang, J.-S. Demographic Parameters of Adults of Pseudodiaptomus annandalei (Copepoda: Calanoida): Temperature-Salinity and Generation Effects. J. Exp. Mar. Biol. Ecol. 2011, 404, 1–14. [Google Scholar] [CrossRef]
- Kuriakose, N.; Joseph, I. Effects of Salinity, Temperature and Photoperiod on Egg Production of Pseudodiaptomus annandalei (Copepoda: Calanoida) Used as Live Feed in Mariculture. Aquaculture 2026, 610, 742921. [Google Scholar] [CrossRef]
- Van Someren Gréve, H.; Jepsen, P.M.; Hansen, B.W. Does Resource Availability Influence the Vital Rates of the Tropical Copepod Apocyclops royi (Lindberg, 1940) under Changing Salinities? J. Plankton Res. 2020, 42, 467–478. [Google Scholar] [CrossRef]
- Pan, Y.-J.; Souissi, A.; Souissi, S.; Hwang, J.-S. Effects of Salinity on the Reproductive Performance of Apocyclops royi (Copepoda, Cyclopoida). J. Exp. Mar. Biol. Ecol. 2016, 475, 108–113. [Google Scholar] [CrossRef]
- Yoshino, M.; Pan, Y.-J.; Souissi, S.; Dur, G. An Individual-Based Model to Quantify the Effect of Salinity on the Production of Apocyclops royi (Cyclopoida, Copepoda). Front. Mar. Sci. 2022, 9, 863244. [Google Scholar] [CrossRef]
- Darsana, S.; Santhosh, B.P.; Anzeer, F.M.; Aneesh, K.S.; Abraham, M.V.; Thomas, R.M.; Dilip, D.G.; Anushree, C.; Anil, M.K. Optimization of Salinity Levels for the Culture of Cyclopoid Copepod Dioithona oculata (Farran, 1913) with Respect to Total Population, Reproduction, Development and Adult Longevity. Aquac. Res. 2022, 53, 4782–4794. [Google Scholar] [CrossRef]
- Olivares, M.; Tiselius, P.; Calbet, A.; Saiz, E. Non-Lethal Effects of the Predator Meganyctiphanes norvegica and Influence of Seasonal Photoperiod and Food Availability on the Diel Feeding Behaviour of the Copepod Centropages typicus. J. Plankton Res. 2020, 42, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, N.; Sumares, B.; Andrade, C.A.P.; Afonso, A. The Effects of Temperature and Photoperiod on Egg Hatching Success, Egg Production and Population Growth of the Calanoid Copepod, Acartia grani (Calanoida: Acartiidae). Aquac. Res. 2018, 49, 93–103. [Google Scholar] [CrossRef]
- Marcus, N.H.; Scheef, L.P. Photoperiodism in Copepods; Oxford University Press: New York, NY, USA, 2010; ISBN 9780195335903. [Google Scholar]
- Secondi, J.; Mondy, N.; Gippet, J.M.W.; Touzot, M.; Gardette, V.; Guillard, L.; Lengagne, T. Artificial Light at Night Alters Activity, Body Mass, and Corticosterone Level in a Tropical Anuran. Behav. Ecol. 2021, 32, 932–940. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Le, M.-H.; Doan, N.X.; Pham, H.Q.; Vu, M.T.T.; Dinh, K.V. Artificial Light Pollution Increases the Sensitivity of Tropical Zooplankton to Extreme Warming. Environ. Technol. Innov. 2020, 20, 101179. [Google Scholar] [CrossRef]
- Avery, D.E. Induction of Embryonic Dormancy in the Calanoid Copepod Acartia hudsonica: Proximal Cues and Variation among Individuals. J. Exp. Mar. Biol. Ecol. 2005, 314, 203–214. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, E.H.; Shin, S.S.; Lim, Y.H.; Soh, H.Y. Optimal Photoperiod for the Reproduction of Eurytemora pacifica: Potential Live Feed for Fish Larvae. Aquac. Int. 2022, 30, 2389–2401. [Google Scholar] [CrossRef]
- Camus, T.; Zeng, C. Effects of Photoperiod on Egg Production and Hatching Success, Naupliar and Copepodite Development, Adult Sex Ratio and Life Expectancy of the Tropical Calanoid Copepod Acartia sinjiensis. Aquaculture 2008, 280, 220–226. [Google Scholar] [CrossRef]
- Newcomb, J.M.; Lawrence, K.A.; Watson, W.H., III. The Influence of Light on Locomotion in the Gastropod Melibe leonina. Mar. Freshw. Behav. Physiol. 2004, 37, 253–269. [Google Scholar] [CrossRef]
- Ermolaeva, Y.K.; Dolinskaya, E.M.; Biritskaya, S.A.; Maslennikova, M.A.; Bukhaeva, L.B.; Lavnikova, A.V.; Golubets, D.I.; Kulbachnaya, N.A.; Okholina, A.I.; Milovidova, I.V.; et al. Daily Vertical Migrations of Aquatic Organisms and Water Transparency as Indicators of the Potential Exposure of Freshwater Lakes to Light Pollution. Acta Biol. Sib. 2024, 10, 69–88. [Google Scholar] [CrossRef]
- O’Connor, J.J.; Fobert, E.K.; Besson, M.; Jacob, H.; Lecchini, D. Live Fast, Die Young: Behavioural and Physiological Impacts of Light Pollution on a Marine Fish during Larval Recruitment. Mar. Pollut. Bull. 2019, 146, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Fereidouni, A.E.; Meskar, S.; Asil, S.M. Effects of Photoperiod on Offspring Production, Development and Generation Time, Survival, Adult Sex Ratio and Total Life Span of Freshwater Cyclopoid Copepod, Mesocyclops sp.: Comments on Individual Variations. Aquac. Res. 2015, 46, 163–172. [Google Scholar] [CrossRef]
- Magouz, F.I.; Essa, M.A.; Matter, M.; Ashour, M. Evaluation of the Population Growth and Fatty Acid Composition of Copepoda, Oithona nana, Fed on Different Diets. Int. J. Aquat. Biol. 2021, 9, 167–176. [Google Scholar] [CrossRef]
- Ashour, M.; Khairy, H.M.; Bakr, A.; Matter, M.; Alprol, A.E. Seaweed Liquid Extract AS Novel Sustainable Solutions for Phycobioremediation Plant Germination, and Feed Additive for Marine Invertebrate Copepod. Sci. Rep. 2024, 14, 29553. [Google Scholar] [CrossRef]
- Dayras, P.; Bialais, C.; Lee, J.-S.; Souissi, S. Effects of Microalgal Diet on the Population Growth and Fecundity of the Cyclopoid Copepod Paracyclopina nana. J. World Aquac. Soc. 2020, 51, 1386–1401. [Google Scholar] [CrossRef]
- Dayras, P.; Bialais, C.; Sadovskaya, I.; Lee, M.-C.; Lee, J.; Souissi, S. Microalgal Diet Influences the Nutritive Quality and Reproductive Investment of the Cyclopoid Copepod Paracyclopina nana. Front. Mar. Sci. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Siqwepu, O.; Richoux, N.B.; Vine, N.G. The Effect of Different Dietary Microalgae on the Fatty Acid Profile, Fecundity and Population Development of the Calanoid Copepod Pseudodiaptomus hessei (Copepoda: Calanoida). Aquaculture 2017, 468, 162–168. [Google Scholar] [CrossRef]
- Paniagua, J.; Buckles, F.; Granados, C.; Loya, D. Manual de Metodologías y Alternativas para el Cultivo de Microalgas. Circulación Restringida. Centro de Investigación en Alimentación y Desarrollo; Ensenada: Baja California, Mexico, 1986. [Google Scholar]
- Takahashi, T.; Uchiyama, I. Morphology of the Naupliar Stages of Some Oithona Species (Copepoda: Cyclopoida) Occurring in Toyama Bay, Southern Japan Sea. Plankton Benthos Res. 2007, 2, 12–27. [Google Scholar] [CrossRef]
- Ramírez, F.C.; Derisio, C. Clave Para La Identificación de Los Estadios de Desarrollo (Inmaduros IV-V y Adultos VI) de Copépodos (Crustacea, Copepoda), Del Sector Nerítico Bonaerense y Norpatagónico. Rev. Investig. Desarro. Pesq. 2017, 31, 19. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 9780131008465. [Google Scholar]
- Broach, J.S.; Cassiano, E.J.; Watson, C.A. Baseline Culture Parameters for the Cyclopoid Copepod Oithona colcarva: A Potential New Live Feed for Marine Fish Larviculture. Aquac. Res. 2017, 48, 4461–4469. [Google Scholar] [CrossRef]
- Khalifa, U.; Ebenezer, V.; Pierson, J.J. Elevated Temperature and Low PH Affect the Development, Reproduction, and Feeding Preference of the Tropical Cyclopoid Copepod Oithona rigida. Int. J. Environ. Stud. 2023, 80, 1704–1720. [Google Scholar] [CrossRef]
- Liu, X.; Ban, S. Effects of Acclimatization on Metabolic Plasticity of Eodiaptomus japonicus (Copepoda: Calanoida) Determined Using an Optical Oxygen Meter. J. Plankton Res. 2017, 39, 111–121. [Google Scholar] [CrossRef]
- Rueda-Moreno, G.; Sasaki, M.C. Starvation Reduces Thermal Limits of the Widespread Copepod Acartia tonsa. Ecol. Evol. 2023, 13, e10586. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-W.; Ban, S.; Ikeda, T.; Matsuishi, T. Effect of Temperature on Development, Growth and Reproduction in the Marine Copepod Pseudocalanus Newmani at Satiating Food Condition. J. Plankton Res. 2003, 25, 261–271. [Google Scholar] [CrossRef]
- Drira, Z.; Bel Hassen, M.; Ayadi, H.; Aleya, L. What Factors Drive Copepod Community Distribution in the Gulf of Gabes, Eastern Mediterranean Sea? Environ. Sci. Pollut. Res. 2014, 21, 2918–2934. [Google Scholar] [CrossRef]
- Li, B.; Yu, X.-J.; Ping, H.-L.; Wan, L.-T.; Zhang, D.-X.; Zhang, T.; Shi, H.-L.; He, J. Effects of Photoperiod on Growth and Serum Biochemical Parameters of Penaeus japonicus in Recirculating Aquaculture System. Oceanol. Limnol. Sin. 2025, 56, 402–412. [Google Scholar] [CrossRef]
- Michalec, F.-G.; Holzner, M.; Hwang, J.-S.; Souissi, S. Three Dimensional Observation of Salinity-Induced Changes in the Swimming Behavior of the Estuarine Calanoid Copepod Pseudodiaptomus annandalei. J. Exp. Mar. Biol. Ecol. 2012, 438, 24–31. [Google Scholar] [CrossRef]
- Xia, S.; Yu, J.; Geng, Y.; Zhang, H.; Gao, Z.; Liu, Z.; Wu, B. Biochemistry and Metabolomics Revealed the Regulation Mechanism of Osmolality in Sinonovacula constricta under Salinity Stress. Comp. Biochem. Physiol. Part D Genom. Proteom. 2025, 56, 101578. [Google Scholar] [CrossRef]
- Pedroso, M.S.; Pinho, G.L.L.; Rodrigues, S.C.; Bianchini, A. Mechanism of Acute Silver Toxicity in the Euryhaline Copepod Acartia tonsa. Aquat. Toxicol. 2007, 82, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Chintada, B.; Ranjan, R.; Babitha Rani, A.M.; Santhosh, B.; Megarajan, S.; Ghosh, S.; Gopalakrishnan, A. Effects of Salinity on Survival, Reproductive Performance, Population Growth, and Life Stage Composition in the Calanoid Copepod Acartia bilobata. Aquaculture 2023, 563, 739025. [Google Scholar] [CrossRef]
- Zaleha, K.; Farahiyah, I.J. Culture and Growth of a Marine Harpacticoid, Pararobertsonia sp. in Different Salinity and Temperature. Sains Malays. 2010, 39, 135–140. [Google Scholar]
- Dutz, J.; Christensen, A.M. Broad Plasticity in the Salinity Tolerance of a Marine Copepod Species, Acartia longiremis, in the Baltic Sea. J. Plankton Res. 2018, 40, 342–355. [Google Scholar] [CrossRef]
- Uye, S.; Sano, K. Seasonal Reproductive Biology of the Small Cyclopoid Copepod Oithona Davisae in a Temperate Eutrophic Inlet. Mar. Ecol. Prog. Ser. 1995, 118, 121–128. [Google Scholar] [CrossRef]
- Jepsen, P.M.; Dinsen, C.H.; Øllgaard, E.S.H.; Jedal, J.Y.B.; Aggerholm, L.; Salomonsen, T.; Ramløv, H. Coping with Salinity Change: How Does the Cyclopoid Copepod Apocyclops royi (Lindberg 1940) Do It? Comp. Biochem. Physiol. Mol. Integr. Physiol. 2025, 301, 111794. [Google Scholar] [CrossRef]
- Annabi-Trabelsi, N.; Kobbi-Rebai, R.; Al-Enezi, Y.; Ali, M.; Subrahmanyam, M.N.V.; Belmonte, G.; Ayadi, H. Factors Affecting Oithona nana and Oithona similis along a Salinity Gradient. Mediterr. Mar. Sci. 2021, 22, 552–565. [Google Scholar] [CrossRef]
- Chae, J.; Nishida, S. Swimming Behaviour and Photoresponses of the Iridescent Copepods, Sapphirina gastrica and Sapphirina opalina (Copepoda: Poecilostomatoida). J. Mar. Biol. Assoc. UK 2004, 84, 727–731. [Google Scholar] [CrossRef]
- Liu, X.; Sew, G.; Jakobsen, H.H.; Todd, P.A. The Effects of Suspended Sediments on the Swimming Behavior of the Calanoid Copepod, Acartia tonsa. J. Plankton Res. 2020, 42, 57–72. [Google Scholar] [CrossRef]
- Olivares, M.; Calbet, A.; Saiz, E. Effects of Multigenerational Rearing, Ontogeny and Predation Threat on Copepod Feeding Rhythms. Aquat. Ecol. 2020, 54, 697–709. [Google Scholar] [CrossRef]
- Serra, T.; Müller, M.F.; Barcelona, A.; Salvadó, V.; Pous, N.; Colomer, J. Optimal Light Conditions for Daphnia Filtration. Sci. Total Environ. 2019, 686, 151–157. [Google Scholar] [CrossRef]
- Aganesova, L.O.; Khanaychenko, A.N. Effect of Microalgae Species and Concentration on Grazing Rate and Egg Production of Copepods Calanipeda aquaedulcis Kritschagin, 1873 and Arctodiaptomus salinus (Daday, 1885). Russ. J. Mar. Biol. 2024, 50, 146–155. [Google Scholar] [CrossRef]
- Anzueto-Sánchez, M.A.; Barón-Sevilla, B.; Cordero-Esquivel, B.; Celaya-Ortega, A. Effects of Food Concentration and Temperature on Development, Growth, Reproduction and Survival of the Copepod Pseudodiaptomus Euryhalinus. Aquac. Int. 2014, 22, 1911–1923. [Google Scholar] [CrossRef]
- Martínez-Córdova, L.R.; Campaña-Torres, A.; Martínez-Porchas, M.; López-Elías, J.A.; García-Sifuentes, C.O. Effect of Alternative Mediums on Production and Proximate Composition of the Microalgae Chaetoceros muelleri as Food in Culture of the Copepod Acartia sp. Lat. Am. J. Aquat. Res. 2012, 40, 169–176. [Google Scholar] [CrossRef]
- Støttrup, J.G.; Jensen, J. Influence of Algal Diet on Feeding and Egg-Production of the Calanoid Copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 1990, 141, 87–105. [Google Scholar] [CrossRef]
- Magouz, F.I.; Essa, M.A.; Matter, M.; Tageldein Mansour, A.; Alkafafy, M.; Ashour, M. Population Dynamics, Fecundity and Fatty Acid Composition of Oithona nana (Cyclopoida, Copepoda), Fed on Different Diets. Animals 2021, 11, 1188. [Google Scholar] [CrossRef]
- Barroso, M.V.; Boos, B.B.; Antoniassi, R.; Fernandes, L.F.L. Use of the Copepod Oithona Hebes as a Bioencapsulator of Essential Fatty Acids. Braz. J. Oceanogr. 2015, 63, 331–336. [Google Scholar] [CrossRef]
- Chintada, B.; Ranjan, R.; Santhosh, B.; Megarajan, S.; Ghosh, S.; Babitha Rani, A.M. Effect of Stocking Density and Algal Concentration on Production Parameters of Calanoid Copepod Acartia bilobata. Aquac. Rep. 2021, 21, 100909. [Google Scholar] [CrossRef]
- Zhang, J.; Ianora, A.; Wu, C.; Pellegrini, D.; Esposito, F.; Buttino, I. How to Increase Productivity of the Copepod Acartia tonsa (Dana): Effects of Population Density and Food Concentration. Aquac. Res. 2015, 46, 2982–2990. [Google Scholar] [CrossRef]
- Helenius, L.; Budge, S.M.; Nadeau, H.; Johnson, C.L. Ambient Temperature and Algal Prey Type Affect Essential Fatty Acid Incorporation and Trophic Upgrading in a Herbivorous Marine Copepod. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20200039. [Google Scholar] [CrossRef]
- Rocha, G.S.; Katan, T.; Parrish, C.C.; Kurt Gamperl, A. Effects of Wild Zooplankton versus Enriched Rotifers and Artemia on the Biochemical Composition of Atlantic Cod (Gadus morhua) Larvae. Aquaculture 2017, 479, 100–113. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Y.; Guo, F.; Kainz, M.J.; You, J.; Li, F.; Gao, W.; Shen, X.; Tao, J.; Zhang, Y. Sources and Fate of Omega-3 Polyunsaturated Fatty Acids in a Highly Eutrophic Lake. Sci. Total Environ. 2024, 932, 172879. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Sturdevant, M.; Orsi, J.; Wertheimer, A.; Fergusson, E.; Heard, W.; Shirley, T. Interannual Abundance Patterns of Copepods during an ENSO Event in Icy Strait, Southeastern Alaska. ICES J. Mar. Sci. 2004, 61, 464–477. [Google Scholar] [CrossRef]
- Gao, S.; Feng, Z.; Zhang, S.; Lu, J.; Fu, G.; Lu, L. Interactions between Spatiotemporal Dynamics of Copepods and Hydro-Ecological Change in Marine Ranching Ecosystems. Ocean Coast. Manag. 2025, 267, 107736. [Google Scholar] [CrossRef]
Variable | Stage I | Stage 2 | ||
---|---|---|---|---|
Experiment 1 (Temperature) | Experiment 2 (Salinity) | Experiment 3 (Photoperiod) | Experiment 4 (Microalgal Density) | |
Temperature (°C) | T1: 20 | 28 | 28 | 28 |
T2: 24 | ||||
T3: 28 | ||||
T4: 32 | ||||
Salinity (PSU) | 35 | T1: 20 | 35 | 25 |
T2: 25 | ||||
T3: 30 | ||||
T4: 35 | ||||
Photoperiod (L:D) | 12:12 | 12:12 | T1: 12:12 | 16:8 |
T2: 16:8 | ||||
T3: 24:0 | ||||
Microalgal density (cells/mL) | 1 × 105 | 1 × 105 | 1 × 105 | T1: 1 × 104 |
T2: 5 × 104 | ||||
T3: 10 × 104 | ||||
T4: 15 × 104 | ||||
T5: 20 × 104 |
Biological Parameters | Treatment | Experiment | |||
---|---|---|---|---|---|
Temperature (°C) | Salinity (PSU) | Photoperiod (L:D) | Microalgal Density (Cells/mL) | ||
Total population (ind) | T1 | 457 ± 70.47 d | 1670 ± 59.10 c | 2725 ± 145.39 b | 339 ± 72.15 d |
T2 | 1987 ± 32.65 c | 3214 ± 48.60 a | 3230 ± 62.28 a | 1423 ± 90.17 c | |
T3 | 3408 ± 80.71 a | 2625 ± 42.57 b | 2245 ± 85.87 c | 3809 ± 34.09 b | |
T4 | 2805 ± 76.22 b | 1512 ± 29.88 d | 6588 ± 154.29 a | ||
T5 | 6816 ± 239.83 a | ||||
Sex ratio (M/F) | T1 | 0.00 ± 0.00 b* | 0.99 ± 0.06 ab | 0.68 ± 0.10 a | 0.00 ± 0.00 c* |
T2 | 0.73 ± 0.06 a | 0.81 ± 0.06 a | 0.68 ± 0.05 a | 0.30 ± 0.02 b | |
T3 | 0.77 ± 0.02 a | 0.83 ± 0.06 ab | 0.81 ± 0.09 a | 0.80 ± 0.05 a | |
T4 | 0.71 ± 0.09 a | 1.11 ± 0.22 b | 0.79 ± 0.12 a | ||
T5 | 0.86 ± 0.04 a | ||||
SGR (d−1) | T1 | 0.20 ± 0.015 d | 0.28 ± 0.00 c | 0.31 ± 0.005 b | 0.17 ± 0.02 d |
T2 | 0.29 ± 0.002 c | 0.32 ± 0.00 a | 0.32 ± 0.002 a | 0.27 ± 0.01 c | |
T3 | 0.33 ± 0.002 a | 0.31 ± 0.00 b | 0.30 ± 0.004 c | 0.34 ± 0.00 b | |
T4 | 0.32 ± 0.003 b | 0.27 ± 0.00 d | 0.37 ± 0.00 a | ||
T5 | 0.37 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huanacuni, J.I.; Nieto-Rojas, M.J.; Pepe-Victoriano, R.; Resurrección-Huertas, J.Z.; Espinoza-Ramos, L.A. Influence of Salinity, Temperature, Photoperiod, and Isochrysis galbana Microalgal Cell Density on the Growth of the Marine Copepod Oithona nana. Animals 2025, 15, 2635. https://doi.org/10.3390/ani15172635
Huanacuni JI, Nieto-Rojas MJ, Pepe-Victoriano R, Resurrección-Huertas JZ, Espinoza-Ramos LA. Influence of Salinity, Temperature, Photoperiod, and Isochrysis galbana Microalgal Cell Density on the Growth of the Marine Copepod Oithona nana. Animals. 2025; 15(17):2635. https://doi.org/10.3390/ani15172635
Chicago/Turabian StyleHuanacuni, Jordan I., Margaret Jennifer Nieto-Rojas, Renzo Pepe-Victoriano, Juan Zenón Resurrección-Huertas, and Luis Antonio Espinoza-Ramos. 2025. "Influence of Salinity, Temperature, Photoperiod, and Isochrysis galbana Microalgal Cell Density on the Growth of the Marine Copepod Oithona nana" Animals 15, no. 17: 2635. https://doi.org/10.3390/ani15172635
APA StyleHuanacuni, J. I., Nieto-Rojas, M. J., Pepe-Victoriano, R., Resurrección-Huertas, J. Z., & Espinoza-Ramos, L. A. (2025). Influence of Salinity, Temperature, Photoperiod, and Isochrysis galbana Microalgal Cell Density on the Growth of the Marine Copepod Oithona nana. Animals, 15(17), 2635. https://doi.org/10.3390/ani15172635