Effects of COLQ Gene Missense Mutations on Growth and Meat Traits in Leizhou Black Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feeding Environment and Management
2.2. Sample and Phenotypic Data Collection
2.3. Genomic DNA and Total RNA Extraction
2.4. Primer Synthesis, Amplifications, and Genotyping
2.5. Statistical Analysis
3. Results
3.1. Identification of Missense Mutations in Goat COLQ Gene
3.2. The Impact of Missense Mutations on the Structure of the COLQ Protein
3.3. The mRNA Expression of COLQ in LZBGs
3.4. Association Analysis of COLQ Genetic Variants with Phenotypic Traits
3.5. Functional Impact of Missense Variants on COLQ Transcriptional Regulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escareño, L.; Salinas-Gonzalez, H.; Wurzinger, M.; Iñiguez, L.; Sölkner, J.; Meza-Herrera, C. Dairy goat production systems: Status quo, perspectives and challenges. Trop. Anim. Health Prod. 2013, 45, 17–34. [Google Scholar] [CrossRef]
- Akinmoladun, O.F.; Muchenje, V.; Fon, F.N.; Mpendulo, C.T. Small ruminants: Farmers’ hope in a world threatened by water scarcity. Animals 2019, 9, 456. [Google Scholar] [CrossRef]
- Aung, S.H.; Abeyrathne, E.D.N.S.; Hossain, M.A.; Jung, D.Y.; Kim, H.C.; Jo, C.; Nam, K.C. Comparative quality traits, flavor compounds, and metabolite profile of Korean native black goat meat. Food Sci. Anim. Resour. 2023, 43, 639–658. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Deng, M.; Zou, X.; Zhao, Z.; Huang, S.; Liu, D.; Liu, G. Identification and comparative analysis of long non-coding RNAs in high- and low-fecundity goat ovaries during estrus. Front. Genet. 2021, 12, 648158. [Google Scholar] [CrossRef]
- Yu, X.; Wang, H.; Li, Y.; Mu, X.; Yuan, K.; Wu, A.; Guo, J.; Hong, Y.; Zhang, H. Occurrence and genotypic identification of Blastocystis spp., Enterocytozoon bieneusi, and Giardia duodenalis in Leizhou Black goats in Zhanjiang City, Guangdong Province, China. Animals 2023, 13, 2777. [Google Scholar] [CrossRef] [PubMed]
- Belaya, K.; Rodríguez Cruz, P.M.; Liu, W.W.; Maxwell, S.; McGowan, S.; Farrugia, M.E.; Petty, R.; Walls, T.J.; Sedghi, M.; Basiri, K.; et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 2015, 138, 2493–2504. [Google Scholar] [CrossRef]
- Johari, M.; Topf, A.; Folland, C.; Duff, J.; Dofash, L.; Marti, P.; Robertson, T.; Vilchez, J.; Cairns, A.; Harris, E.; et al. Loss-of-function variants in JPH1 cause congenital myopathy with prominent facial and ocular involvement. J. Med. Genet. 2024, 61, 992–998. [Google Scholar] [CrossRef]
- De Palma, S.; Leone, R.; Grumati, P.; Vasso, M.; Polishchuk, R.; Capitanio, D.; Braghetta, P.; Bernardi, P.; Bonaldo, P.; Gelfi, C. Changes in muscle cell metabolism and mechanotransduction are associated with myopathic phenotype in a mouse model of collagen VI deficiency. PLoS ONE 2013, 8, e56716. [Google Scholar] [CrossRef]
- Wu, Q.; Han, X.; Zhang, Y.; Liu, H.; Zhou, H.; Wang, K.; Han, J. One copy number variation within the angiopoietin-1 gene is associated with Leizhou Black goat meat quality. Animals 2024, 14, 2682. [Google Scholar] [CrossRef]
- Uyen Dao, T.M.; Barbeau, S.; Messéant, J.; Della-Gaspera, B.; Bouceba, T.; Semprez, F.; Legay, C.; Dobbertin, A. The collagen ColQ binds to LRP4 and regulates the activation of the Muscle-Specific Kinase-LRP4 receptor complex by agrin at the neuromuscular junction. J. Biol. Chem. 2023, 299, 104962. [Google Scholar] [CrossRef]
- Legay, C. Congenital myasthenic syndromes with acetylcholinesterase deficiency, the pathophysiological mechanisms. Ann. N. Y. Acad. Sci. 2018, 1413, 104–110. [Google Scholar] [CrossRef]
- Rinz, C.J.; Levine, J.; Minor, K.M.; Humphries, H.D.; Lara, R.; Starr-Moss, A.N.; Guo, L.T.; Williams, D.C.; Shelton, G.D.; Clark, L.A. A COLQ missense mutation in Labrador Retrievers having congenital myasthenic syndrome. PLoS ONE 2014, 9, e106425. [Google Scholar] [CrossRef]
- Abitbol, M.; Hitte, C.; Bossé, P.; Blanchard-Gutton, N.; Thomas, A.; Martignat, L.; Blot, S.; Tiret, L. A COLQ missense mutation in Sphynx and Devon Rex cats with congenital myasthenic syndrome. PLoS ONE 2015, 10, e0137019. [Google Scholar] [CrossRef]
- Laforgia, N.; De Cosmo, L.; Palumbo, O.; Ranieri, C.; Sesta, M.; Capodiferro, D.; Pantaleo, A.; Iapicca, P.; Lastella, P.; Capozza, M.; et al. The first case of congenital myasthenic syndrome caused by a large homozygous deletion in the C-terminal region of COLQ (collagen like tail subunit of asymmetric acetylcholinesterase) protein. Genes 2020, 11, 1519. [Google Scholar] [CrossRef]
- Ncube, K.T.; Dzomba, E.F.; Hadebe, K.; Soma, P.; Frylinck, L.; Muchadeyi, F.C. Carcass quality profiles and associated genomic regions of South African goat populations investigated using goat SNP50K genotypes. Animals 2022, 12, 364. [Google Scholar] [CrossRef]
- Wang, K.; Xu, M.; Han, X.; Liu, H.; Han, J.; Sun, W.; Zhou, H. Transcriptome analysis of muscle atrophy in Leizhou black goats: Identification of key genes and insights into limb-girdle muscular dystrophy. BMC Genom. 2025, 26, 80. [Google Scholar] [CrossRef]
- Huang, J.; Xu, M.; Zhang, Y.; Han, J.; Zhou, H.; Wang, K. Missense Mutations in FDNC5 Associated with Morphometric Traits and Meat Quality in Hainan Black Goats. Animals 2025, 15, 565. [Google Scholar] [CrossRef] [PubMed]
- GB/T 35892-2018; Laboratory Animal—Guideline for Ethical Review of Animal Welfare. National Laboratory Animal Standardization Technical Committee: Beijing, China, 2018.
- NY/T 630-2002; Mutton Quality Grading. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2002.
- Chen, Y.; Yang, L.; Lin, X.; Peng, P.; Shen, W.; Tang, S.; Lan, X.; Wan, F.; Yin, Y.; Liu, M. Effects of genetic variation of the sorting nexin 29 (SNX29) gene on growth traits of Xiangdong Black goat. Animals 2022, 12, 3461. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yan, H.; Xu, H.; Yang, Q.; Zhang, S.; Pan, C.; Chen, H.; Zhu, H.; Liu, J.; Qu, L.; et al. A novel indel within goat casein alpha S1 gene is significantly associated with litter size. Gene 2018, 671, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Kang, Z.; Jiang, E.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. Genetic effects of DSCAML1 identified in genome-wide association study revealing strong associations with litter size and semen quality in goat (Capra hircus). Theriogenology 2020, 146, 20–25. [Google Scholar] [CrossRef]
- Krejci, E.; Legay, C.; Thomine, S.; Sketelj, J.; Massoulié, J. Differences in expression of acetylcholinesterase and collagen Q control the distribution and oligomerization of the collagen-tailed forms in fast and slow muscles. J. Neurosci. 1999, 19, 10672–10679. [Google Scholar] [CrossRef]
- Karmouch, J.; Dobbertin, A.; Sigoillot, S.; Legay, C. Developmental consequences of the ColQ/MuSK interactions. Chem. Biol. Interact. 2013, 203, 287–291. [Google Scholar] [CrossRef]
- Wargon, I.; Richard, P.; Kuntzer, T.; Sternberg, D.; Nafissi, S.; Gaudon, K.; Lebail, A.; Bauche, S.; Hantaï, D.; Fournier, E.; et al. Long-term follow-up of patients with congenital myasthenic syndrome caused by COLQ mutations. Neuromuscul Disord. 2012, 22, 318–324. [Google Scholar] [CrossRef]
- Cole, R.N.; Reddel, S.W.; Gervásio, O.L.; Phillips, W.D. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann. Neurol. 2008, 63, 782–789. [Google Scholar] [CrossRef]
- Ohno, K.; Otsuka, K.; Ito, M. Roles of collagen Q in MuSK antibody-positive myasthenia gravis. Chem. Biol. Interact. 2016, 259 Pt B, 266–270. [Google Scholar] [CrossRef]
- Shigemoto, K.; Konishi, T.; Ohta, M. Myasthenia gravis induced by autoantibodies against MuSK. Nihon Rinsho 2008, 66, 1149–1154. [Google Scholar] [PubMed]
- Liu, Y.; Li, Z.; Shi, Y.; Xu, Y.; Wang, Z.; Wang, N.; Yang, K. Characterization of Novel Splicing Mutations and a Recurrent Deletion in COLQ Congenital Myasthenic Syndrome. FASEB J. 2025, 39, e70865. [Google Scholar] [CrossRef]
- Dingová, D.; Kučera, M.; Hodbod, T.; Fischmeister, R.; Krejci, E.; Hrabovská, A. Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function. Am. J. Physiol. Heart Circ. Physiol. 2025, 328, H526–H542. [Google Scholar] [CrossRef]
- Deepak Shyl, E.S.; Malgija, B.; Iniyan, A.M.; Vincent, S.G.P. Mutation in MCL1 predicted loop to helix structural transition stabilizes MCL1-Bax binding interaction favoring cancer cell survival. Proteins 2022, 90, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.C.; Simhadri, V.L.; Iandoli, M.; Sauna, Z.E.; Kimchi-Sarfaty, C. Exposing synonymous mutations. Trends Genet. 2014, 30, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Khabou, B.; Siala-Sahnoun, O.; Gargouri, L.; Mkaouar-Rebai, E.; Keskes, L.; Hachicha, M.; Fakhfakh, F. In silico investigation of the impact of synonymous variants in ABCB4 gene on mRNA stability/structure, splicing accuracy and codon usage: Potential contribution to PFIC3 disease. Comput. Biol. Chem. 2016, 65, 103–109. [Google Scholar] [CrossRef]
- Garcia, J.A.; Lohmueller, K.E. Negative linkage disequilibrium between amino acid changing variants reveals interference among deleterious mutations in the human genome. PLoS Genet. 2021, 17, e1009676. [Google Scholar] [CrossRef] [PubMed]
- Boshove, A.; Derks, M.F.L.; Sevillano, C.A.; Lopes, M.S.; van Son, M.; Knol, E.F.; Dibbits, B.; Harlizius, B. Large scale sequence-based screen for recessive variants allows for identification and monitoring of rare deleterious variants in pigs. PLoS Genet. 2024, 20, e1011034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, G.; Huang, H.; Lu, L.; Wang, L.; Fang, L.; Liu, L.; Wang, Y.; Zhang, S. Screening for JH1 genetic defect carriers in Jersey cattle by a polymerase chain reaction and restriction fragment length polymorphism assay. J. Vet. Diagn. Investig. 2015, 27, 596–599. [Google Scholar] [CrossRef] [PubMed]
Loci | Size | Genotypic Frequencies | HWE | Population Parameters | |||||
---|---|---|---|---|---|---|---|---|---|
N | Ref | Ref/Mut | Mut | p-Value | Ho | He | Ne | PIC | |
SNP1 p.238A/S | 996 | 0.089 | 0.422 | 0.489 | p > 0.05 | 0.422 | 0.420 | 1.720 | 0.332 |
SNP2 g.152339884T>A | 1002 | 0.076 | 0.423 | 0.501 | p > 0.05 | 0.423 | 0.409 | 1.690 | 0.325 |
SNP3 p.47G/S | 997 | 0.540 | 0.378 | 0.082 | p > 0.05 | 0.378 | 0.395 | 1.650 | 0.317 |
SNP4 p.101P/P | 1005 | 0.191 | 0.598 | 0.211 | p > 0.05 | 0.598 | 0.500 | 2.000 | 0.375 |
Traits | Genotypes (Mean ± SE) | p Values | ||
---|---|---|---|---|
Ref | Ref/Mut | Mut | ||
body height (cm) | 54.21 a ± 0.42 | 53.02 b ± 0.36 | 53.44 ab ± 0.33 | 0.031 |
chest depth (cm) | 26.47 ± 0.30 | 26.41 ± 0.19 | 26.30 ± 0.23 | 0.341 |
chest width (cm) | 15.83 a ± 0.17 | 15.68 b ± 0.23 | 15.64 b ± 0.19 | 0.026 |
body length (cm) | 63.77 ± 0.32 | 63.69 ± 0.35 | 63.74 ± 0.41 | 0.842 |
chest circumference (cm) | 71.33 a ± 0.43 | 69.69 b ± 0.46 | 70.15 b ± 0.38 | 0.041 |
withers height (cm) | 56.17 a ± 0.43 | 54.62 b ± 0.35 | 54.73 b ± 0.28 | 0.019 |
hip width (cm) | 17.77 ± 0.28 | 17.39 ± 0.19 | 17.51 ± 0.24 | 0.042 |
body weight (kg) | 28.85 a ± 0.32 | 27.33 b ± 0.38 | 27.41 b ± 0.47 | 0.037 |
carcass weight (kg) | 9.65 a ± 0.23 | 9.44 a ± 0.11 | 9.20 b ± 0.17 | 0.047 |
cross-section area of longissimus dorsi muscle (cm2) | 7.71 a ± 0.14 | 7.53 a ± 0.26 | 7.16 b ± 0.21 | 0.022 |
water loss rate (%) | 4.51 ± 0.23 | 4.73 ± 0.11 | 4.65 ± 0.14 | 0.181 |
water holding capacity (%) | 4.76 ± 0.14 | 4.53 ± 0.17 | 4.58 ± 0.08 | 0.407 |
shear force (N) | 48.88 ± 0.24 | 49.01 ± 0.28 | 48.32 ± 0.31 | 0.083 |
Traits | Genotypes (Mean ± SE) | p Values | ||
---|---|---|---|---|
Ref | Ref/Mut | Mut | ||
body height (cm) | 52.91 a ± 0.19 | 52.92 a ± 0.28 | 51.24 b ± 0.49 | 0.047 |
chest depth (cm) | 26.33 ± 0.18 | 26.21 ± 0.19 | 26.31 ± 0.27 | 0.341 |
chest width (cm) | 15.54 ± 0.15 | 15.56 ± 0.27 | 15.23 ± 0.33 | 0.268 |
body length (cm) | 63.91 ± 0.37 | 62.80 ± 0.42 | 62.66 ± 0.42 | 0.427 |
chest circumference (cm) | 70.82 a ± 0.24 | 69.35 a ± 0.27 | 67.37 b ± 0.41 | 0.024 |
withers height (cm) | 54.97 ± 0.36 | 54.85 ± 0.24 | 53.42 ± 0.47 | 0.062 |
hip width (cm) | 17.52 ± 0.21 | 17.09 ± 0.17 | 16.92 ± 0.11 | 0.207 |
body weight (kg) | 27.88 a ± 0.25 | 27.07 a ± 0.32 | 25.96 b ± 0.21 | 0.021 |
carcass weight (kg) | 9.71 a ± 0.19 | 9.33 b ± 0.16 | 9.29 b ± 0.14 | 0.039 |
cross-section area of longissimus dorsi muscle (cm2) | 7.74 a ± 0.12 | 7.31 b ± 0.20 | 7.39 b ± 0.28 | 0.044 |
water loss rate (%) | 4.61 ± 0.15 | 4.52 ± 0.18 | 4.83 ± 0.21 | 0.506 |
water holding capacity (%) | 4.68 ± 0.10 | 4.64 ± 0.13 | 4.59 ± 0.09 | 0.072 |
shear force (N) | 49.03 a ± 0.22 | 48.77 a ± 0.38 | 47.38 b ± 0.25 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wang, K.; Zhang, Y.; Han, J.; Zhou, H.; Jiang, Q. Effects of COLQ Gene Missense Mutations on Growth and Meat Traits in Leizhou Black Goats. Animals 2025, 15, 2618. https://doi.org/10.3390/ani15172618
Huang J, Wang K, Zhang Y, Han J, Zhou H, Jiang Q. Effects of COLQ Gene Missense Mutations on Growth and Meat Traits in Leizhou Black Goats. Animals. 2025; 15(17):2618. https://doi.org/10.3390/ani15172618
Chicago/Turabian StyleHuang, Jing, Ke Wang, Yuelang Zhang, Jiancheng Han, Hanlin Zhou, and Qinyang Jiang. 2025. "Effects of COLQ Gene Missense Mutations on Growth and Meat Traits in Leizhou Black Goats" Animals 15, no. 17: 2618. https://doi.org/10.3390/ani15172618
APA StyleHuang, J., Wang, K., Zhang, Y., Han, J., Zhou, H., & Jiang, Q. (2025). Effects of COLQ Gene Missense Mutations on Growth and Meat Traits in Leizhou Black Goats. Animals, 15(17), 2618. https://doi.org/10.3390/ani15172618