Development and Validation of Tetranucleotide Repeat Microsatellite Markers at the Whole-Genome Level in the Yangtze Finless Porpoise
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Materials and Genome Resequencing
2.3. Polymorphic Microsatellite Locus Data Screening
2.4. Statistical Analysis of Microsatellite Loci Across Populations
2.5. Experimental Validation of Polymorphic Microsatellite Loci
2.6. Analysis of Genetic Diversity
3. Results
3.1. Screening and Validation of Four-Base Microsatellites Shared Across Populations
3.2. The Application of the Developed Polymorphic Microsatellite Markers
4. Discussion
4.1. Development and Validation of Polymorphic Microsatellite Molecular Markers: Advantages and Assessment
4.2. Assessment of the Efficacy of Microsatellite Molecular Markers and Their Implications for Population Genetics
5. Concluding Remarks and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gao, A.L.; Zhou, K.Y. China academic journal electronic publishing house. Acta Theriol. Sin. 1995, 2, 81–92. [Google Scholar]
- Mei, Z.G.; Hao, Y.J.; Zheng, J.S.; Wang, Z.T.; Wang, K.X.; Wang, D. Population status and conservation outlooks of the Yangtze Finless Porpoise in the Lake Poyang. J. Lack Sci. 2021, 33, 1289–1298. [Google Scholar]
- Min, J.L.; Que, J.L.; Tian, Z.; Rao, R.C. Habitat analysis of yangtze finless porpoises in Po-yang Lake under Extremely Low Water Level. Acta Agric. Univ. Jiangxiensis 2023, 45, 1230–1239. [Google Scholar]
- Wang, D.; Turvey, S.; Zhao, X.; Mei, Z. Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN Red List of Threatened Species, Version 3; IUCN: Gland, Switzerland; Cambridge, UK, 2013. [Google Scholar]
- Yuan, Y.; Zhang, P.J.; Wang, K.; Liu, M.Z.; Li, J.; Zheng, J.S.; Wang, D.; Xu, W.J.; Lin, M.L.; Dong, L.J.; et al. Genome Sequence of the Freshwater Yangtze Finless Porpoise. Genes 2018, 9, 213. [Google Scholar] [CrossRef]
- Xu, P.; Liu, K.; Ying, C.P.; Zhang, J.L. Progress and prospects on the protection of Yangtze Finless Porpoise. Acta Hydrobiol. Sinica 2024, 48, 1077–1084. [Google Scholar]
- Chen, B.Y.; Xin, Y.; Lu, F.T.; Sun, J.; Liu, S.; Li, M.; Wu, B.; Wang, C.R. Monitoring Status and Prospects of Yangtze Finless Porpoise. Environ. Monit. China 2023, 39, 1–10. [Google Scholar]
- Cavagnaro, P.F.; Senalik, D.A.; Yang, L. Genome wide characterization of simple sequence repeats in cucumber (Cucumis sativus). BMC Genom. 2010, 11, 569–571. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.G.; Fang, Z.X.; Hu, X.C.; Han, Q.Z.; Guo, R.R.; Gu, R. Whole genome SSR analysis and polymorphic primer screening in Carya illinoinensis. Mol. Plant Breed. 2021, 24, 8199–8207. [Google Scholar]
- Chen, H.L. Population Genetics of Paramisgurnus dabryanus in China Based on Mtana and Microsatellite Markers. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2022. [Google Scholar] [CrossRef]
- Wang, R.Y.; Chen, M.M.; Wan, X.L.; Tang, B.; Hao, Y.J.; Fan, F.; Wang, K.X. Microsatellite genetic diversity evaluation and development prediction of the Yangtze finless porpoises population the Poyang Lake. Acta Hydrobiol. Sin. 2023, 47, 1693–1700. [Google Scholar]
- Zhang, F.; Zhang, B.W.; Tang, W.Q.; Liu, J.; Wu, J.H.; Tang, B. Analysis of genetic diversity and population dynamics of the narrow-ridged finless porpoise in the Yangtze River Estuary. J. Shanghai Ocean. Univ. 2018, 27, 656–665. [Google Scholar]
- Chen, M.M.; Zheng, J.S.; Gong, C.; Zhao, Q.Z.; Wang, D. Inbreeding evaluation on the Ex Situ conserved Yangtze Finless Porpoise population in Tian’ezhou national natural reserve. Chin. J. Zool. 2014, 49, 305–316. [Google Scholar]
- Feng, J.W.; Zheng, J.S.; Zhou, Z.; Lin, G.; Wang, D.; Zheng, B.Y. Paternity determination of Captivity-Bred Yangtze Finless Porpoises Neophocaena phocaenoides asiaeorientalis by microsatellite genotyping. Prog. Mod. Biomed. 2009, 9, 4015–4020. [Google Scholar]
- Chen, L.; Yang, G. Development of tetranucleotide microsatellite loci for the finless porpoise (Neophocaena phocaenoides). Conserv. Genet. 2008, 9, 1033–1035. [Google Scholar] [CrossRef]
- Chen, L.; Bruford, M.; Yang, G. Isolation and characterization of microsatellite loci in the finless porpoise (Neophocaena phocaenoides). Mol. Ecol. Notes 2007, 7, 1129–1131. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, J.S.; Chen, M.M.; Zhao, Q.Z.; Wang, D. Genetic evaluation and development prognosis on ex situ conserved Yangtze finless porpoises living in Tian’e Zhou national natural reserve. Acta Hydrobiol. Sin. 2012, 36, 403–411. [Google Scholar] [CrossRef]
- Zheng, J.S.; Liao, X.L.; Tong, J.G. Development and characterization of polymorphic microsatellite loci in the endangered Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis). Conserv. Genet. 2008, 9, 1007–1009. [Google Scholar] [CrossRef]
- Zhang, Y.; Lou, F.R.; Han, Z.Q. Development of microsatellite markers in oratosquilla oratoria Transcriptome. J. Zhejiang Ocean Univ. 2019, 38, 95–99. [Google Scholar]
- Han, C.H. Development and Application of Microsatellite DNA Markers for The Black Rockfish. Sebastes schlegelii. Master’s Thesis, Shanghai Oceans University, Shanghai, China, 2016. [Google Scholar]
- Guo, Y.W.; Sun, K.X.; Tian, C.; Cao, T.; Zhao, H.D.; Sun, X.Z. Application status analysis of molecular marker in sheep breeding. China Anim. Husb. 2018, 45, 3505–3512. [Google Scholar]
- Xia, X.R.; Kuang, H.Y.; Sun, D.P.; Lu, Y.; Zheng, H.J.; Hu, Y.X. Analysis of genetic diversity and population genetic structure of sweet maize inbred lines using SNP markers. Acta Agric. Shanghai 2025, 41, 1–6. [Google Scholar]
- Yang, B.; Lin, L.; Li, C.H.; Xu, S.N.; Liu, Y.; Xiao, Y.Y.; Chen, Z.Z. Development and evaluation of microsatellite markers in Parargyrops edita. South China Fish. Sci. 2015, 11, 116–120. [Google Scholar]
- Cai, Y.S.; Yu, H.Y.; Liu, H.; Jiang, C.; Sun, L.; Niu, L.L.; Liu, X.Z.; Li, D.Y.; Li, J. Genome-wide screening of microsatellites in golden snub-nosed monkey (Rhinopithecus roxellana), for the development of a standardized genetic marker system. Sci. Rep. 2020, 10, 10614. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.Z.; Du, L.M.; Yang, B.; Shen, F.J.; Zhang, H.M.; Zhang, Z.H.; Zhang, X.Y.; Yue, B.S. Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca),with a focus on the applications of a novel microsatellite marker syste. BMC Genom. 2015, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Walsh, P.S.; Fildes, N.J.; Reynolds, R. Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res. 1996, 24, 2807–2812. [Google Scholar] [CrossRef]
- Perinchery, G.; Nojima, D.; Goharderakhshan, R.; Tanaka, Y.; Dahiya, R. Microsatellite instability of dinucleotide tandem repeat sequences is higher than trinucleotide, tetranucleotide and pentanucleotide repeat sequences in prostate cance. Int. J. Oncol. 2000, 16, 1203–1209. [Google Scholar]
- Han, X.K.; Li, J.L.; Wang, Z.Q.; Bai, Z.Y. Development and characteristics of tetranucleotide repeat microsatellite loci in Hyriopsis cumingii. Biotechnol. Bull. 2014, 33, 139–144. [Google Scholar]
- Yin, D.H.; Chen, C.H.; Lin, D.Q.; Zhang, J.L.; Cao, Z.C.; Zhang, H. Telomere-to-telomere gap-free genome assembly of the endangered Yangtze finless porpoise and East Asian finless porpoise. Gigascience 2024, 13, giae067. [Google Scholar] [CrossRef]
- Gymrek, M.; Golan, D.; Rosset, S.; Erlich, Y. LobSTR: A short tandem repeat profiler for personal genomes. Genome Res. 2012, 22, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; Meng, X.H.; Liu, Z.J.; Chang, J.; Wang, B.S.; Li, M.Z. Population genomics reveals low genetic diversity and adaptation to hypoxia in snub-nosed monkeys. Mol. Biol. Evol. 2016, 33, 2670–2681. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Marth, G. The Sequence alignment/map(SAM)format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; McVean, G.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Du, L.M.; Zhang, C.; Liu, Q.; Zhang, X.Y.; Yue, B.S. Krait: An ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 2017, 34, 681–683. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAIEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Rousset, F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Amino, O.; Badaoui, B.; Machmoun, M.; Piro, M. Evaluation of the effectiveness of single nucleotide polymorphisms compared to microsatellite markers for parentage verification in Moroccan horse. Anim. Genet. 2024, 55, 404–409. [Google Scholar] [CrossRef]
- Chapuis, M.P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef]
- Du, Y.Y.; Yang, Z.Y. Microsatellite loci isolation for three schizothoracine species and their applications on analysis of genetic polymorphism. Chin. J. Zool. 2025, 60, 414–426. [Google Scholar]
- Archie, E.A.; Moss, C.J.; Alberts, S.C. Characterization of tetranucleotide microsatellite loci in the African Savannah Elephant (Loxodonta africana africana). Mol. Ecol. 2003, 3, 244–246. [Google Scholar] [CrossRef]
- Fernando, P.; Vidya, T.N.C.; Melnick, D.J. Isolation and characterization of tri-and tetranucleotide microsatellite loci in the Asian elephant, Elephas maximus. Mol. Ecol. 2001, 1, 232–233. [Google Scholar] [CrossRef]
- Cai, Y.S. Establishment and Optimization of Microsatellite Marker System for Golden Snub-Nosed Monkey, and Analysis of the Methylation Profiles of Two Tissues. Ph.D. Thesis, Sichuan University, Chengdu, China, 2021. [Google Scholar]
- Selkoe, K.A.; Toonen, R.J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 2006, 9, 615–629. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Turvey, S.T.; Taylor, B.; Akamatsu, T. Distribution patterns of Yangtze finless porpoises in the Yangtze River: Implications for reserve management. Anim. Conserv. 2013, 16, 509–518. [Google Scholar] [CrossRef]
- Wang, C.R.; Suo, W.W.; Jiang, G.M.; Li, H.M.; Liang, Z.Q.; Yang, X.; Yuan, X.P.; Li, H.; Liao, F.C.; Ge, H.Z. Spatial distribution of the Yangtze finless porpoise and relationship to fish density in East Dongting Lake, China. China Environ. Sci. 2019, 39, 4424–4434. [Google Scholar]
- Zhang, H.; Yin, D.H.; Que, J.L.; Zhu, X.Y.; Lin, D.Q.; Ying, C.P.; Yu, J.X.; Liu, K. Genetic diversity and population differentiation of Yangtze Finless Porpoise in Poyang Lake. Animals 2025, 15, 1838. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.C.; Neigel, J.E.; Leberg, P.L. Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol. Ecol. 2000, 9, 1517–1528. [Google Scholar] [CrossRef]
- Li, Y.X.; Shao, C.L.; Gao, H.R.; Wu, J.S.; Xu, M.Q.; Qang, Y.P.; Liu, H.J.; Su, J.Y.; Shan, W.J. Genetic diversity and structure analysis of the Equus hemionus hemionus in Kalamaili. Chin. J. Anim. Vet. Sci. 2025, 11, 1–15. [Google Scholar]
- Yang, W.J. Study on Genetic Diversity and Whole Genome Selection Signals of Hainan Cattle Population. Master’s Thesis, Hainan University, Haikou, China, 2023. [Google Scholar]
- Zhou, T. Genetic Differentiation and Genetic Diversity of Rhesus Macaques in Sichuan Base on Microsatellite Markers. Master’s Thesis, Sichuan Agriculture University, Chengdu, China, 2023. [Google Scholar]
- Johnson, M.S.; Black, R. The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar. Biol. 1984, 79, 295–302. [Google Scholar]
- Lotterhos, K.E. Whitlock, MC. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol. 2015, 24, 1031–1046. [Google Scholar] [CrossRef]
Chromosome | Locus | Primer Sequences (5′-3′) | Fluorescent Labeling | Repeat Motif | Size Range |
---|---|---|---|---|---|
CH3 | STR01 | F:AAATATGCCTGTAGATGGATGGTT | 5′HEX | (GATA)12 | 210–216 |
R:AAGATGTTGAACTCCTTTATGCAAG | |||||
CH4 | STR02 | F:AACTAGAAATACACACTGACACCAA | 5′FAM | (AAAG)10 | 125–173 |
R: TTTTCAGGAGAAATCCTTTTCTAC | |||||
CH16 | STR03 | F: GCTGTCTCCTACCTTTTAATTATGA | 5’FAM | (ATCT)9 | 163–179 |
R:AAAGAAACACAGAAACATGCATTAT | |||||
CH6 | STR04 | F: GCAGAGAAACAAAACCAAAAGG | 5’FAM | (ATAG)11 | 127–139 |
R: TCCTTAAAATCCATCTCTCCCTC | |||||
CH7 | STR05 | F:AGAAAAACAGAACCAACAGGAGATA | 5’HEX | (GATA)9 | 192–208 |
R: ATAGTTGGTGGATGTTAATATTCCC | |||||
CH13 | STR06 | F: TAAAAGAGACCAGACCATCTAGTCC | 5’FAM | (AAGA)11 | 130–162 |
R: TACATATTGGACCTAACAGATCAGC | |||||
CH15 | STR07 | F: CTTGACAGATTGGAAATTAAAAACA | 5’FAM | (CTAT)5 | 154–178 |
R: TTTAATGCTAGCTGAAGTCGTTTC | |||||
CH15 | STR08 | F: ATCAATCAGTCAGCTACCTATCCAC | 5′ROX | (TCTA)6 | 320–344 |
R: AGGGTCATGAACTTATAGAGCTTGT | |||||
CH8 | STR09 | F: GTTGAATGTTGGCCTAAGTAATGA | 5′FAM | (GGCA)9 | 109–113 |
R: AAATCAGAGGCACATGAGACTTG | |||||
CH3 | STR10 | F: CTACTGAGCCTGTTCTCTAGAGCC | 5’ROX | (AAAG)6 | 328–344 |
R: GGCAGAAAGAAATCTTACCTTTCTA | |||||
CH13 | STR11 | F: GCTTTCTTGGTTTTACAGATTACAG | 5′FAM | (TCTA)10 | 163–171 |
R: CAGAGAAACAGAACCATTAGGAAA | |||||
CH17 | STR12 | F: TCATTAACCTGCATAAGGGTCC | 5′HEX | (TATG)11 | 176–184 |
R: CATGCACCACAACGAAGAGTAG | |||||
CH17 | STR13 | F: TGTGTGTATTAGTCAGTGTTCTCCA | 5′FAM | (ATAG)5 | 113–133 |
R: ATGTGAGCCAATTCTTGTAATAAAT | |||||
CH2 | STR14 | F: CTCTGTGGATAAACAATGAACTGTG | 5′FAM | (GAAG)11 | 291–303 |
R: ACCCTGAGAAGAATTACCATTCTG | |||||
CH2 | STR15 | F:TTCCTACATATTATGCACTACTGGG | 5′FAM | (ATCT)11 | 300–332 |
R:CTTAATGGAAAAGATTTCAGTTCCT | |||||
CH10 | STR16 | F:TTAGGCACTGTTTTCAGTAGCATT | 5′FAM | (TCTT)13 | 192–232 |
R:GAGAAGTGAGTCAGGAGCCTTCTA | |||||
CH10 | STR17 | F:CTGTGAAGGTACAGCATAAATGTGT | 5′FAM | (TTTC)10 | 250–266 |
R:CAGACTACTCCCTAAATGTAAAGCC | |||||
CH14 | STR18 | F:GTAGAATCACAGACACTCAGAGTGG | 5′FAM | (AGGT)10 | 179–195 |
R:AATAATACTCCCAGATTTCTCCTCA | |||||
CH10 | STR19 | F: GAACGCTCATTACCTAGGAACTTTA | 5′FAM | (AAAC)6 | 308–320 |
R: CATTTTCTGTCTGTAGGACTGAACA |
Locus | Na | Ho | He | PIC | HWE | F(null) |
---|---|---|---|---|---|---|
STR01 | 5 | 0.82 | 0.647 | 0.569 | NS | −0.128 |
STR02 | 5 | 0.62 | 0.730 | 0.684 | NS | 0.082 |
STR03 | 5 | 0.62 | 0.670 | 0.616 | NS | 0.019 |
STR04 | 4 | 0.68 | 0.685 | 0.609 | NS | −0.009 |
STR05 | 4 | 0.62 | 0.672 | 0.604 | NS | 0.040 |
STR06 | 4 | 0.60 | 0.573 | 0.519 | NS | −0.026 |
STR07 | 4 | 0.60 | 0.748 | 0.692 | ** | 0.077 |
STR08 | 4 | 0.64 | 0.703 | 0.640 | NS | 0.042 |
STR09 | 2 | 0.54 | 0.647 | 0.370 | NS | −0.048 |
STR10 | 6 | 0.84 | 0.685 | 0.627 | NS | −0.118 |
STR11 | 4 | 0.44 | 0.594 | 0.529 | NS | 0.163 |
STR12 | 4 | 0.74 | 0.687 | 0.622 | NS | −0.042 |
STR13 | 4 | 0.62 | 0.632 | 0.568 | NS | 0.008 |
STR14 | 4 | 0.42 | 0.414 | 0.343 | ** | −0.028 |
STR15 | 6 | 0.42 | 0.662 | 0.617 | NS | 0.198 |
STR16 | 5 | 0.42 | 0.474 | 0.442 | * | −0.077 |
STR17 | 6 | 0.82 | 0.777 | 0.732 | NS | −0.003 |
STR18 | 3 | 0.72 | 0.644 | 0.565 | NS | −0.063 |
STR19 | 4 | 0.84 | 0.678 | 0.600 | NS | −0.113 |
Mean | 4.42 | 0.634 | 0.649 | 0.577 | −0.001 |
Locus | Na | Ho | He | PIC | HWE | F(null) |
---|---|---|---|---|---|---|
NP404 | 3 | 0.477 | 0.481 | 0.375 | NS | −0.028 |
Np409 | 6 | 0.367 | 0.694 | 0.629 | *** | 0.182 |
Np428 | 3 | 0.177 | 0.156 | 0.150 | NS | 0.143 |
Np464 | 5 | 0.802 | 0.747 | 0.687 | NS | −0.019 |
PPHO | 4 | 0.700 | 0.739 | 0.691 | * | 0.154 |
YFP1 | 4 | 0.900 | 0.623 | 0.547 | NS | −0.067 |
YFP8 | 3 | 0.367 | 0.465 | 0.381 | NS | 0.177 |
YFP42 | 4 | 0.633 | 0.629 | 0.553 | NS | −0.142 |
YFP59 | 4 | 0.700 | 0.691 | 0.667 | *** | 0.231 |
YFP69 | 3 | 0.500 | 0.495 | 0.441 | NS | −0.128 |
SSR15 | 3 | 0.838 | 0.648 | 0.545 | NS | 0.163 |
SSR22 | 3 | 0.300 | 0.383 | 0.329 | NS | −0.042 |
SSR40 | 3 | 0.565 | 0.584 | 0.519 | NS | 0.028 |
SSR41 | 4 | 0.511 | 0.583 | 0.505 | NS | −0.048 |
SSR51 | 4 | 0.633 | 0.656 | 0.583 | NS | −0.198 |
SSR63 | 3 | 0.468 | 0.575 | 0.489 | NS | −0.177 |
SSR71 | 4 | 0.333 | 0.296 | 0.382 | NS | −0.003 |
SSR73 | 4 | 0.602 | 0.663 | 0.614 | NS | 0.163 |
SSR5 | 6 | 0.403 | 0.713 | 0.654 | *** | −0.093 |
SSR75 | 6 | 0.453 | 0.422 | 0.315 | NS | 0.234 |
Mean | 3.95 | 0.536 | 0.562 | 0.502 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Yin, D.; Que, J.; Lin, D.; Ying, C.; Liu, J.; Liu, F.; Wang, P.; Li, W.; Yu, J.; et al. Development and Validation of Tetranucleotide Repeat Microsatellite Markers at the Whole-Genome Level in the Yangtze Finless Porpoise. Animals 2025, 15, 2603. https://doi.org/10.3390/ani15172603
Tang M, Yin D, Que J, Lin D, Ying C, Liu J, Liu F, Wang P, Li W, Yu J, et al. Development and Validation of Tetranucleotide Repeat Microsatellite Markers at the Whole-Genome Level in the Yangtze Finless Porpoise. Animals. 2025; 15(17):2603. https://doi.org/10.3390/ani15172603
Chicago/Turabian StyleTang, Mengting, Denghua Yin, Jianglong Que, Danqing Lin, Congping Ying, Jie Liu, Fangning Liu, Pan Wang, Wenwen Li, Jinxiang Yu, and et al. 2025. "Development and Validation of Tetranucleotide Repeat Microsatellite Markers at the Whole-Genome Level in the Yangtze Finless Porpoise" Animals 15, no. 17: 2603. https://doi.org/10.3390/ani15172603
APA StyleTang, M., Yin, D., Que, J., Lin, D., Ying, C., Liu, J., Liu, F., Wang, P., Li, W., Yu, J., & Liu, K. (2025). Development and Validation of Tetranucleotide Repeat Microsatellite Markers at the Whole-Genome Level in the Yangtze Finless Porpoise. Animals, 15(17), 2603. https://doi.org/10.3390/ani15172603