Effects of Saccharomyces cerevisiae Hydrolysate on Broiler Performance and Gut Health
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Management
2.2. Performance Evaluation
2.3. Tissue Collection and Morphological, Immunological and Molecular Evaluation of the Intestine
2.4. Profile of the Ceca Microbiota
2.5. Statistical Analysis
3. Results
3.1. Performance Evaluation
3.2. Morphological, Immunological and Molecular Evaluation of the Intestine
3.3. Evaluation of Caecal Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic Resistance Genes from Livestock Waste: Occurrence, Dissemination, and Treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Okey, S.N. Alternative Feed Additives to Antibiotics in Improving Health and Performance in Poultry and for the Prevention of Antimicrobials: A Review. Niger. J. Anim. Sci. Technol. 2023, 6, 65–76. [Google Scholar]
- Lin, J.; Comi, M.; Vera, P.; Alessandro, A.; Qiu, K.; Wang, J.; Wu, S.; Qi, G.; Zhang, H. Effects of Saccharomyces Cerevisiae Hydrolysate on Growth Performance, Immunity Function, and Intestinal Health in Broilers. Poult. Sci. 2023, 102, 102237. [Google Scholar] [CrossRef]
- Perricone, V.; Sandrini, S.; Irshad, N.; Savoini, G.; Comi, M.; Agazzi, A. Yeast-Derived Products: The Role of Hydrolyzed Yeast and Yeast Culture in Poultry Nutrition—A Review. Animals 2022, 12, 1426. [Google Scholar] [CrossRef]
- Sauer, N.; Bauer, E.; Vahjen, W.; Zentek, J.; Mosenthin, R. Nucleotides Modify Growth of Selected Intestinal Bacteria in Vitro. Livest. Sci. 2010, 133, 161–163. [Google Scholar] [CrossRef]
- Superchi, P.; Saleri, R.; Borghetti, P.; De Angelis, E.; Ferrari, L.; Cavalli, V.; Amicucci, P.; Ossiprandi, M.C.; Sabbioni, A. Effects of Dietary Nucleotide Supplementation on Growth Performance and Hormonal and Immune Responses of Piglets. Animal 2012, 6, 902–908. [Google Scholar] [CrossRef]
- Fadl, S.E.; El-Gammal, G.A.; Sakr, O.A.; Salah, A.A.B.S.; Atia, A.A.; Prince, A.M.; Hegazy, A.M. Impact of Dietary Mannan-Oligosaccharide and β-Glucan Supplementation on Growth, Histopathology, E-Coli Colonization and Hepatic Transcripts of TNF-α and NF- ΚB of Broiler Challenged with E. Coli O78. BMC Vet. Res. 2020, 16, 204. [Google Scholar] [CrossRef]
- Araujo, L.F.; Bonato, M.; Barbalho, R.; Araujo, C.S.S.; Zorzetto, P.S.; Granghelli, C.A.; Pereira, R.J.G.; Kawaoku, A.J.T. Evaluating Hydrolyzed Yeast in the Diet of Broiler Breeder Hens. J. Appl. Poult. Res. 2018, 27, 65–70. [Google Scholar] [CrossRef]
- Ahiwe, E.U.; Abdallh, M.E.; Chang’a, E.P.; Omede, A.A.; Al-Qahtani, M.; Gausi, H.; Graham, H.; Iji, P.A. Influence of Dietary Supplementation of Autolyzed Whole Yeast and Yeast Cell Wall Products on Broiler Chickens. Asian-Australas. J. Anim. Sci. 2020, 33, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, N.; Haldar, S.; Ghosh, T.K.; Bedford, M.R. Effects of Hydrolysed Saccharomyces Cerevisiae Yeast and Yeast Cell Wall Components on Live Performance, Intestinal Histo-Morphology and Humoral Immune Response of Broilers. Br. Poult. Sci. 2011, 52, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Al-Khalaifah, H.; Ibrahim, M.S.; Al-Hamid, A.E.A.; Al-Harthi, M.A.; El-Naggar, A. Blood Hematological and Biochemical Constituents, Antioxidant Enzymes, Immunity and Lymphoid Organs of Broiler Chicks Supplemented with Propolis, Bee Pollen and Mannan Oligosaccharides Continuously or Intermittently. Poult. Sci. 2017, 96, 4182–4192. [Google Scholar] [CrossRef]
- Yalçın, S.; Yalçın, S.; Çakın, K.; Eltan, Ö.; Dağaşan, L. Effects of Dietary Yeast Autolysate (Saccharomyces Cerevisiae) on Performance, Egg Traits, Egg Cholesterol Content, Egg Yolk Fatty Acid Composition and Humoral Immune Response of Laying Hens. J. Sci. Food Agric. 2010, 90, 1695–1701. [Google Scholar] [CrossRef]
- Sampath, V.; Han, K.; Kim, I.H. Influence of Yeast Hydrolysate Supplement on Growth Performance, Nutrient Digestibility, Microflora, Gas Emission, Blood Profile, and Meat Quality in Broilers. J. Anim. Sci. Technol. 2021, 63, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Adedokun, S.A.; Olojede, O.C. Optimizing Gastrointestinal Integrity in Poultry: The Role of Nutrients and Feed Additives. Front. Vet. Sci. 2019, 5, 348. [Google Scholar] [CrossRef]
- Samarasinghe, K.; Shanmuganathan, T.; Silva, K.F.S.T.; Wenk, C. Influence of Supplemental Enzymes, Yeast Culture and Effective Micro-Organism Culture on Gut Micro-Flora and Nutrient Digestion at Different Parts of the Rabbit Digestive Tract. Asian-Australas. J. Anim. Sci. 2004, 17, 830–835. [Google Scholar] [CrossRef]
- Fu, R.; Chen, D.; Tian, G.; Zheng, P.; Mao, X.; Yu, J.; He, J.; Huang, Z.; Luo, Y.; Yu, B. Effect of Dietary Supplementation of Bacillus Coagulans or Yeast Hydrolysates on Growth Performance, Antioxidant Activity, Cytokines and Intestinal Microflora of Growing-Finishing Pigs. Anim. Nutr. 2019, 5, 366–372. [Google Scholar] [CrossRef]
- Bu, X.; Lian, X.; Wang, Y.; Luo, C.; Tao, S.; Liao, Y.; Yang, J.; Chen, A.; Yang, Y. Dietary Yeast Culture Modulates Immune Response Related to TLR2-MyD88-NF-Kβ Signaling Pathway, Antioxidant Capability and Disease Resistance against Aeromonas Hydrophila for Ussuri Catfish (Pseudobagrus ussuriensis). Fish Shellfish. Immunol. 2019, 84, 711–718. [Google Scholar] [CrossRef]
- Bu, X.; Huang, J.; Tao, S.; Yang, J.; Liao, Y.; Liu, H.; Yang, Y. Yeast Cultures Alleviate Gossypol Induced Inflammatory Response in Liver Tissue of Ussuri Catfish (Pseudobagrus ussuriensis). Aquaculture 2020, 518, 734828. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, K.; Yu, C.; Tong, Y.; Yang, Z.; Wang, T. Effects of Yeast Hydrolysate on Growth Performance, Serum Parameters, Carcass Traits, Meat Quality and Antioxidant Status of Broiler Chickens. J. Sci. Food Agric. 2022, 102, 575–583. [Google Scholar] [CrossRef]
- National Research Council; Subcommittee on Poultry Nutrition; Committee on Animal Nutrition; Board on Agriculture. Nutrient Requirements of Poultry: 1994; National Academies Press: Washington, DC, USA, 1994; ISBN 0309048923. [Google Scholar]
- GB/T 6435-2006; Determination of Dry Matter in Foodstuffs. Standards Press of China (SPC): Beijing, China, 2006.
- GB/T 6432-1994; Determination of Crude Protein in Foodstuffs. Standards Press of China (SPC): Beijing, China, 1994.
- GB/T 6433-2006; Determination of Crude Fat in Foodstuffs. Standards Press of China (SPC): Beijing, China, 2006.
- Gao, J.; Zhang, H.J.; Yu, S.H.; Wu, S.G.; Yoon, I.; Quigley, J.; Gao, Y.P.; Qi, G.H. Effects of Yeast Culture in Broiler Diets on Performance and Immunomodulatory Functions. Poult. Sci. 2008, 87, 1377–1384. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Dai, D.Y. Rethinking Human Potential from a Talent Development Perspective. J. Educ. Gift. 2020, 43, 19–37. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Sugiharto, S. Role of Nutraceuticals in Gut Health and Growth Performance of Poultry. J. Saudi Soc. Agric. Sci. 2016, 15, 99–111. [Google Scholar] [CrossRef]
- Petracci, M.; Bianchi, M.; Mudalal, S.; Cavani, C. Functional Ingredients for Poultry Meat Products. Trends Food Sci. Technol. 2013, 33, 27–39. [Google Scholar] [CrossRef]
- Lanzoni, D.; Skřivan, M.; Englmaierová, M.; Petrosillo, E.; Marchetti, L.; Skřivanová, V.; Bontempo, V.; Rebucci, R.; Baldi, A.; Giromini, C. Effects of Dietary Hemp Co-Product Inclusion on Laying Hens Performances and on Egg Nutritional and Functional Profile. Ital. J. Anim. Sci. 2025, 24, 248–265. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Sifri, M.; Selvaraj, R. Yeasts and Yeast-Based Products in Poultry Nutrition. J. Appl. Poult. Res. 2023, 32, 100345. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Y.P.; Cheng, Y.F.; Yang, W.L.; Wen, C.; Zhou, Y.M. Effect of Yeast Cell Wall Powder with Different Particle Sizes on the Growth Performance, Serum Metabolites, Immunity and Oxidative Status of Broilers. Anim. Feed Sci. Technol. 2016, 212, 81–89. [Google Scholar] [CrossRef]
- Wang, X.; Tsai, T.C.; Walk, C.L.; Wilcock, P.; Maxwell, C.V. 219 Effect of Yeast Cell Wall (YCW) Inclusion Rate on Growth Performance in Nursery Pigs. J. Anim. Sci. 2017, 95, 105. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.R. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals 2021, 11, 2795. [Google Scholar] [CrossRef] [PubMed]
- Lilburn, M.S.; Loeffler, S. Early Intestinal Growth and Development in Poultry. Poult. Sci. 2015, 94, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Rinttilä, T.; Apajalahti, J. Intestinal Microbiota and Metabolites—Implications for Broiler Chicken Health and Performance. J. Appl. Poult. Res. 2013, 22, 647–658. [Google Scholar] [CrossRef]
- Al Hakeem, W.G.; Acevedo Villanueva, K.Y.; Selvaraj, R.K. The Development of Gut Microbiota and Its Changes Following C. Jejuni Infection in Broilers. Vaccines 2023, 11, 595. [Google Scholar] [CrossRef]
- Donaldson, E.E.; Stanley, D.; Hughes, R.J.; Moore, R.J. The Time-Course of Broiler Intestinal Microbiota Development after Administration of Cecal Contents to Incubating Eggs. PeerJ 2017, 5, e3587. [Google Scholar] [CrossRef]
- Toghyani, M.; McQuade, L.R.; Mclnerney, B.V.; Moss, A.F.; Selle, P.H.; Liu, S.Y. Initial Assessment of Protein and Amino Acid Digestive Dynamics in Protein-Rich Feedstuffs for Broiler Chickens. PLoS ONE 2020, 15, e0239156. [Google Scholar] [CrossRef]
- Santin, E.; Maiorka, A.; Macari, M.; Grecco, M.; Sanchez, J.C.; Okada, T.M.; Myasaka, A.M. Performance and Intestinal Mucosa Development of Broiler Chickens Fed Diets Containing Saccharomyces Cerevisiae Cell Wall. J. Appl. Poult. Res. 2001, 10, 236–244. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. Immunomodulatory Efficacy of Yeast Cell Products in Poultry: A Current Review. Worlds Poult. Sci. J. 2014, 70, 57–68. [Google Scholar] [CrossRef]
- Serek, P.; Oleksy-Wawrzyniak, M. The Effect of Bacterial Infections, Probiotics and Zonulin on Intestinal Barrier Integrity. Int. J. Mol. Sci. 2021, 22, 11359. [Google Scholar] [CrossRef]
- Feldman, G.; Mullin, J.; Ryan, M. Occludin: Structure, Function and Regulation. Adv. Drug Deliv. Rev. 2005, 57, 883–917. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiang, Y.; Zhou, W.; Chen, J.; Li, K.; Yang, H. Microbial Community Mapping in Intestinal Tract of Broiler Chicken. Poult. Sci. 2017, 96, 1387–1393. [Google Scholar] [CrossRef]
- Botton, S.; van Heusden, M.; Parsons, J.R.; Smidt, H.; van Straalen, N. Resilience of Microbial Systems Towards Disturbances. Crit. Rev. Microbiol. 2006, 32, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Kim, W.K. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ju, T.; Bhardwaj, T.; Korver, D.R.; Willing, B.P. Week-Old Chicks with High Bacteroides Abundance Have Increased Short-Chain Fatty Acids and Reduced Markers of Gut Inflammation. Microbiol. Spectr. 2023, 11, e0361622. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, K.; Bai, Y.; Feng, X.; Gong, L.; Wei, C.; Huang, H.; Zhang, H. Dietary Supplementation with Berberine Improves Growth Performance and Modulates the Composition and Function of Cecal Microbiota in Yellow-Feathered Broilers. Poult. Sci. 2021, 100, 1034–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shen, B.; Bi, D. Management of Pathogens in Poultry. In Animal Agriculture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 515–530. [Google Scholar]
- Kou, X.; Ma, Q.; Liu, Y.; Khan, M.Z.; Wu, B.; Chen, W.; Liu, X.; Wang, C.; Li, Y. Exploring the Effect of Gastrointestinal Prevotella on Growth Performance Traits in Livestock Animals. Animals 2024, 14, 1965. [Google Scholar] [CrossRef] [PubMed]
- Lund, P.A.; De Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Fernández, E.N.; Bover-Cid, S.; Hall, R.; Sauer, M.; et al. Understanding How Microorganisms Respond to Acid PH Is Central to Their Control and Successful Exploitation. Front. Microbiol. 2020, 11, 556140. [Google Scholar] [CrossRef]
- Sun, B.; Hou, L.; Yang, Y. The Development of the Gut Microbiota and Short-Chain Fatty Acids of Layer Chickens in Different Growth Periods. Front. Vet. Sci. 2021, 8, 666535. [Google Scholar] [CrossRef]
- Liu, M.; Kang, Z.; Cao, X.; Jiao, H.; Wang, X.; Zhao, J.; Lin, H. Prevotella and Succinate Treatments Altered Gut Microbiota, Increased Laying Performance, and Suppressed Hepatic Lipid Accumulation in Laying Hens. J. Anim. Sci. Biotechnol. 2024, 15, 26. [Google Scholar] [CrossRef]
- Moran, E.T. Intestinal Events and Nutritional Dynamics Predispose Clostridium Perfringens Virulence in Broilers. Poult. Sci. 2014, 93, 3028–3036. [Google Scholar] [CrossRef]
- Farkas, V.; Csitári, G.; Menyhárt, L.; Such, N.; Pál, L.; Husvéth, F.; Rawash, M.A.; Mezőlaki, Á.; Dublecz, K. Microbiota Composition of Mucosa and Interactions between the Microbes of the Different Gut Segments Could Be a Factor to Modulate the Growth Rate of Broiler Chickens. Animals 2022, 12, 1296. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef]
- Awad, W.; Hess, C.; Hess, M. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins 2017, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Shaji, S.; Selvaraj, R.K.; Shanmugasundaram, R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023, 11, 2814. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | Starter (1–14 d) | Grower (15–28 d) | Finisher (29–42 d) |
---|---|---|---|
Wheat | 64.87 | 66.26 | 68.15 |
Soybean meal (46 CP) | 16.04 | 12.10 | 8.65 |
Corn gluten meal (60 CP) | 4.00 | 4.50 | 5.00 |
Cottonseed meal | 3.00 | 3.00 | 3.00 |
Rapeseed meal | 2.00 | 2.50 | 2.85 |
Wheat middlings | 2.00 | 2.00 | 2.50 |
Soybean oil | 3.45 | 5.50 | 5.90 |
Dicalcium phosphate | 1.50 | 1.25 | 0.98 |
Limestone | 1.35 | 1.22 | 1.28 |
Salt | 0.20 | 0.18 | 0.17 |
DL-Methionine | 0.23 | 0.17 | 0.16 |
L-lysine HCl | 0.62 | 0.58 | 0.60 |
L-threonine | 0.16 | 0.13 | 0.13 |
Vitamin Premix 1 | 0.02 | 0.02 | 0.02 |
Mineral Premix 2 | 0.20 | 0.20 | 0.20 |
Choline chloride (50%) | 0.10 | 0.10 | 0.10 |
Sodium bicarbonate | 0.20 | 0.23 | 0.25 |
Phytase | 0.01 | 0.01 | 0.01 |
NSP enzymes | 0.05 | 0.05 | 0.05 |
Total | 100.00 | 100.00 | 100.00 |
Calculated Nutrient levels (%) | |||
AME (MJ/kg) | 12.35 | 12.97 | 13.18 |
Crude protein | 22.00 | 21.00 | 20.00 |
Calcium | 1.00 | 0.90 | 0.85 |
Available phosphorus | 0.40 | 0.35 | 0.30 |
Lysine | 1.25 | 1.10 | 1.05 |
Methionine | 0.57 | 0.50 | 0.48 |
Methionine + cystine | 0.90 | 0.81 | 0.80 |
Threonine | 0.81 | 0.72 | 0.68 |
Tryptophan | 0.24 | 0.21 | 0.20 |
Item | CTR | TRT |
---|---|---|
Starter phase (1–14 d) | ||
Moisture | 9.65 | 9.31 |
Crude protein | 23.21 | 23.18 |
Crude fat | 5.04 | 4.76 |
Grower phase (15–28 d) | ||
Moisture | 8.67 | 8.70 |
Crude protein | 22.18 | 22.29 |
Crude fat | 6.16 | 6.38 |
Finisher phase (29–42 d) | ||
Moisture | 8.00 | 7.96 |
Crude protein | 21.46 | 21.37 |
Crude fat | 6.78 | 6.84 |
Name | Sequence 5′-3′ | GenBank Number |
---|---|---|
β-actin | F: 5′ -TTGGTTTGTCAAGCAAGCGG-3′ | NM_205518.1 |
R: 5′ -CCCCCACATACTGGCACTTT-3′ | ||
TNF-α | F: 5′-TGTGTATGTGCAGCAACCCGTAGT-3′ | NM 204267 |
R: 5′-GGCATTGCAATTTGGACAGAAGT-3′ | ||
IL-1β | F: 5′-GCTCTACATGTCGTGTGTGATGAG-3′ | NM_204524 |
R: 5′-TGTCGATGTCCCGCATGA-3′ | ||
IL-6 | F: 5′-TCTGTTCGCCTTTCAGACCTA-3′ | AJ309540 |
R: 5′-GACCACCTCATCGGGATTTAT-3′ | ||
IFN-γ | F: 5′-CTCCCGATGAACGACTTGAG-3′ | NM_205149.2 |
R: 5′-CTGAGACTGGCTCCTTTTCC-3′ | ||
ZO-1 | F: 5′-CTTCAGGTGTTTCTCTTCCTCCTC-3′ | XM_413773.4 |
R: 5′-CTGTGGTTTCATGGCTGGATC-3′ | ||
Claudin-1 | F: 5′-ACAACATCGTGACGGCCCA-3′ | NM_001013511.2 |
R: 5′-CCCGTCACAGCAACAAACAC-3′ | ||
Occludin | F: 5′-GCAGATGTCCAGCGGTTACTAC-3′ | NM_205128.1 |
R: 5′-CGAAGAAGCAGATGAGGCAGAG-3′ |
Item | CTR | TRT | p-Value |
---|---|---|---|
Starter phase (1–14 d) | |||
BW at d 1 (g) | 41.35 ± 0.37 | 41.28 ± 0.33 | 0.938 |
BW at d 14 (g) | 469.9 ± 4.7 | 471.3 ± 1.7 | 0.849 |
ADG (g/d) | 28.8 ± 0.4 | 28.9 ± 1.1 | 0.846 |
ADFI (g/d) | 35.9 ± 2.17 | 35.9 ± 1.49 | 0.995 |
FCR | 1.25 ± 0.05 | 1.24 ± 0.04 | 0.921 |
Grower phase (15–28 d) | |||
BW at 28 d (g) | 1384.1 ± 30.5 | 1412.2 ± 26.6 | 0.120 |
ADG (g) | 65.0 ± 2.0 | 67.1 ± 2.2 | 0.121 |
ADFI (g) | 106.5 ± 3.6 | 109.3 ± 3.6 | 0.213 |
FCR | 1.64 ± 0.04 | 1.63 ± 0.044 | 0.743 |
Finisher phase (29–42 d) | |||
BW at 42 d (g) | 2558.0 ± 64.0 b | 2735.1 ± 151.0 a | 0.025 |
ADG (g) | 85.8 ± 6.6 b | 97.7 ± 11.3 a | 0.049 |
ADFI (g) | 161.0 ± 4.0 b | 176.4 ± 14.0 a | 0.027 |
FCR | 1.89 ± 0.14 | 1.82 ± 0.16 | 0.438 |
Whole phase (1–42 d) | |||
ADG (g) | 57.9 ± 1.7 b | 62.7 ± 3.6 a | 0.015 |
ADFI (g) | 97.3 ± 1.6 b | 103.6 ± 6.1 a | 0.034 |
FCR | 1.68 ± 0.06 | 1.66 ± 0.07 | 0.509 |
Mortality (%) | 3.53 ± 3.14 | 5.34 ± 1.98 | 0.261 |
Ingredients | CTR | TRT | p-Value |
---|---|---|---|
14 d | |||
Duodenum | 1.64 ± 0.18 | 1.54 ± 0.15 | 0.242 |
Jejunum | 2.62 ± 0.23 | 2.57 ± 0.46 | 0.791 |
Ileum | 1.86 ± 0.49 | 1.88 ± 0.31 | 0.828 |
28 d | |||
Duodenum | 1.11 ± 0.19 | 1.20 ± 0.32 | 0.723 |
Jejunum | 2.18 ± 0.73 b | 3.00 ± 0.43 a | 0.021 |
Ileum | 1.62 ± 0.46 | 2.15 ± 0.52 | 0.136 |
42 d | |||
Duodenum | 0.71 ± 0.24 | 0.97 ± 0.23 | 0.789 |
Jejunum | 1.17 ± 0.33 | 1.29 ± 0.32 | 0.424 |
Ileum | 0.98 ± 0.41 | 0.87 ± 0.13 | 0.579 |
CTR | TRT | p-Value | ||
---|---|---|---|---|
14 d | ||||
Duodenum | VH | 1227.08 ± 187.76 | 1278.13 ± 194.07 | 0.653 |
CD | 167.21 ± 28.33 | 162.41 ± 35.75 | 0.802 | |
VCR | 7.37 ± 0.56 | 8.02 ± 1.17 | 0.246 | |
Jejunum | VH | 1033.38 ± 117.22 | 1108.01 ± 209.36 | 0.473 |
CD | 150.42 ± 20.85 | 147.58 ± 17.24 | 0.814 | |
VCR | 6.91 ± 0.54 | 7.50 ± 0.99 | 0.240 | |
Ileum | VH | 598.20 ± 41.71 | 636.75 ± 38.57 | 0.127 |
CD | 155.67 ± 33.98 | 131.95 ± 15.26 | 0.150 | |
VCR | 4.03 ± 1.05 | 4.87 ± 0.59 | 0.118 | |
28 d | ||||
Duodenum | VH | 1545.68 ± 359.31 | 1705.38 ± 198.64 | 0.725 |
CD | 199.47 ± 41.06 | 180.27 ± 26.59 | 0.707 | |
VCR | 8.08 ± 0.54 | 8.86 ± 0.92 | 0.155 | |
Jejunum | VH | 1160.73 ± 126.08 | 1255.54 ± 147.01 | 0.278 |
CD | 167.09 ± 26.58 | 152.15 ± 30.43 | 0.407 | |
VCR | 7.12 ± 0.75 b | 8.39 ± 1.08 a | 0.035 | |
Ileum | VH | 657.37 ± 49.31 b | 729.923 ± 32.93 a | 0.013 |
CD | 151.42 ± 17.25 a | 129.97 ± 12.06 b | 0.032 | |
VCR | 4.35 ± 0.22 b | 5.66 ± 0.73 a | 0.002 | |
42 d | ||||
Duodenum | VH | 1642.59 ± 237.63 | 1690.46 ± 327.01 | 0.797 |
CD | 186.94 ± 35.04 | 176.52 ± 22.02 | 0.592 | |
VCR | 8.86 ± 0.59 | 9.51 ± 0.69 | 0.152 | |
Jejunum | VH | 1248.41 ± 180.71 | 1471.71 ± 209.60 | 0.076 |
CD | 179.60 ± 20.76 | 154.79 ± 32.69 | 0.148 | |
VCR | 6.96 ± 0.74 b | 9.65 ± 0.91 a | <0.001 | |
Ileum | VH | 939.14 ± 93.06 | 1076.47 ± 139.32 | 0.073 |
CD | 158.05 ± 16.66 | 139.91 ± 21.71 | 0.136 | |
VCR | 5.96 ± 0.49 b | 7.73 ± 0.62 a | <0.001 |
CTR | TRT | p-Value | |
---|---|---|---|
28 d | |||
Jejunum | 318.25 ± 58.33 | 336.99 ± 52.52 | 0.571 |
Ileum | 201.59 ± 24.70 | 220.33 ± 34.95 | 0.309 |
42 d | |||
Jejunum | 334.32 ± 40.91 | 353.66 ± 43.64 | 0.461 |
Ileum | 251.59 ± 55.97 | 270.33 ± 40.24 | 0.521 |
CTR | TRT | p-Value | |
---|---|---|---|
28 d | |||
TNF-α | 1.09 ± 0.19 | 0.89 ± 0.29 | 0.392 |
IL-1β | 1.06 ± 0.26 a | 0.73 ± 0.18 b | 0.018 |
IL-6 | 1.00 ± 0.37 | 0.93 ± 0.26 | 0.866 |
IFN-γ | 1.03 ± 0.34 | 0.80 ± 0.23 | 0.346 |
42 d | |||
TNF-α | 1.00 ± 0.08 a | 0.65 ± 0.20 b | <0.001 |
IL-1β | 1.02 ± 0.24 a | 0.67 ± 0.15 b | 0.002 |
IL-6 | 1.04 ± 0.18 a | 0.78 ± 0.20 b | 0.049 |
IFN-γ | 1.09 ± 0.28 | 0.79 ± 0.22 | 0.158 |
CTR | TRT | p-Value | |
---|---|---|---|
28 d | |||
ZO-1 | 1.07 ± 0.32 b | 1.87 ± 0.63 a | <0.001 |
Occludin | 1.01 ± 0.38 b | 1.89 ± 0.80 a | 0.005 |
Claudin-1 | 1.01 ± 0.29 | 1.38 ± 0.51 | 0.454 |
42 d | |||
ZO-1 | 1.01 ± 0.30 b | 2.86 ± 0.89 a | <0.001 |
Occludin | 1.06 ± 0.25 b | 2.52 ± 0.63 a | <0.001 |
Claudin-1 | 1.07 ± 0.41 | 1.66 ± 0.74 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comi, M.; Lanzoni, D.; Perricone, V.; Jiang, X.-R.; Lin, J.; Zhang, H.-j. Effects of Saccharomyces cerevisiae Hydrolysate on Broiler Performance and Gut Health. Animals 2025, 15, 2531. https://doi.org/10.3390/ani15172531
Comi M, Lanzoni D, Perricone V, Jiang X-R, Lin J, Zhang H-j. Effects of Saccharomyces cerevisiae Hydrolysate on Broiler Performance and Gut Health. Animals. 2025; 15(17):2531. https://doi.org/10.3390/ani15172531
Chicago/Turabian StyleComi, Marcello, Davide Lanzoni, Vera Perricone, Xian-Ren Jiang, Jing Lin, and Hai-jun Zhang. 2025. "Effects of Saccharomyces cerevisiae Hydrolysate on Broiler Performance and Gut Health" Animals 15, no. 17: 2531. https://doi.org/10.3390/ani15172531
APA StyleComi, M., Lanzoni, D., Perricone, V., Jiang, X.-R., Lin, J., & Zhang, H.-j. (2025). Effects of Saccharomyces cerevisiae Hydrolysate on Broiler Performance and Gut Health. Animals, 15(17), 2531. https://doi.org/10.3390/ani15172531