Thermal and Nutritional Strategies for Managing Tenacibaculum maritimum in Aquaculture: A Welfare-Oriented Review
Simple Summary
Abstract
1. Introduction
Methodological Approach
2. Tenacibaculum maritimum Management: Limitations of Conventional Approaches
2.1. Understanding the Pathogen–Host Interactions
2.2. Environmental and Management Drivers of Disease Emergence
2.3. Limitations of Conventional Treatment Strategies
2.4. Why Alternative Approaches Are Essential
2.5. Implementation Barriers and Commercial Reality
3. Thermal Strategies for Managing T. maritimum Infections in Fish
3.1. Temperature as a Driver of T. maritimum Virulence and Host Susceptibility
3.2. Behavioural Fever in Fish: Mechanisms, Evidence, and Limitations
Limitations of Behavioural Fever
Species | Pathogen | Control/Optimal Temperature (°C) | Preferred Temperature (°C) | Observations | References |
---|---|---|---|---|---|
Micropterus salmoides | Aeromonas hydrophila | 30.5 | 32 | 2.1 °C increase in preferred temperature | [70] |
Lepomis macrochirus | Aeromonas hydrophila | 30 | 33 | 2.7 °C increase in preferred temperature | [70] |
Danio rerio | Double-stranded RNA (dsRNA) | 29 | 33 | Mean 3 ± 0.5 °C shift in thermal preference maintained over at least 24 h; under viral infection, mortality decreased | [21] |
Oreochromis niloticus | Streptococcus iniae | 29–31 | 32–33 | Reactive and proactive fish chose higher temperatures than naïve fish and the peak thermal response occurred at 24 h post-infection | [23] |
Oreochromis niloticus | Edwardsiella piscicida | 28 | 34 | Reduced mortality; higher expression of genes involved in fever induction and response (e.g., TNF-α, IL-6, IL-1β, IL-8, COX-2) | [108] |
Danio rerio | Double-stranded RNA (dsRNA) | 28 | 32 | Behavioural fever was shown only by larvae at 18–20 dpf | [109] |
Cyprinus carpio | Cyprinid herpesvirus 3 (CyHV-3) | 24–28 | 32 | No mortality when the expression of behavioural fever was allowed | [101] |
Salmo salar | Infectious pancreatic necrosis virus (IPNV) | 15 | 18–20 | Promotes the synthesis of pro-inflammatory cytokines; TRPV1 and TRPV4 channels coordinate temperature sensing during behavioural fever | [22] |
Salmo salar | Infectious pancreatic necrosis virus (IPNV) | 15 | 18 | Fever in fish triggers neuro-immune interactions that modulate inflammatory response during pathogenic infection | [102] |
Oncorhynchus mykiss | Bacterial lipopolysaccharide (LPS) | 13.5 | 16 | Increased expression of cytokine interleukin-1β | [72] |
3.3. Practical Implementation of Thermal Therapies in Aquaculture
4. Nutritional Strategies: Fortified Feeds with Natural Immunostimulants
4.1. The Role of Nutrition in Disease Resistance Across Fish Species
4.2. Functional Feeds and Natural Immunostimulants: Laboratory Promise and Commercial Challenges
4.3. Experimental Evidence: T. maritimum-Specific Applications and Limitations
Compounds | Effect | Host | References |
---|---|---|---|
Algae | |||
Nannochloropsis oceanica Chlorella vulgaris Gracilaria gracilis Ulva rigida Commercial blend of these algae (Algaessence Feed™, ALGAplus Lda., Ílhavo, Portugal) | 40–45% bactericidal activity against T. maritimum; all species were effective | In vitro | [24] |
Commercial blend (Algaessence Feed™, ALGAplus Lda., Ílhavo, Portugal) | 4% inclusion inhibits disease progression and reduces mortality | Dicentrarchus labrax | [25] |
Plants | |||
Echinacea purpurea oil extract Origanum vulgare oil extract | Enhanced immunity and disease resistance against T. maritimum | Dicentrarchus labrax | [26] |
Plant extract carvacrol combined with cymene | 14 days of treatment resulted in no clinical signs of disease and no mortality | Thalassoma purpureum | [139] |
Probiotics | |||
LAB | Antimicrobial activity against T. maritimum and inhibition of its adhesion to turbot mucus | In vitro | [140] |
Bacillus spp. | Some fish-gut Bacillus spp. isolates and their extracellular NACs * inhibited bacterial growth and decreased biofilm formation | In vitro | [135] |
Bacillus spp. | Isolate FI162, cells and cell-free supernatant, inhibited T. maritimum growth | In vitro | [143] |
Psychrobacter genus, Acinetobacter heamolyticus and Enterovibrio calviensis | Antagonistic activity against T. maritimum | In vitro | [144] |
Psychrobacter nivimaris and P. faecalis | Reduced fish mortality (rectal administrations) | Psetta maxima | [145] |
Phaeobacter piscinae S26 | The biofilm was effective in eliminating T. maritimum | In vitro | [146] |
Marine actinomycetes | High antimicrobial activity against T. maritimum | In vitro | [147] |
Aspergillus niger β-glucan MycoFence® (Citribel, Tienen, Belgium) | Reduced fish mortality | Salmo salar | [141] |
5. Theoretical Framework for Integration: Research Hypothesis and Validation Requirements
5.1. Species-Specific Considerations and Research Requirements
5.2. Technology Integration and Proteomic-Based Validation for Climate-Adaptive Management
5.3. Sustainability Framework and Industry Transformation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raposo de Magalhães, C.S.F.; Cerqueira, M.A.C.; Schrama, D.; Moreira, M.J.V.; Boonanuntanasarn, S.; Rodrigues, P.M.L. A Proteomics and Other Omics Approach in the Context of Farmed Fish Welfare and Biomarker Discovery. Rev. Aquac. 2020, 12, 122–144. [Google Scholar] [CrossRef]
- Dai, C.; Zheng, J.; Qi, L.; Deng, P.; Wu, M.; Li, L.; Yuan, J. Chronic Stress Boosts Systemic Inflammation and Compromises Antiviral Innate Immunity in Carassius Gibel. Front. Immunol. 2023, 14, 1105156. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, C.; Wang, M.; Li, L.; Lin, R.; Han, D.; Zhu, X.; Zhang, L. Effects of Hypoxic Stress on Liver Metabolism, Oxidative Stress, and Immunity in Yellow Catfish (Pelteobagrus fulvidraco) at Different Water Temperatures. Aquaculture 2025, 598, 742088. [Google Scholar] [CrossRef]
- Kari, Z.A. Abiotic and Biotic Factors Affecting the Immune System of Aquatic Species: A Review. Comp. Immunol. Rep. 2025, 9, 200230. [Google Scholar] [CrossRef]
- Tort, L.; Pavlidis, M.A.; Woo, N.Y.S. Stress and Welfare in Sparid Fishes. In Sparidae: Biology and Aquaculture of Gilthead Sea Bream and Other Species; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 75–94. ISBN 9781405197724. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Coping with Climate Change—The Roles of Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Okon, E.M.; Oyesiji, A.A.; Okeleye, E.D.; Kanonuhwa, M.; Khalifa, N.E.; Eissa, E.S.H.; Mathew, R.T.; Eissa, M.E.H.; Alqahtani, M.A.; Abdelnour, S.A. The Escalating Threat of Climate Change-Driven Diseases in Fish: Evidence from a Global Perspective—A Literature Review. Environ. Res. 2024, 263, 120184. [Google Scholar] [CrossRef]
- Irshath, A.A.; Rajan, A.P.; Vimal, S.; Prabhakaran, V.S.; Ganesan, R. Bacterial Pathogenesis in Various Fish Diseases: Recent Advances and Specific Challenges in Vaccine Development. Vaccines 2023, 11, 470. [Google Scholar] [CrossRef]
- Mohamad, N.; Amal, M.N.A.; Yasin, I.S.M.; Zamri Saad, M.; Nasruddin, N.S.; Al-saari, N.; Mino, S.; Sawabe, T. Vibriosis in Cultured Marine Fishes: A Review. Aquaculture 2019, 512, 734289. [Google Scholar] [CrossRef]
- Menanteau-Ledouble, S.; Kumar, G.; Saleh, M.; El-Matbouli, M. Aeromonas salmonicida: Updates on an Old Acquaintance. Dis. Aquat. Organ. 2016, 120, 49–68. [Google Scholar] [CrossRef]
- Van Doan, H.; Soltani, M.; Leitão, A.; Shafiei, S.; Asadi, S.; Lymbery, A.J.; Ringø, E. Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals 2022, 12, 2443. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, X.H. Edwardsiella tarda: An Intriguing Problem in Aquaculture. Aquaculture 2014, 431, 129–135. [Google Scholar] [CrossRef]
- Leung, K.Y.; Wang, Q.; Yang, Z.; Siame, B.A. Edwardsiella Piscicida: A Versatile Emerging Pathogen of Fish. Virulence 2019, 10, 555–567. [Google Scholar] [CrossRef]
- Mabrok, M.; Algammal, A.M.; Sivaramasamy, E.; Hetta, H.F.; Atwah, B.; Alghamdi, S.; Fawzy, A.; Avendaño-Herrera, R.; Rodkhum, C. Tenacibaculosis Caused by Tenacibaculum maritimum: Updated Knowledge of This Marine Bacterial Fish Pathogen. Front. Cell. Infect. Microbiol. 2023, 12, 1068000. [Google Scholar] [CrossRef]
- Olsen, A.B.; Powell, J.; Siah, A.; Colquhoun, D.J.; Avendaño-Herrera, R. Tenacibaculosis. In An Overview of Emerging Diseases in the Salmonid Farming Industry; Brun, E., Rodríguez, F., Macdonald, A., Eds.; Elanco: Buenos Aires, Argentina, 2019. [Google Scholar]
- Avendaño-Herrera, R.; Toranzo, A.E.; Magariños, B. Tenacibaculosis Infection in Marine Fish Caused by Tenacibaculum maritimum: A Review. Dis. Aquat. Organ. 2006, 71, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Toranzo, A.E.; Magariños, B.; Romalde, J.L. A Review of the Main Bacterial Fish Diseases in Mariculture Systems. Aquaculture 2005, 246, 37–61. [Google Scholar] [CrossRef]
- Rigos, G.; Kogiannou, D.; Padrós, F.; Cristòfol, C.; Florio, D.; Fioravanti, M.; Zarza, C. Best Therapeutic Practices for the Use of Antibacterial Agents in Finfish Aquaculture: A Particular View on European Seabass (Dicentrarchus labrax) and Gilthead Seabream (Sparus aurata) in Mediterranean Aquaculture. Rev. Aquac. 2021, 13, 1285–1323. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R.; Núñez, S.; Barja, J.L.; Toranzo, A.E. Evolution of Drug Resistance and Minimum Inhibitory Concentration to Enrofloxacin in Tenacibaculum maritimum Strains Isolated in Fish Farms. Aquac. Int. 2008, 16, 1–11. [Google Scholar] [CrossRef]
- Escribano, M.P.; Balado, M.; Santos, B.; Toranzo, A.E.; Lemos, M.L.; Magariños, B. Outer Membrane Vesicles (OMVs) from Tenacibaculum maritimum as a Potential Vaccine against Fish Tenacibaculosis. Fish Shellfish Immunol. 2024, 154, 109943. [Google Scholar] [CrossRef] [PubMed]
- Boltaña, S.; Rey, S.; Roher, N.; Vargas, R.; Huerta, M.; Huntingford, F.A.; Goetz, F.W.; Moore, J.; Garcia-Valtanen, P.; Estepa, A.; et al. Behavioural Fever Is a Synergic Signal Amplifying the Innate Immune Response. Proc. R. Soc. Lond. B Biol. Sci. 2013, 280, 20131381. [Google Scholar] [CrossRef]
- Boltana, S.; Sanhueza, N.; Donoso, A.; Aguilar, A.; Crespo, D.; Vergara, D.; Arriagada, G.; Morales-Lange, B.; Mercado, L.; Rey, S.; et al. The Expression of TRPV Channels, Prostaglandin E2 and pro-Inflammatory Cytokines during Behavioural Fever in Fish. Brain. Behav. Immun. 2018, 71, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.; Rey, S.; Silva, T.; Featherstone, Z.; Crumlish, M.; MacKenzie, S. Thermal Preference Predicts Animal Personality in Nile Tilapia Oreochromis niloticus. J. Anim. Ecol. 2016, 85, 1389–1400. [Google Scholar] [CrossRef]
- Ferreira, M.; Teixeira, C.; Abreu, H.; Silva, J.; Costas, B.; Kiron, V.; Valente, L.M.P. Nutritional Value, Antimicrobial and Antioxidant Activities of Micro- and Macroalgae, Single or Blended, Unravel Their Potential Use for Aquafeeds. J. Appl. Phycol. 2021, 33, 3507–3518. [Google Scholar] [CrossRef]
- Ferreira, M.; Machado, M.; Mota, C.S.C.; Abreu, H.; Silva, J.; Maia, M.R.G.; Kiron, V.; Costas, B.; Valente, L.M.P. Micro- and Macroalgae Blend Modulates the Mucosal and Systemic Immune Responses of European Seabass (Dicentrarchus labrax) upon Infection with Tenacibaculum maritimum. Aquaculture 2023, 566, 739222. [Google Scholar] [CrossRef]
- Khalil, R.H.; Diab, A.M.; Shakweer, M.S.; Ghetas, H.A.; Khallaf, M.M.; Omar, A.A.E.D. New Perspective to Control of Tenacibaculosis in Sea Bass Dicentrarchus labrax L. Aquac. Res. 2018, 49, 2357–2365. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Hikida, M.; Masumura, K. Flexibacter maritimus sp. Nov., a Pathogen of Marine Fishes. Int. J. Syst. Bacteriol. 1986, 36, 396–398. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakagawa, Y.; Harayama, S.; Yamamoto, S. Phylogenetic Analysis and Taxonomic Study of Marine Cytophaga-like Bacteria: Proposal for Tenacibaculum Gen. Nov. with Tenacibaculum maritimum Comb. Nov. and Tenacibaculum ovolyticum Comb. Nov., and Description of Tenacibaculum mesophilum sp. Nov. and Tenacibaculum amylolyticum sp. Nov. Int. J. Syst. Evol. Microbiol. 2001, 51, 1639–1652. [Google Scholar] [CrossRef]
- Levipan, H.A.; Tapia-Cammas, D.; Molina, V.; Irgang, R.; Toranzo, A.E.; Magariños, B.; Avendaño-Herrera, R. Biofilm Development and Cell Viability: An Undervalued Mechanism in the Persistence of the Fish Pathogen Tenacibaculum maritimum. Aquaculture 2019, 511, 734267. [Google Scholar] [CrossRef]
- Fernández-Álvarez, C.; Santos, Y. Identification and Typing of Fish Pathogenic Species of the Genus Tenacibaculum. Appl. Microbiol. Biotechnol. 2018, 102, 9973–9989. [Google Scholar] [CrossRef]
- Kumanan, K.; Delisle, L.; Angelucci, C.; Hunter, R.B.J.; Rudenko, O.; Carson, J.; Morrison, R.N.; Barnes, A.C.; Hutson, K.S. Serological and Molecular Typing of Tenacibaculum maritimum from New Zealand Farmed Salmon, Oncorhynchus tshawytscha. Aquaculture 2024, 578, 740055. [Google Scholar] [CrossRef]
- Escribano, M.P.; Balado, M.; Toranzo, A.E.; Lemos, M.L.; Magariños, B. The Secretome of the Fish Pathogen Tenacibaculum maritimum Includes Soluble Virulence-Related Proteins and Outer Membrane Vesicles. Front. Cell. Infect. Microbiol. 2023, 13, 1197290. [Google Scholar] [CrossRef]
- Sahoo, S.; Banu, H.; Prakash, A.; Tripathi, G. Immune System of Fish: An Evolutionary Perspective. In Antimicrobial Immune Response; Ortega-Villaizan, M., Chico, V., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Pérez-Pascual, D.; Lunazzi, A.; Magdelenat, G.; Rouy, Z.; Roulet, A.; Lopez-Roques, C.; Larocque, R.; Barbeyron, T.; Gobet, A.; Michel, G.; et al. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms. Front. Microbiol. 2017, 8, 1542. [Google Scholar] [CrossRef] [PubMed]
- Santos, Y.; Pazos, F.; Barja, J.L. Flexibacter Maritimus, Casual Agent of Flexibacteriosis in Marine Fish. In ICES Identification Leaflets for Diseases and Parasites in Fish and Shellfish; The International Council for the Exploration of the Sea (ICES): Copenhagen, Denmark, 1999; 5p. [Google Scholar] [CrossRef]
- Tavares-Dias, M.; Martins, M.L. An Overall Estimation of Losses Caused by Diseases in the Brazilian Fish Farms. J. Parasit. Dis. 2017, 41, 913–918. [Google Scholar] [CrossRef]
- Magnadottir, B. Immunological Control of Fish Diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef]
- Bernardet, J.F.; Kerouault, B.; Michel, C. Comparative Study on Flexibacter maritimus Strains Isolated from Farmed Sea Bass (Dicentrarchus labrax) in France. Fish. Pathol. 1994, 29, 105–111. [Google Scholar] [CrossRef]
- Colorni, A.; Padrós, F. Diseases and Health Management. In Sparidae: Biology and Aquaculture of Gilthead Sea Bream and Other Species; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 321–357. ISBN 9781405197724. [Google Scholar]
- Binesh, C.P. Elevation of Temperature and Crowding Trigger Acute Viral Nervous Necrosis in Zebra Fish, Brachydanio Rerio (Hamilton-Buchanan), Subclinically Infected with Betanodavirus. J. Fish. Dis. 2014, 37, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Handlinger, J.; Soltani, M.; Percival, S. The Pathology of Flexibacter maritimus in Aquaculture Species in Tasmania, Australia. J. Fish. Dis. 1997, 20, 159–168. [Google Scholar] [CrossRef]
- Wassmuth, R.M.; de Jongh, E.J.; Uhland, F.C.; Reid-Smith, R.J.; Robertson, K.; Otto, S.J.G. Factors Associated with Disease in Farmed and Wild Salmonids Caused by Tenacibaculum maritimum: A Scoping Review. Front. Aquac. 2024, 3, 1496943. [Google Scholar] [CrossRef]
- Brum, A.; Magnotti, C.; Tsuzuki, M.Y.; Sousa, E.M.d.O.; Mouriño, J.L.P.; Martins, M.L.; Lopes, R.G.; Derner, R.B.; Owatari, M.S. Pivotal Roles of Fish Nutrition and Feeding: Recent Advances and Future Outlook for Brazilian Fish Farming. Fishes 2025, 10, 47. [Google Scholar] [CrossRef]
- Scafetta, N. Reconstruction of the Interannual to Millennial Scale Patterns of the Global Surface Temperature. Atmosphere 2021, 12, 147. [Google Scholar] [CrossRef]
- Madeira, D.; Vinagre, C.; Costa, P.M.; Diniz, M.S. Histopathological Alterations, Physiological Limits, and Molecular Changes of Juvenile Sparus aurata in Response to Thermal Stress. Mar. Ecol. Prog. Ser. 2014, 505, 253–266. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends. Plant. Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Naiel, M.A.E.; Said, M.B.; Alnajeebi, A.M.; Nasr, F.A.; Al-Doaiss, A.A.; Mahasneh, Z.M.H.; Noreldin, A.E. Environmental Epigenetics: Exploring Phenotypic Plasticity and Transgenerational Adaptation in Fish. Environ. Res. 2024, 252, 118799. [Google Scholar] [CrossRef] [PubMed]
- Kubin, E.; Menna, M.; Mauri, E.; Notarstefano, G.; Mieruch, S.; Poulain, P.M. Heat Content and Temperature Trends in the Mediterranean Sea as Derived from Argo Float Data. Front. Mar. Sci. 2023, 10, 1271638. [Google Scholar] [CrossRef]
- Piñeiro-Vidal, M.; Carballas, C.G.; Gómez-Barreiro, O.; Riaza, A.; Santos, Y. Tenacibaculum soleae sp. Nov., Isolated from Diseased Sole (Solea senegalensis Kaup). Int. J. Syst. Evol. Microbiol. 2008, 58, 881–885. [Google Scholar] [CrossRef]
- Downes, J.K.; Yatabe, T.; Marcos-Lopez, M.; Rodger, H.D.; MacCarthy, E.; O’Connor, I.; Collins, E.; Ruane, N.M. Investigation of Co-Infections with Pathogens Associated with Gill Disease in Atlantic Salmon during an Amoebic Gill Disease Outbreak. J. Fish. Dis. 2018, 41, 1217–1227. [Google Scholar] [CrossRef]
- Magi, G.E.; Avendaño-Herrera, R.; Magariños, B.; Toranzo, A.E.; Romalde, J.L. First Reports of Flexibacteriosis in Farmed Tub Gurnard (Chelidonichthys lucernus L.) and Wild Turbot (Scophthalmus maximus) in Italy. Bull. Eur. Assoc. Fish. Pathol. 2007, 27, 177–184. [Google Scholar]
- Småge, S.B.; Frisch, K.; Brevik, Ø.J.; Watanabe, K.; Nylund, A. First Isolation, Identification and Characterisation of Tenacibaculum maritimum in Norway, Isolated from Diseased Farmed Sea Lice Cleaner Fish Cyclopterus lumpus L. Aquaculture 2016, 464, 178–184. [Google Scholar] [CrossRef]
- Jang, Y.H.; Jeong, J.B.; Yeo, I.K.; Kim, K.Y.; Harikrishnan, R.; Heo, M.S. Biological Characterization of Tenacibaculum maritimum Isolated from Cultured Olive Flounder in Korea and Sensitivity against Native Plant Extracts. Fish. Pathol. 2009, 22, 53–65. [Google Scholar]
- Moustafa, M.; Eissa, A.; Laila, A.; Gaafar, A.; Abumourad, I.; Elgendy, M. Mass Mortalities in Mari-Cultured European Sea Bass (Dicentrarchus labrax) at Northern Egypt. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 95–109. [Google Scholar]
- Moustafa, M.; Gaafar, A. Investigations into the Potential Causes of Mass Kills in Mari-Cultured Gilthead Sea Bream (Sparus aurata) at Northern Egypt. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 466–477. [Google Scholar]
- Brosnahan, C.L.; Munday, J.S.; Ha, H.J.; Preece, M.; Jones, J.B. New Zealand Rickettsia-like Organism (NZ-RLO) and Tenacibaculum maritimum: Distribution and Phylogeny in Farmed Chinook Salmon (Oncorhynchus tshawytscha). J. Fish. Dis. 2019, 42, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Saulnier, D.; Swarup-Gaucher, S.; David, R.; Lau, C.; Taputuarai, R.; Belliard, C.; Basset, C.; Labrune, V.; Marie, A.; et al. First Isolation of Virulent Tenacibaculum maritimum Isolates from Diseased Orbicular Batfish (Platax orbicularis) Farmed in Tahiti Island. Pathogens 2022, 11, 131. [Google Scholar] [CrossRef]
- Portz, D.E.; Woodley, C.M.; Cech, J.J. Stress-Associated Impacts of Short-Term Holding on Fishes. Rev. Fish. Biol. Fish. 2006, 16, 125–170. [Google Scholar] [CrossRef]
- Eissa, N.; Wang, H.P. Transcriptional Stress Responses to Environmental and Husbandry Stressors in Aquaculture Species. Rev. Aquac. 2016, 8, 61–88. [Google Scholar] [CrossRef]
- Delfosse, C.; Pageat, P.; Lafont-Lecuelle, C.; Asproni, P.; Chabaud, C.; Cozzi, A.; Bienboire-Frosini, C. Effect of Handling and Crowding on the Susceptibility of Atlantic Salmon (Salmo salar L.) to Lepeophtheirus salmonis (Krøyer) Copepodids. J. Fish. Dis. 2021, 44, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Ljubojević Pelić, D.; Radosavljević, V.; Pelić, M.; Živkov Baloš, M.; Puvača, N.; Jug-Dujaković, J.; Gavrilović, A. Antibiotic Residues in Cultured Fish: Implications for Food Safety and Regulatory Concerns. Fishes 2024, 9, 484. [Google Scholar] [CrossRef]
- Aladekoyi, O.; Siddiqui, S.; Hania, P.; Hamza, R.; Gilbride, K. Accumulation of Antibiotics in the Environment: Have Appropriate Measures Been Taken to Protect Canadian Human and Ecological Health? Ecotoxicol. Environ. Saf. 2024, 280, 116513. [Google Scholar] [CrossRef]
- Collignon, P.J.; McEwen, S.A. One Health—Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Annual Report on Antimicrobial Agents Intended for Use in Animals. 8th Report; World Organisation for Animal Health: Paris, France, 2024. [Google Scholar]
- Cabello, F.C. Heavy Use of Prophylactic Antibiotics in Aquaculture: A Growing Problem for Human and Animal Health and for the Environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Nowlan, J.P.; Britney, S.R.; Lumsden, J.S.; Russell, S. Experimental Induction of Tenacibaculosis in Atlantic Salmon (Salmo salar L.) Using Tenacibaculum maritimum, T. dicentrarchi, and T. finnmarkense. Pathogens 2021, 10, 1439. [Google Scholar] [CrossRef] [PubMed]
- Frisch, K.; Småge, S.B.; Vallestad, C.; Duesund, H.; Brevik, J.; Klevan, A.; Olsen, R.H.; Sjaatil, S.T.; Gauthier, D.; Brudeseth, B.; et al. Experimental Induction of Mouthrot in Atlantic Salmon Smolts Using Tenacibaculum maritimum from Western Canada. J. Fish. Dis. 2018, 41, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Lundh, A.; Lexchin, J.; Mintzes, B.; Schroll, J.B.; Bero, L. Industry Sponsorship and Research Outcome. Cochrane Database Syst. Rev. 2017, 2, MR000033. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.A.; Peixoto, D.; Losada, A.P.; Quiroga, M.I.; Vale, A.D.; Costas, B. Early Innate Immune Responses in European Sea Bass (Dicentrarchus labrax L.) Following Tenacibaculum maritimum Infection. Front. Immunol. 2023, 14, 1254677. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, W.W.; Casterlin, M.E.; Covert, J.B. Behavioural Fever in Teleost Fishes. Nature 1976, 259, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Covert, J.B.; Reynolds, W.W. Survival Value of Fever in Fish. Nature 1977, 267, 43–45. [Google Scholar] [CrossRef]
- Gräns, A.; Rosengren, M.; Niklasson, L.; Axelsson, M. Behavioural Fever Boosts the Inflammatory Response in Rainbow Trout Oncorhynchus mykiss. J. Fish. Biol. 2012, 81, 1111–1117. [Google Scholar] [CrossRef]
- Hossain, M.S.; Small, B.C.; Kumar, V.; Hardy, R. Utilization of Functional Feed Additives to Produce Cost-Effective, Ecofriendly Aquafeeds High in Plant-Based Ingredients. Rev. Aquac. 2024, 16, 121–153. [Google Scholar] [CrossRef]
- Sanhueza, N.; Donoso, A.; Aguilar, A.; Farlora, R.; Carnicero, B.; Míguez, J.M.; Tort, L.; Valdes, J.A.; Boltana, S. Thermal Modulation of Monoamine Levels Influence Fish Stress and Welfare. Front. Endocrinol. 2018, 9, 717. [Google Scholar] [CrossRef]
- Elgendy, M.Y.; Ali, S.E.; Dayem, A.A.; Khalil, R.H.; Moustafa, M.M.; Abdelsalam, M. Alternative Therapies Recently Applied in Controlling Farmed Fish Diseases: Mechanisms, Challenges, and Prospects. Aquac. Int. 2024, 32, 9017–9078. [Google Scholar] [CrossRef]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef]
- Yáñez, J.M.; Joshi, R.; Yoshida, G.M. Genomics to Accelerate Genetic Improvement in Tilapia. Anim. Genet. 2020, 51, 658–674. [Google Scholar] [CrossRef]
- Griot, R.; Allal, F.; Phocas, F.; Brard-Fudulea, S.; Morvezen, R.; Haffray, P.; François, Y.; Morin, T.; Bestin, A.; Bruant, J.S.; et al. Optimization of Genomic Selection to Improve Disease Resistance in Two Marine Fishes, the European Sea Bass (Dicentrarchus labrax) and the Gilthead Sea Bream (Sparus aurata). Front. Genet. 2021, 12, 665920. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Maritime Affairs and Fisheries & EUMOFA. Recirculation Aquaculture Systems; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Le Bloch, J.; Rouault, M.; Langhi, C.; Hignard, M.; Iriantsoa, V.; Michelet, O. The Novel Food Evaluation Process Delays Access to Food Innovation in the European Union. NPJ Sci. Food. 2025, 9, 117. [Google Scholar] [CrossRef]
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Laursen, R.R.; Ouwehand, A.C. The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef]
- Azab, A.M.; Mousa, M.A.; Khalil, N.A.; Khalaf-Allah, H.M.M.; Mabrouk, R.T.M.; History, A. Effect of Temperature and Salinity on Larval Growth of the Gilthead Seabream, Sparus aurata. Int. J. Environ. Sci. Eng. (IJESE) 2015, 6, 35–46. [Google Scholar]
- Jobling, M. Temperature and Growth: Modulation of Growth Rate via Temperature Change. In Global Warming: Implications for Freshwater and Marine Fish; Wood, C.M., McDonald, D.G., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 225–254. [Google Scholar]
- Le Morvan, C.; Troutaud, D.; Deschaux, P. Differential Effects of Temperature on Specific and Nonspecific Immune Defences in Fish. J. Exp. Biol. 1998, 201, 165–168. [Google Scholar] [CrossRef]
- Servili, A.; Canario, A.V.M.; Mouchel, O.; Antonio Munoz-Cueto, J.; Munoz, J.A. Climate Change Impacts on Fish Reproduction Are Mediated at Multiple Levels of the Brain-Pituitary-Gonad Axis. Gen. Comp. Endocrinol. 2020, 291, 113439. [Google Scholar] [CrossRef] [PubMed]
- Feidantsis, K.; Pörtner, H.O.; Lazou, A.; Kostoglou, B.; Michaelidis, B. Metabolic and Molecular Stress Responses of the Gilthead Seabream Sparus aurata during Long-Term Exposure to Increasing Temperatures. Mar. Biol. 2009, 156, 797–809. [Google Scholar] [CrossRef]
- Polo, A.; Yúfera, M.; Pascual, E. Effects of Temperature on Egg and Larval Development of Sparus aurata L. Aquaculture 1991, 92, 367–375. [Google Scholar] [CrossRef]
- Imsland, A.K.D.; Danielsen, M.; Jonassen, T.M.; Hangstad, T.A.; Falk-Petersen, I.B. Effect of Incubation Temperature on Eggs and Larvae of Lumpfish (Cyclopterus lumpus). Aquaculture 2019, 498, 217–222. [Google Scholar] [CrossRef]
- Nordahl, O.; Tibblin, P.; Koch-Schmidt, P.; Berggren, H.; Larsson, P.; Forsman, A. Sun-Basking Fish Benefit from Body Temperatures That Are Higher than Ambient Water. Proc. R. Soc. Lond. B Biol. Sci. 2018, 285, 20180639. [Google Scholar] [CrossRef]
- Roychowdhury, P.; Aftabuddin, M.; Pati, M.K. A Review on the Impact of Thermal Stress on Fish Biochemistry. Aquat. Sci. Eng. 2024, 39, 121–129. [Google Scholar] [CrossRef]
- López, J.R.; Núñez, S.; Magariños, B.; Castro, N.; Navas, J.I.; De La Herran, R.; Toranzo, A.E. First Isolation of Tenacibaculum maritimum from Wedge Sole, Dicologoglossa cuneata (Moreau). J. Fish. Dis. 2009, 32, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Kawai, K.; Oshima, S. Evaluation of an Experimental Immersion Infection Method with Tenacibaculum maritimum in Japanese Flounder Paralichthys Olivaceus. Aquac. Sci. 2010, 58, 481–489. [Google Scholar] [CrossRef]
- Van Gelderen, R.; Carson, J.; Nowak, B. Effect of Extracellular Products of Tenacibaculum maritimum in Atlantic Salmon, Salmo salar L. J. Fish. Dis. 2009, 32, 727–731. [Google Scholar] [CrossRef]
- Valdes, S.; Irgang, R.; Barros, M.C.; Ilardi, P.; Saldarriaga-Córdoba, M.; Rivera–Bohle, J.; Madrid, E.; Gajardo–Córdova, J.; Avendaño-Herrera, R. First Report and Characterization of Tenacibaculum maritimum Isolates Recovered from Rainbow Trout (Oncorhynchus mykiss) Farmed in Chile. J. Fish. Dis. 2021, 44, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Rebl, A.; Korytář, T.; Borchel, A.; Bochert, R.; Strzelczyk, J.E.; Goldammer, T.; Verleih, M. The Synergistic Interaction of Thermal Stress Coupled with Overstocking Strongly Modulates the Transcriptomic Activity and Immune Capacity of Rainbow Trout (Oncorhynchus mykiss). Sci. Rep. 2020, 10, 14913. [Google Scholar] [CrossRef] [PubMed]
- Rakus, K.; Ronsmans, M.; Vanderplasschen, A. Behavioral Fever in Ectothermic Vertebrates. Dev. Comp. Immunol. 2017, 66, 84–91. [Google Scholar] [CrossRef]
- Key, B.; Arlinghaus, R.; Browman, H.I.; Cooke, S.J.; Cowx, I.G.; Diggles, B.K.; Rose, J.D.; Sawynok, W.; Schwab, A.; Skiftesvik, A.B.; et al. Problems with Equating Thermal Preference with ‘Emotional Fever’ and Sentience: Comment on ‘Fish Can Show Emotional Fever: Stress-Induced Hyperthermia in Zebrafish’ by Rey et al. (2015). Proc. R. Soc. Lond. B Biol. Sci. 2017, 284, 20160681. [Google Scholar] [CrossRef]
- Rey, S.; Huntingford, F.A.; Knowles, T.G.; Mackenzie, S. Stress Induced Hyperthermia in Zebrafish: A Reply to Key et al. Proc. R. Soc. Lond. B Biol. Sci. 2017, 284, 20162124. [Google Scholar] [CrossRef]
- Jones, N.A.R.; Mendo, T.; Broell, F.; Webster, M.M. No Experimental Evidence of Stress-Induced Hyperthermia in Zebrafish (Danio rerio). J. Exp. Biol. 2019, 222, jeb192971. [Google Scholar] [CrossRef]
- Rey, S.; Huntingford, F.A.; Boltaña, S.; Vargas, R.; Knowles, T.G.; Mackenzie, S. Fish Can Show Emotional Fever: Stress-Induced Hyperthermia in Zebrafish. Proc. R. Soc. Lond. B Biol. Sci. 2015, 282, 20152266. [Google Scholar] [CrossRef]
- Rakus, K.; Ronsmans, M.; Forlenza, M.; Boutier, M.; Piazzon, M.C.; Jazowiecka-Rakus, J.; Gatherer, D.; Athanasiadis, A.; Farnir, F.; Davison, A.J.; et al. Conserved Fever Pathways across Vertebrates: A Herpesvirus Expressed Decoy TNF-α Receptor Delays Behavioral Fever in Fish. Cell. Host. Microbe 2017, 21, 244–253. [Google Scholar] [CrossRef]
- Sanhueza, N.; Fuentes, R.; Aguilar, A.; Carnicero, B.; Vega, K.; Muñoz, D.; Contreras, D.; Moreno, N.; Troncoso, E.; Mercado, L.; et al. Behavioural Fever Promotes an Inflammatory Reflex Circuit in Ectotherms. Int. J. Mol. Sci. 2021, 22, 8860. [Google Scholar] [CrossRef]
- Boltana, S.; Aguilar, A.; Sanhueza, N.; Donoso, A.; Mercado, L.; Imarai, M.; Mackenzie, S. Behavioral Fever Drives Epigenetic Modulation of the Immune Response in Fish. Front. Immunol. 2018, 9, 1241. [Google Scholar] [CrossRef]
- Dara, M.; Carbonara, P.; La Corte, C.; Parrinello, D.; Cammarata, M.; Parisi, M.G. Fish Welfare in Aquaculture: Physiological and Immunological Activities for Diets, Social and Spatial Stress on Mediterranean Aqua Cultured Species. Fishes 2023, 8, 414. [Google Scholar] [CrossRef]
- Moretti, E.H.; Ortega Chinchilla, J.E.; Marques, F.S.; Fernandes, P.A.C.M.; Gomes, F.R. Behavioral Fever Decreases Metabolic Response to Lipopolysaccharide in Yellow Cururu Toads (Rhinella icterica). Physiol. Behav. 2018, 191, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Melis, R.; Sanna, R.; Braca, A.; Bonaglini, E.; Cappuccinelli, R.; Slawski, H.; Roggio, T.; Uzzau, S.; Anedda, R. Molecular Details on Gilthead Sea Bream (Sparus aurata) Sensitivity to Low Water Temperatures from 1H NMR Metabolomics. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2017, 204, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lindholm-Lehto, P. Water Quality Monitoring in Recirculating Aquaculture Systems. Aquac. Fish Fish. 2023, 3, 113–131. [Google Scholar] [CrossRef]
- Gao, H.; Wei, X.; Li, K.; Cao, Y.; Rao, W.; Zhang, J.; Wang, D.; Yang, J. Cold-Blooded Vertebrate Utilizes Behavioral Fever to Alleviate T Cell Apoptosis and Optimize Antimicrobial Immunity. Proc. Natl. Acad. Sci. USA 2024, 121, e2408969121. [Google Scholar] [CrossRef]
- Rey, S.; Moiche, V.; Boltaña, S.; Teles, M.; MacKenzie, S. Behavioural Fever in Zebrafish Larvae. Dev. Comp. Immunol. 2017, 67, 287–292. [Google Scholar] [CrossRef]
- Michel, A. Hyperthermia Can Boost Innate Immune System in Juvenile Fish. Available online: https://www.globalseafood.org/advocate/hyperthermia-boost-innate-immune-system-juvenile-fish/ (accessed on 5 May 2025).
- Ronen, A.; Perelberg, A.; Abramowitz, J.; Hutoran, M.; Tinman, S.; Bejerano, I.; Steinitz, M.; Kotler, M. Efficient Vaccine against the Virus Causing a Lethal Disease in Cultured Cyprinus Carpio. Vaccine 2003, 21, 4677–4684. [Google Scholar] [CrossRef]
- Huntingford, F.; Rey, S.; Quaggiotto, M.M. Behavioural Fever, Fish Welfare and What Farmers and Fishers Know. Appl. Anim. Behav. Sci. 2020, 231, 105090. [Google Scholar] [CrossRef]
- Larsen, A.K.; Nymo, I.H.; Sørensen, K.K.; Seppola, M.; Rødven, R.; Jiménez de Bagüés, M.P.; Al Dahouk, S.; Godfroid, J. Concomitant Temperature Stress and Immune Activation May Increase Mortality Despite Efficient Clearance of an Intracellular Bacterial Infection in Atlantic Cod. Front. Microbiol. 2018, 9, 2963. [Google Scholar] [CrossRef] [PubMed]
- Claireaux, G.; Webber, D.M.; Lagardère, J.P.; Kerr, S.R. Influence of Water Temperature and Oxygenation on the Aerobic Metabolic Scope of Atlantic Cod (Gadus morhua). J. Sea Res. 2000, 44, 257–265. [Google Scholar] [CrossRef]
- Ion, I.V.; Popescu, F.; Coman, G.; Frătița, M. Heat Requirement in an Indoor Recirculating Aquaculture System. Energy Rep. 2022, 8, 11707–11714. [Google Scholar] [CrossRef]
- Hori, T.S.; Gamperl, A.K.; Booman, M.; Nash, G.W.; Rise, M.L. A Moderate Increase in Ambient Temperature Modulates the Atlantic Cod (Gadus morhua) Spleen Transcriptome Response to Intraperitoneal Viral Mimic Injection. BMC Genom. 2012, 13, 431. [Google Scholar] [CrossRef]
- Lim, C.; Webster, C.D.; Lee, C.S. Feeding Practices and Fish Health. In Dietary Nutrients, Additives and Fish Health; Lee, C.S., Lim, C., Gatlin III, D.M., Webster, C.D., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 333–346. ISBN 9781119005568. [Google Scholar]
- Rohani, M.F.; Islam, S.M.; Hossain, M.K.; Ferdous, Z.; Siddik, M.A.; Nuruzzaman, M.; Padeniya, U.; Brown, C.; Shahjahan, M. Probiotics, Prebiotics and Synbiotics Improved the Functionality of Aquafeed: Upgrading Growth, Reproduction, Immunity and Disease Resistance in Fish. Fish Shellfish Immunol. 2022, 120, 569–589. [Google Scholar] [CrossRef]
- Cerqueira, M.; Schrama, D.; Silva, T.S.; Colen, R.; Engrola, S.A.D.; Conceição, L.E.C.; Rodrigues, P.M.L.; Farinha, A.P. How Tryptophan Levels in Plant-Based Aquafeeds Affect Fish Physiology, Metabolism and Proteome. J. Proteomics 2020, 221, 103782. [Google Scholar] [CrossRef]
- Foey, A.; Picchietti, S. Immune Defences of Teleost Fish. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Merrifield, D., Ringø, E., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 14–52. ISBN 9781118897263. [Google Scholar]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Van Doan, H.; Beck, B.R.; Song, S.K. Lactic Acid Bacteria in Finfish-An Update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef]
- Kanika, N.H.; Liaqat, N.; Chen, H.; Ke, J.; Lu, G.; Wang, J.; Wang, C. Fish Gut Microbiome and Its Application in Aquaculture and Biological Conservation. Front. Microbiol. 2025, 15, 1521048. [Google Scholar] [CrossRef]
- Rimoldi, S.; Montero, D.; Torrecillas, S.; Serradell, A.; Acosta, F.; Haffray, P.; Hostins, B.; Fontanillas, R.; Allal, F.; Bajek, A.; et al. Genetically Superior European Sea Bass (Dicentrarchus labrax) and Nutritional Innovations: Effects of Functional Feeds on Fish Immune Response, Disease Resistance, and Gut Microbiota. Aquac. Rep. 2023, 33, 101747. [Google Scholar] [CrossRef]
- Moroni, F.; Naya-Català, F.; Piazzon, M.C.; Rimoldi, S.; Calduch-Giner, J.; Giardini, A.; Martínez, I.; Brambilla, F.; Pérez-Sánchez, J.; Terova, G. The Effects of Nisin-Producing Lactococcus Lactis Strain Used as Probiotic on Gilthead Sea Bream (Sparus aurata) Growth, Gut Microbiota, and Transcriptional Response. Front. Mar. Sci. 2021, 8, 659519. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Adesiyun, A.A.; Mutani, A.; Ramsubhag, A.; Brunt, J.; Austin, B. Bacillus Subtilis AB1 Controls Aeromonas Infection in Rainbow Trout (Oncorhynchus mykiss, Walbaum). J. Appl. Microbiol. 2007, 103, 1699–1706. [Google Scholar] [CrossRef]
- Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.M.; Bøgwald, J.; Castex, M.; Ringø, E. The Current Status and Future Focus of Probiotic and Prebiotic Applications for Salmonids. Aquaculture 2010, 302, 1–18. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Sharifinia, M.; Akhavan-Bahabadi, M.; Emerenciano, M.G.C. Probiotics and Phytobiotics as Dietary and Water Supplements in Biofloc Aquaculture Systems. Aquac. Nutr. 2024, 2024, 3089887. [Google Scholar] [CrossRef]
- Yadav, M.K.; Khati, A.; Chauhan, R.S.; Arya, P.; Semwal, A. A Review on Feed Additives Used in Fish Diet. IJEAB 2021, 6, 184–190. [Google Scholar] [CrossRef]
- Bharathi, S.; Cheryl, A.; Rajagopalasamy, C.; Uma, A.; Ahilan, B.; Aanand, S. Functional Feed Additives Used in Fish Feeds. Int. J. Fish. Aquat. Stud. 2019, 7, 44–72. [Google Scholar]
- Hernández-Contreras, Á.; Teles, A.; Salas-Leiva, J.S.; Chaves-Pozo, E.; Tovar-Ramírez, D. Feed Additives in Aquaculture. In Sustainable Use of Feed Additives in Livestock; Arsenos, G., Giannenas, I., Eds.; Springer: Cham, Switzerland, 2023; pp. 811–846. ISBN 978-3-031-42855-5. [Google Scholar]
- Van Doan, H.; Hoseinifar, S.H.; Hung, T.Q.; Lumsangkul, C.; Jaturasitha, S.; El-Haroun, E.; Paolucci, M. Dietary Inclusion of Chestnut (Castanea sativa) Polyphenols to Nile Tilapia Reared in Biofloc Technology: Impacts on Growth, Immunity, and Disease Resistance against Streptococcus Agalactiae. Fish Shellfish Immunol. 2020, 105, 319–326. [Google Scholar] [CrossRef]
- El-Araby, D.A.; Amer, S.A.; Attia, G.A.; Osman, A.; Fahmy, E.M.; Altohamy, D.E.; Alkafafy, M.; Elakkad, H.A.; Tolba, S.A. Dietary Spirulina platensis Phycocyanin Improves Growth, Tissue Histoarchitecture, and Immune Responses, with Modulating Immunoexpression of CD3 and CD20 in Nile Tilapia, Oreochromis niloticus. Aquaculture 2022, 546, 737413. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Ponce, M.; Anguís, V.; Fernández-Díaz, C. Assessing the Role of Ulvan as Immunonutrient in Solea senegalensis. Fish Shellfish Immunol. 2024, 146, 109399. [Google Scholar] [CrossRef]
- Santos, R.A.; Oliva-Teles, A.; Pousão-Ferreira, P.; Jerusik, R.; Saavedra, M.J.; Enes, P.; Serra, C.R. Isolation and Characterization of Fish-Gut Bacillus spp. as Source of Natural Antimicrobial Compounds to Fight Aquaculture Bacterial Diseases. Mar. Biotechnol. 2021, 23, 276–293. [Google Scholar] [CrossRef]
- Sherif, A.H.; Gouda, M.Y.; Al-Sokary, E.T.; Elseify, M.M. Lactobacillus plantarum Enhances Immunity of Nile Tilapia Oreochromis niloticus Challenged with Edwardsiella tarda. Aquac. Res. 2021, 52, 1001–1012. [Google Scholar] [CrossRef]
- Yang, P.; Wang, H.; Zhu, M.; Ma, Y. Evaluation of Extrusion Temperatures, Pelleting Parameters, and Vitamin Forms on Vitamin Stability in Feed. Animals 2020, 10, 894. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T. Recent Advances in the Potential and Multifaceted Role of Probiotics in the Development of Sustainable Aquaculture: Its Current Form and Future Perspectives. Microbe 2025, 7, 100317. [Google Scholar] [CrossRef]
- Abd El-Galil, M.A.A.; Hashiem, M. Experimental Infection of Tenacibaculosis and a Trial for Treatment by Plant Extract Carvacrol in Surge Wrasses Fish (Thalassoma purpureum). Life Sci. J. 2012, 9, 442–447. [Google Scholar]
- Muñoz-Atienza, E.; Araújo, C.; Magadán, S.; Hernández, P.E.; Herranz, C.; Santos, Y.; Cintas, L.M. In vitro and In vivo Evaluation of Lactic Acid Bacteria of Aquatic Origin as Probiotics for Turbot (Scophthalmus maximus L.) Farming. Fish Shellfish Immunol. 2014, 41, 570–580. [Google Scholar] [CrossRef]
- Stangroom, J.; Marana, M.; Booman, M.; Andrew, S.; Poley, J.; Wilderjans, E.; Ghillebert, R.; Zanuzzo, F. Aspergillus Niger β-Glucan, MycoFence®, Efficacy against Ulcerative Disease in Atlantic Salmon Compared to Commercial Yeast β-Glucan. Aquaculture 2025, 603, 742350. [Google Scholar] [CrossRef]
- Mastan, S.A. Use of Immunostimulants in Aquaculture Disease Management. Int. J. Fish Aquat. Stud. 2015, 2, 277–280. [Google Scholar]
- Serra, C.R.; Almeida, E.M.; Guerreiro, I.; Santos, R.; Merrifield, D.L.; Tavares, F.; Oliva-Teles, A.; Enes, P. Selection of Carbohydrate-Active Probiotics from the Gut of Carnivorous Fish Fed Plant-Based Diets. Sci. Rep. 2019, 9, 6384. [Google Scholar] [CrossRef]
- Wanka, K.M.; Damerau, T.; Costas, B.; Krueger, A.; Schulz, C.; Wuertz, S. Isolation and Characterization of Native Probiotics for Fish Farming. BMC Microbiol. 2018, 18, 119. [Google Scholar] [CrossRef]
- Wuertz, S.; Beça, F.; Kreuz, E.; Wanka, K.M.; Azeredo, R.; Machado, M.; Costas, B. Two Probiotic Candidates of the Genus Psychrobacter Modulate the Immune Response and Disease Resistance after Experimental Infection in Turbot (Scophthalmus maximus, Linnaeus 1758). Fishes 2023, 8, 144. [Google Scholar] [CrossRef]
- Tesdorpf, J.E.; Geers, A.U.; Strube, M.L.; Gram, L.; Bentzon-Tilia, M. Roseobacter Group Probiotics Exhibit Differential Killing of Fish Pathogenic Tenacibaculum Species. Appl. Environ. Microbiol. 2022, 88, e02418-21. [Google Scholar] [CrossRef]
- Reyad, A.M.; Atta, H.M.; Mahran, H.A. Antibacterial Activity of Nocardiopsis dassonvillei Yscl2334 against Tenacibaculum maritimum Isolated from Diseased Fishes in Marine Aquaculture. Egypt. J. Exp. Biol. (Bot.) 2013, 9, 183–191. [Google Scholar]
- Tapia-Paniagua, S.T.; Fumanal, M.; Anguís, V.; Fernández-DÍaz, C.; Alarcón, F.J.; Moriñigo, M.A.; Balebona, M.C. Modulation of Intestinal Microbiota in Solea Senegalensis Fed Low Dietary Level of Ulva Ohnoi. Front. Microbiol. 2019, 10, 171. [Google Scholar] [CrossRef]
- Shete, R.P.; Bongale, A.M.; Dharrao, D. IoT-Enabled Effective Real-Time Water Quality Monitoring Method for Aquaculture. MethodsX 2024, 13, 102906. [Google Scholar] [CrossRef]
- Mock, T.S.; Francis, D.S.; Jago, M.K.; Miles, P.C.; Glencross, B.D.; Smullen, R.P.; Keast, R.S.J.; Turchini, G.M. Seasonal Effects on Growth and Product Quality in Atlantic Salmon Fed Diets Containing Terrestrial Oils as Assessed by a Long-Term, on-Farm Growth Trial. Aquac. Nutr. 2021, 27, 477–490. [Google Scholar] [CrossRef]
- Gladju, J.; Kamalam, B.S.; Kanagaraj, A. Applications of Data Mining and Machine Learning Framework in Aquaculture and Fisheries: A Review. Smart Agric. Technol. 2022, 2, 100061. [Google Scholar] [CrossRef]
- Mougin, J.; Joyce, A. Fish Disease Prevention via Microbial Dysbiosis-Associated Biomarkers in Aquaculture. Rev. Aquac. 2023, 15, 579–594. [Google Scholar] [CrossRef]
- Moreira, M.; Schrama, D.; Farinha, A.P.; Cerqueira, M.; de Magalhães, C.R.; Carrilho, R.; Rodrigues, P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals 2021, 11, 125. [Google Scholar] [CrossRef]
- Mendoza-Porras, O.; Rusu, A.G.; Stratford, C.; Wade, N.M. Rapid Detection of Heat Stress Biomarkers in Atlantic Salmon (Salmo salar) Liver Using Targeted Proteomics. Aquac. Fish Fish. 2024, 4, e147. [Google Scholar] [CrossRef]
- Raposo de Magalhães, C.; Farinha, A.P.; Carrilho, R.; Schrama, D.; Cerqueira, M.; Rodrigues, P.M. A New Window into Fish Welfare: A Proteomic Discovery Study of Stress Biomarkers in the Skin Mucus of Gilthead Seabream (Sparus aurata). J. Proteomics 2023, 281, 104904. [Google Scholar] [CrossRef]
- Quan, J.; Kang, Y.; Li, L.; Zhao, G.; Sun, J.; Liu, Z. Proteome Analysis of Rainbow Trout (Oncorhynchus mykiss) Liver Responses to Chronic Heat Stress Using DIA/SWATH. J. Proteomics 2021, 233, 104079. [Google Scholar] [CrossRef]
- Luo, M.; Feng, B.; Zhu, W.; Liang, Z.; Xu, W.; Fu, J.; Miao, L.; Dong, Z. Proteomics and Metabolomics Analysis of American Shad (Alosa sapidissima) Liver Responses to Heat Stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2024, 296, 111686. [Google Scholar] [CrossRef]
- Schrama, D.; Cerqueira, M.; Raposo, C.S.; Rosa Da Costa, A.M.; Wulff, T.; Gonçalves, A.; Camacho, C.; Colen, R.; Fonseca, F.; Rodrigues, P.M. Dietary Creatine Supplementation in Gilthead Seabream (Sparus aurata): Comparative Proteomics Analysis on Fish Allergens, Muscle Quality, and Liver. Front. Physiol. 2018, 9, 413639. [Google Scholar] [CrossRef]
- Farinha, A.P.; Schrama, D.; Silva, T.; Conceição, L.E.C.; Colen, R.; Engrola, S.; Rodrigues, P.; Cerqueira, M. Evaluating the Impact of Methionine-Enriched Diets in the Liver of European Seabass through Label-Free Shotgun Proteomics. J. Proteom. 2021, 232, 104047. [Google Scholar] [CrossRef]
- Carvalheiro, R.; Mekkawy, W.; Rands, L.; Taylor, R.S.; Cooper, S.; Evans, B.S.; Lind, C.E. Selection for Heat Tolerance in Atlantic Salmon (Salmo salar) Using Reaction Norms. Aquaculture 2025, 596, 741753. [Google Scholar] [CrossRef]
- Carvalho, M.; Ginés, R.; Martín, I.; Zamorano, M.J.; Acosta, F.; Fontanillas, R.; Torrecillas, S.; Montero, D. Genetic Selection for High Growth Improves the Efficiency of Gilthead Sea Bream (Sparus aurata) in Using Novel Diets with Insect Meal, Single-Cell Protein and a DHA Rich-Microalgal Oil. Aquaculture 2024, 578, 740034. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Abdel-Daim, M.M.; Van Doan, H. Probiotic Application for Sustainable Aquaculture. Rev. Aquac. 2019, 11, 907–924. [Google Scholar] [CrossRef]
Aspect * | Conventional Treatments | Welfare-Oriented Alternatives | Scientific Rationale |
---|---|---|---|
Mechanism of Action | Direct pathogen suppression via antibiotics or chemicals | Support host resilience via immune modulation and environmental management | Avoids immunosuppression and reduces AMR risks |
Stress Level | High (handling, confinement, Injections, or medicated baths) | Moderate to low (preventive, minimally invasive) | Reduced cortisol release and behavioural disruption |
Effectiveness | Short-term; efficacy declines with resistance | Potentially long-term; still under commercial validation | Requires integrated, sustained application |
Sustainability | Poor (antimicrobial residues, environmental impact, AMR emergence) | High (leverages natural defences, no chemical residues) | Aligns with One Health and welfare frameworks |
Welfare Impact | Often negative (stress, handling injuries, welfare compromise) | Potentially positive (improved health, reduced handling) | Consistent with EU and OIE fish welfare recommendations |
Empirical Support | Moderate to high (well-studied antibiotics; few species-specific vaccines) | Limited but growing (functional feeds, thermal protocols, probiotics) | Needs species- and system-specific trials to confirm efficacy and cost–benefit analysis |
Species | Strain/Isolate | Thermal Range (°C) * | Infection Threshold | Peak Mortality/Outbreaks | References |
---|---|---|---|---|---|
Dicologlossa cuneata | a443 (EU623456) | ~20.5 ± 1.5 | Detected at ~20 °C | Increased incidence at ~20.5 °C | [91] |
Paralichthys olivaceus | 050603 and 46501 | 17–26 | >17 °C | Peak mortality between 17 and 26 °C | [92] |
Dicentrarchus labrax | N/A | 18–28 | >22 °C | More frequent outbreaks in summer | [54] |
Salmo salar | 89/4762 | 12–17 | Induced with ECPs at 15–16 °C | Tissue necrosis observed | [93] |
Oncorhynchus mykiss | Tm-035 and Tm-036 | 12–16 | Outbreaks at 16.2 °C | Increased susceptibility >16 °C | [94] |
Sparus aurata | N/A | 18–26 (optimum) | Experimental data limited | Theoretical risk >28 °C | [45] Present review |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrilho, R.; Moreira, M.; Farinha, A.P.; Schrama, D.; Soares, F.; Rodrigues, P.; Cerqueira, M. Thermal and Nutritional Strategies for Managing Tenacibaculum maritimum in Aquaculture: A Welfare-Oriented Review. Animals 2025, 15, 2581. https://doi.org/10.3390/ani15172581
Carrilho R, Moreira M, Farinha AP, Schrama D, Soares F, Rodrigues P, Cerqueira M. Thermal and Nutritional Strategies for Managing Tenacibaculum maritimum in Aquaculture: A Welfare-Oriented Review. Animals. 2025; 15(17):2581. https://doi.org/10.3390/ani15172581
Chicago/Turabian StyleCarrilho, Raquel, Márcio Moreira, Ana Paula Farinha, Denise Schrama, Florbela Soares, Pedro Rodrigues, and Marco Cerqueira. 2025. "Thermal and Nutritional Strategies for Managing Tenacibaculum maritimum in Aquaculture: A Welfare-Oriented Review" Animals 15, no. 17: 2581. https://doi.org/10.3390/ani15172581
APA StyleCarrilho, R., Moreira, M., Farinha, A. P., Schrama, D., Soares, F., Rodrigues, P., & Cerqueira, M. (2025). Thermal and Nutritional Strategies for Managing Tenacibaculum maritimum in Aquaculture: A Welfare-Oriented Review. Animals, 15(17), 2581. https://doi.org/10.3390/ani15172581