Replacing Fish Meal with Spirulina (Arthrospira platensis): Nutrigenomic Modulation of Growth, Reproductive Performance, and Metabolism in Zebrafish
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Origin and Maintenance of Zebrafish
2.3. Experimental Diets
2.4. Growth and Reproductive Performance
2.5. cDNA Library, Sequencing, and Data Processing
2.6. Mapping, Identification, and Annotation of Differentially Expressed Genes
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Reproductive Performance
3.3. RNA-Seq Analysis
3.3.1. DEGs Profiles
3.3.2. Functional Annotation and Pathway Analysis of DEGs
4. Discussion
4.1. Growth Performance
4.2. Reproductive Performance
4.3. Differential Gene Expression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, A.; Li, L.; Guo, S.; Bai, J.; Fedor, C.; Naylor, R.L. Feed and Fishmeal Use in the Production of Carp and Tilapia in China. Aquaculture 2013, 414–415, 127–134. [Google Scholar] [CrossRef]
- Nakagawa, H.; Sato, M.; Gatlin, D.M. Dietary Supplements for the Health and Quality of Cultured Fish; CABI Publishing: Oxfordshire, UK, 2007; ISBN 9781845931995. [Google Scholar]
- Tacon, A.G.J.; Metian, M. Feed Matters: Satisfying the Feed Demand of Aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Glencross, B.; Ling, X.; Gatlin, D.; Kaushik, S.; Øverland, M.; Newton, R.; Valente, L.M.P. A SWOT Analysis of the Use of Marine, Grain, Terrestrial-Animal and Novel Protein Ingredients in Aquaculture Feeds. Rev. Fish. Sci. Aquac. 2024, 32, 396–434. [Google Scholar] [CrossRef]
- Ahmad, A.; Hassan, W.S.; Banat, F. An Overview of Microalgae Biomass as a Sustainable Aquaculture Feed Ingredient: Food Security and Circular Economy. Bioengineered 2022, 13, 9521–9547. [Google Scholar] [CrossRef]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae—Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Al-Tohamy, R.; Al-Zahrani, M.; Schagerl, M.; Kornaros, M.; Sun, J. Advancements and Challenges in Microalgal Protein Production: A Sustainable Alternative to Conventional Protein Sources. Microb. Cell Factories 2025, 24, 61. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The Antioxidant, Immunomodulatory, and Anti-Inflammatory Activities of Spirulina: An Overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Abdelkhalek, N.K.M.; Ghazy, E.W.; Abdel-Daim, M.M. Pharmacodynamic Interaction of Spirulina platensis and Deltamethrin in Freshwater Fish Nile Tilapia, Oreochromis niloticus: Impact on Lipid Peroxidation and Oxidative Stress. Environ. Sci. Pollut. Res. 2015, 22, 3023–3031. [Google Scholar] [CrossRef]
- Güroy, B.; Güroy, D.; Bilen, S.; Kenanoğlu, O.N.; Şahin, I.; Terzi, E.; Karadal, O.; Mantoğlu, S. Effect of Dietary Spirulina (Arthrospira platensis) on the Growth Performance, Immune-related Gene Expression and Resistance to Vibrio anguillarum in European Seabass (Dicentrarchus labrax). Aquac. Res. 2022, 53, 2263–2274. [Google Scholar] [CrossRef]
- Shokri, H.; Khosravi, A.; Taghavi, M. Efficacy of Spirulina Platensis on Immune Functions in Cancer Mice with Systemic Candidiasis; University of Tehran: Tehran, Iran, 2014; Volume 1. [Google Scholar]
- Abdel-Daim, M.M.; Dawood, M.A.O.; Elbadawy, M.; Aleya, L.; Alkahtani, S. Spirulina platensis Reduced Oxidative Damage Induced by Chlorpyrifos Toxicity in Nile Tilapia (Oreochromis niloticus). Animals 2020, 10, 473. [Google Scholar] [CrossRef]
- Awed, E.M.; Sadek, K.M.; Soliman, M.K.; Khalil, R.H.; Younis, E.M.; Abdel-Warith, A.W.A.; Van Doan, H.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Spirulina Platensis Alleviated the Oxidative Damage in the Gills, Liver, and Kidney Organs of Nile Tilapia Intoxicated with Sodium Sulphate. Animals 2020, 10, 2423. [Google Scholar] [CrossRef]
- Belal, E.B.; Khalafalla, M.M.E.; El-Hais, A.M.A. Use of Spirulina (Arthrospira fusiformis) for Promoting Growth of Nile Tilapia Fingerlings. Afr. J. Microbiol. Res. 2012, 6, 6423–6431. [Google Scholar] [CrossRef]
- Teimouri, M.; Amirkolaie, A.K.; Yeganeh, S. The Effects of Spirulina Platensis Meal as a Feed Supplement on Growth Performance and Pigmentation of Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2013, 396–399, 14–19. [Google Scholar] [CrossRef]
- Ulloa, P.E.; Iturra, P.; Neira, R.; Araneda, C. Zebrafish as a Model Organism for Nutrition and Growth: Towards Comparative Studies of Nutritional Genomics Applied to Aquacultured Fishes. Rev. Fish Biol. Fish. 2011, 21, 649–666. [Google Scholar] [CrossRef]
- Ribas, L.; Piferrer, F. The Zebrafish (Danio rerio) as a Model Organism, with Emphasis on Applications for Finfish Aquaculture Research. Rev. Aquac. 2014, 6, 209–240. [Google Scholar] [CrossRef]
- Piferrer, F.; Ribas, L. The Use of the Zebrafish as a Model in Fish Aquaculture Research. Fish Physiol. 2020, 38, 273–313. [Google Scholar] [CrossRef]
- Choi, T.Y.; Choi, T.I.; Lee, Y.R.; Choe, S.K.; Kim, C.H. Zebrafish as an Animal Model for Biomedical Research. Exp. Mol. Med. 2021, 53, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, W.F.; Castro, T.F.D.; Orlando, T.M.; Meurer, F.; Paula, D.A.d.J.; Virote, B.d.C.R.; Vianna, A.R.d.C.B.; Murgas, L.D.S. Replacing Fish Meal by Chlorella sp. Meal: Effects on Zebrafish Growth, Reproductive Performance, Biochemical Parameters and Digestive Enzymes. Aquaculture 2020, 528, 735612. [Google Scholar] [CrossRef]
- O’Brine, T.M.; Vrtělová, J.; Snellgrove, D.L.; Davies, S.J.; Sloman, K.A. Growth, Oxygen Consumption, and Behavioral Responses of Danio rerio to Variation in Dietary Protein and Lipid Levels. Zebrafish 2015, 12, 296–304. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005; ISBN 0935584544. [Google Scholar]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene Ontology Analysis for RNA-Seq: Accounting for Selection Bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for Integration and Interpretation of Large-Scale Molecular Data Sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef]
- Cock, P.J.A.; Fields, C.J.; Goto, N.; Heuer, M.L.; Rice, P.M. The Sanger FASTQ File Format for Sequences with Quality Scores, and the Solexa/Illumina FASTQ Variants. Nucleic Acids Res. 2009, 38, 1767–1771. [Google Scholar] [CrossRef]
- Coli, A.P.; Carneiro, W.F.; da Silva, K.C.D.; Castro, T.F.D.; de Oliveira, J.P.L.; de Martins, M.S.A.; Murgas, L.D.S. Spirulina (Arthrospira platensis) Supplementation: Impact on Growth, Metabolism, and Antioxidant Status in Zebrafish. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1189–1202. [Google Scholar] [CrossRef]
- Khanzadeh, M.; Esmaeili Fereidouni, A.; Seifi Berenjestanaki, S. Effects of Partial Replacement of Fish Meal with Spirulina platensis Meal in Practical Diets on Growth, Survival, Body Composition, and Reproductive Performance of Three-Spot Gourami (Trichopodus trichopterus) (Pallas, 1770). Aquac. Int. 2016, 24, 69–84. [Google Scholar] [CrossRef]
- Jiang, W.; Miao, L.; Lin, Y.; Ci, L.; Liu, B.; Ge, X. Spirulina (Arthrospira) Platensis as a Protein Source Could Improve Growth, Feed Utilisation and Digestion and Physiological Status in Juvenile Blunt Snout Bream (Megalobrama amblycephala). Aquac. Rep. 2022, 22, 100932. [Google Scholar] [CrossRef]
- Nandeesha, M.C.; Gangadhara, B.; Manissery, J.K.; Venkataraman, L.V. Growth Performance of Two Indian Major Carps, Catla (Catla catla) and Rohu (Labeo rohita) Fed Diets Containing Different Levels of Spirulina platensis. Bioresour. Technol. 2001, 80, 117–120. [Google Scholar] [CrossRef]
- Nandeesha, M.C.; Gangadhar, B.; Varghese, T.J.; Keshavanath, P. Effect of Feeding Spirulina platensis on the Growth, Proximate Composition and Organoleptic Quality of Common Carp, Cyprinus carpio L. Aquac. Res. 1998, 29, 305–312. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Evaluation of Soybean Meal, Spirulina Meal and Chicken Offal Meal as Protein Sources for Silver Seabream (Rhabdosargus sarba) Fingerlings. Aquaculture 1994, 127, 169–176. [Google Scholar] [CrossRef]
- Wan, D.; Wu, Q.; Kuča, K. Spirulina. In Nutraceuticals: Efficacy, Safety and Toxicity; Academic Press: Cambridge, MA, USA, 2021; pp. 959–974. [Google Scholar] [CrossRef]
- Alagawany, M.; Taha, A.E.; Noreldin, A.; El-Tarabily, K.A.; Abd El-Hack, M.E. Nutritional Applications of Species of Spirulina and Chlorella in Farmed Fish: A Review. Aquaculture 2021, 542, 736841. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Mohammady, E.Y.; Soaudy, M.R.; Sabae, S.A.; Mahmoud, A.M.A.; El-Haroun, E.R. Comparative Study on the Effect of Dietary β-Carotene and Phycocyanin Extracted from Spirulina platensis on Immune-Oxidative Stress Biomarkers, Genes Expression and Intestinal Enzymes, Serum Biochemical in Nile Tilpia, Oreochromis niloticus. Fish Shellfish. Immunol. 2021, 108, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Zahan, N.; Hossain, M.A.; Islam, M.R.; Saha, J.; Akter, T.; Fatema, U.K.; Haque, F. Effects of Dietary Spirulina platensis on Growth Performance, Body Composition, Haematology, Immune Response, and Gut Microflora of Stinging Catfish Heteropneustes fossilis. Aquac. Rep. 2024, 35, 101997. [Google Scholar] [CrossRef]
- Man, Y.B.; Zhang, F.; Ma, K.L.; Mo, W.Y.; Kwan, H.S.; Chow, K.L.; Man, K.Y.; Tsang, Y.F.; Li, W.C.; Wong, M.H. Growth and Intestinal Microbiota of Sabah Giant Grouper Reared on Food Waste-Based Pellets Supplemented with Spirulina as a Growth Promoter and Alternative Protein Source. Aquac. Rep. 2020, 18, 100553. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Fernández-Palacios, H.; Tacon, A.G.J. Effect of Broodstock Nutrition on Reproductive Performance of Fish. Aquaculture 2001, 197, 25–42. [Google Scholar] [CrossRef]
- Li, X.; Zheng, S.; Wu, G. Nutrition and Functions of Amino Acids in Fish. Adv. Exp. Med. Biol. 2021, 1285, 133–168. [Google Scholar] [CrossRef]
- James, R.; Sampath, K.; Thangarathinam, R.; Vasudevan, I. Effect of Dietary Spirulina Level in Growth, Fertility, Coloration and Leucocyte Count in Red Swordtail, Xiphophorus helleri. Isr. J. Aquac.-Bamidgeh 2006, 58, 97–104. [Google Scholar] [CrossRef]
- Calabrò, C.; Bertuccio, C.; Gervasi, T.; Lauriano, E.R.; Leonardi, M.; Cicero, N.; Cascio, P. Lo Effects of Spirulina Diet on the Oogenesis of Zebrafish: Morphological Analysis and Immunohistochemical Determination of the Vitellogenin. Nat. Prod. Res. 2021, 35, 4454–4459. [Google Scholar] [CrossRef]
- Güroy, B.; Şahin, I.; Mantoǧlu, S.; Kayali, S. Spirulina as a Natural Carotenoid Source on Growth, Pigmentation and Reproductive Performance of Yellow Tail Cichlid Pseudotropheus acei. Aquac. Int. 2012, 20, 869–878. [Google Scholar] [CrossRef]
- Lu, J.; Takeuchi, T. Spawning and Egg Quality of the Tilapia Oreochromis niloticus Fed Solely on Raw Spirulina throughout Three Generations. Aquaculture 2004, 234, 625–640. [Google Scholar] [CrossRef]
- Chandhini, S.; Rejish Kumar, V.J. Transcriptomics in Aquaculture: Current Status and Applications. Rev. Aquac. 2019, 11, 1379–1397. [Google Scholar] [CrossRef]
- Martin, S.A.M.; Król, E. Nutrigenomics and Immune Function in Fish: New Insights from Omics Technologies. Dev. Comp. Immunol. 2017, 75, 86–98. [Google Scholar] [CrossRef]
- Hilerio-Ruiz, A.; Toledo-Solís, F.J.; Peña, E.; Martínez-Burguete, T.; Martínez-García, R.; Llera-Herrera, R.; Álvarez-González, C.A.; Saenz de Rodrigáñez, M. Nutrigenomic Markers Identified by de Novo RNAseq during the Early Ontogeny of the Three Spot Cichlid Amphilophus trimaculatus. Aquaculture 2021, 530, 735654. [Google Scholar] [CrossRef]
- Moss, T.; Langlois, F.; Gagnon-Kugler, T.; Stefanovsky, V. A Housekeeper with Power of Attorney: The RRNA Genes in Ribosome Biogenesis. Cell. Mol. Life Sci. 2007, 64, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.W.; Ioannou, Y.A. Ribosomal Proteins in Cell Proliferation and Apoptosis. Int. Rev. Immunol. 1999, 18, 429–448. [Google Scholar] [CrossRef]
- Bermejo-Nogales, A.; Calduch-Giner, J.A.; Pérez-Sánchez, J. Unraveling the Molecular Signatures of Oxidative Phosphorylation to Cope with the Nutritionally Changing Metabolic Capabilities of Liver and Muscle Tissues in Farmed Fish. PLoS ONE 2015, 10, e0122889. [Google Scholar] [CrossRef] [PubMed]
- Ahi, E.P. Signalling Pathways in Trophic Skeletal Development and Morphogenesis: Insights from Studies on Teleost Fish. Dev. Biol. 2016, 420, 11–31. [Google Scholar] [CrossRef]
Ingredients | Diet Designation (g kg−1 Fish Meal Replacement) | |||||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | |
Fish meal 1 | 50 | 40 | 30 | 20 | 10 | 0 |
Soybean meal 2 | 594.3 | 593.4 | 594.5 | 595.6 | 596.7 | 597.8 |
Spirulina 3 | 0 | 10 | 20 | 30 | 40 | 50 |
Corn meal 2 | 312.4 | 323.4 | 318.2 | 313 | 307.7 | 302.5 |
Dicalcium phosphate 4 | 26 | 22.2 | 23.5 | 24.8 | 26.12 | 27.4 |
Premix 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Salt 4 | 5 | 5 | 5 | 5 | 5 | 5 |
Limestone 4 | 3 | 0.27 | 0.64 | 1 | 1.37 | 1.74 |
Soybean oil 4 | 4.1 | 0.58 | 3 | 5.4 | 7.88 | 10.3 |
BHT 6 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Analyzed composition 7 g kg−1 | ||||||
Dry matter | 887 | 886 | 879 | 889 | 879 | 889 |
Crude protein | 323 | 322 | 321 | 325 | 321 | 326 |
Ether extract | 34 | 53 | 41 | 42 | 42 | 48 |
Ash | 67 | 66 | 57 | 65 | 57 | 72 |
Gross energy (MJ kg−1) | 17.01 | 17.42 | 17.19 | 17.26 | 17.21 | 17.28 |
Parameters | Diets | Linear Regression | ||||||
---|---|---|---|---|---|---|---|---|
SM0 | SM10 | SM20 | SM30 | SM40 | SM50 | p-Value | R2 | |
IW | 160.46 ± 0.17 | 159.98 ± 0.51 | 159.80 ± 1.14 | 160.33 ± 0.21 | 160.56 ± 0.13 | 159.74 ± 0.66 | ||
FW | 391.57 ± 2.10 d | 412.31 ± 15.48 cd | 444.38 ± 13.77 bc | 470.60 ± 17.23 ab | 477.12 ± 11.99 ab | 499.84 ± 10.99 a | <0.01 | 0.78 |
WG | 149.82 ± 4.43 c | 157.79 ± 10.26 bc | 187.89 ± 11.89 abc | 182.86 ± 11.07 abc | 197.16 ± 7.49 ab | 212.85 ± 5.62 a | <0.01 | 0.77 |
SGR | 1.49 ± 0.10 d | 1.57 ± 0.07 cd | 1.70 ± 0.05 bc | 1.79 ± 0.01 ab | 1.81 ± 0.04 ab | 1.90 ± 0.03 a | <0.01 | 0.78 |
FE | 0.42 ± 0.02 b | 0.46 ± 0.03 ab | 0.51 ± 0.03 ab | 0.55 ± 0.02 a | 0.56 ± 0.03 a | 0.57 ± 0.02 a | <0.01 | 0.52 |
DFI | 9.17 ± 0.40 | 9.25 ± 0.55 | 9.34 ± 0.58 | 9.36 ± 0.27 | 9.44 ± 0.48 | 10.04 ± 0.50 | 0.82 | 0.10 |
PER | 1.29 ± 0.05 b | 1.39 ± 0.10 ab | 1.59 ± 0.10 ab | 1.70 ± 0.06 a | 1.75 ± 0.11 a | 1.74 ± 0.06 a | <0.01 | 0.53 |
Survival | 93.33 ± 5.44 | 91.67 ± 10 | 95.00 ± 6.38 | 95.00 ± 6.38 | 93.33 ± 9.43 | 95.00 ± 6.38 | 0.86 | 0.10 |
TL | 31.81 ± 0.22 c | 32.16 ± 0.26 c | 33.19 ± 0.61 bc | 35.28 ± 0.42 ab | 36.36 ± 0.51 a | 36.67 ± 0.51 a | <0.01 | 0.86 |
Diets | Gonadosomatic Index (%) | Egg Production | Fertilization Rate (%) | Hatching Rate (%) |
---|---|---|---|---|
SM0 | 6.31 ± 0.73 b | 101.11 ± 10.07 c | 77.43 ± 0.35 bc | 58.60 ± 4.43 b |
SM10 | 7.01 ± 0.80 ab | 125.67 ± 4.17 c | 85.37 ± 1.76 ab | 65.97 ± 3.02 ab |
SM20 | 7.50 ± 0.86 ab | 124.56 ± 3.97 c | 84.46 ± 0.20 abc | 68.65 ± 3.90 ab |
SM30 | 9.36 ± 0.72 ab | 144.22 ± 8.19 bc | 75.97 ± 2.11 c | 68.25 ± 1.63 ab |
SM40 | 9.58 ± 0.31 ab | 220.01 ± 37.29 ab | 86.40 ± 3.29 ab | 75.53 ± 2.56 a |
SM50 | 10.01 ± 0.77 a | 246.56 ± 17.03 a | 88.41 ± 1.87 a | 78.97 ± 0.89 a |
Linear Regression | ||||
p-value | <0.01 | <0.01 | <0.01 | <0.01 |
R2 | 0.61 | 0.72 | - | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carneiro, W.F.; Navarrete-Ramírez, P.; Castro, T.F.D.; Leão, E.R.; Martínez-Chávez, C.C.; Martínez-Palacios, C.A.; Murgas, L.D.S. Replacing Fish Meal with Spirulina (Arthrospira platensis): Nutrigenomic Modulation of Growth, Reproductive Performance, and Metabolism in Zebrafish. Animals 2025, 15, 2552. https://doi.org/10.3390/ani15172552
Carneiro WF, Navarrete-Ramírez P, Castro TFD, Leão ER, Martínez-Chávez CC, Martínez-Palacios CA, Murgas LDS. Replacing Fish Meal with Spirulina (Arthrospira platensis): Nutrigenomic Modulation of Growth, Reproductive Performance, and Metabolism in Zebrafish. Animals. 2025; 15(17):2552. https://doi.org/10.3390/ani15172552
Chicago/Turabian StyleCarneiro, William Franco, Pamela Navarrete-Ramírez, Tassia Flávia Dias Castro, Estéfany Ribeiro Leão, Carlos Cristian Martínez-Chávez, Carlos Antonio Martínez-Palacios, and Luis David Solis Murgas. 2025. "Replacing Fish Meal with Spirulina (Arthrospira platensis): Nutrigenomic Modulation of Growth, Reproductive Performance, and Metabolism in Zebrafish" Animals 15, no. 17: 2552. https://doi.org/10.3390/ani15172552
APA StyleCarneiro, W. F., Navarrete-Ramírez, P., Castro, T. F. D., Leão, E. R., Martínez-Chávez, C. C., Martínez-Palacios, C. A., & Murgas, L. D. S. (2025). Replacing Fish Meal with Spirulina (Arthrospira platensis): Nutrigenomic Modulation of Growth, Reproductive Performance, and Metabolism in Zebrafish. Animals, 15(17), 2552. https://doi.org/10.3390/ani15172552