Non-Invasive Human-Free Diagnosis Methods for Assessing Pig Welfare at Abattoirs: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Relevance Screening
2.4. Data Extraction
2.5. Classification of the Findings
3. Results
4. Discussion
4.1. Biological Sample Analysis
4.1.1. Blood Collection
4.1.2. Urine Collection
4.1.3. Saliva Collection
4.1.4. Tissue Collection
4.1.5. Meat Juice Samples
4.2. Imaging and Computer Vision Systems
4.2.1. Video Recording
4.2.2. Convolutional Neural Networks
4.2.3. Optical Flow
4.2.4. Automated Camera-Based System
4.3. Physiological and Other Sensors
4.3.1. Thermal Infrared Camera
4.3.2. Thermometer
4.3.3. Heart Rate Monitor
4.3.4. Sound Recorder
5. Overall Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Bonicelli, L.; Trachtman, A.R.; Rosamilia, A.; Liuzzo, G.; Hattab, J.; Mira Alcaraz, E.; Del Negro, E.; Vincenzi, S.; Capobianco Dondona, A.; Calderara, S.; et al. Training Convolutional Neural Networks to Score Pneumonia in Slaughtered Pigs. Animals 2021, 11, 3290. [Google Scholar] [CrossRef]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Depner, K.; Drewe, J.A.; Garin-Bastuji, B.; Good, M.; Gortázar, C.; et al. Welfare of pigs at slaughter. EFSA J. 2020, 18, e06148. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 1099/2009. OJ L 24 September 2009. Available online: http://data.europa.eu/eli/reg/2009/1099/oj/por (accessed on 14 February 2025).
- Regulation (EU) No 2019/627. OJ L 15 March 2019. Available online: http://data.europa.eu/eli/reg_impl/2019/627/oj/por (accessed on 14 February 2025).
- Regulation (EC) No 854/2004. OJ L 29 April 2004. Available online: http://data.europa.eu/eli/reg/2004/854/oj/por (accessed on 14 February 2025).
- Blömke, L.; Volkmann, N.; Kemper, N. Evaluation of an automated assessment system for ear and tail lesions as animal welfare indicators in pigs at slaughter. Meat Sci. 2020, 159, 107934. [Google Scholar] [CrossRef] [PubMed]
- Brünger, J.; Dippel, S.; Koch, R.; Veit, C. ‘Tailception’: Using neural networks for assessing tail lesions on pictures of pig carcasses. Animal 2019, 13, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Huanca-Marca, N.F.; Estévez-Moreno, L.X.; Espinosa, N.L.; Miranda-de La Lama, G.C. Assessment of pig welfare at slaughter-house level: A systematic review of animal-based indicators suitable for inclusion in monitoring protocols. Meat Sci. 2025, 220, 109689. [Google Scholar] [CrossRef]
- Hattab, J.; Porrello, A.; Romano, A.; Rosamilia, A.; Ghidini, S.; Bernabò, N.; Bonicelli, L.; Trachtman, A.R.; Liuzzo, G.; Calderara, S.; et al. Scoring Enzootic Pneumonia-like Lesions in Slaughtered Pigs: Traditional vs. Artificial-Intelligence-Based Methods. Pathogens 2023, 12, 1460. [Google Scholar] [CrossRef]
- McKenna, S.; Amaral, T.; Kyriazakis, I. Automated Classification for Visual-Only Postmortem Inspection of Porcine Pathology. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1005–1016. [Google Scholar] [CrossRef]
- Ferri, M.; Blagojevic, B.; Maurer, P.; Hengl, B.; Guldimann, C.; Mojsova, S.; Müller, C.; Schwendimann, B.; Straub, P.; Ulberth, F.; et al. Risk based meat safety assurance system—An introduction to key concepts for future training of official veterinarians. Food Control 2023, 146, 109552. [Google Scholar] [CrossRef]
- PRISMA Statement [Internet]. Available online: https://www.prisma-statement.org (accessed on 15 January 2025).
- Larson, S.; Arrazola, A.; Parra, R.; Morrissey, K.; Faulkner, T.; Jafarikia, M.; van der Waaij, L.A.; Hickey, S.M.; Sánchez, J.P.; Li, R.; et al. Genetic variation in LUMAN / CREB3 and association with stress and meat quality traits in Yorkshire pigs. Can. J. Anim. Sci. 2021, 101, 674–686. [Google Scholar] [CrossRef]
- Miranda-de La Lama, G.C.; Bermejo-Poza, R.; Formoso-Rafferty, N.; Mitchell, M.; Barreiro, P.; Villarroel, M. Long-Distance Transport of Finisher Pigs in the Iberian Peninsula: Effects of Season on Thermal and Enthalpy Conditions, Welfare Indicators and Meat pH. Animals 2021, 11, 2410. [Google Scholar] [CrossRef]
- Schaeperkoetter, M.; Weller, Z.; Kness, D.; Okkema, C.; Grandin, T.; Edwards-Callaway, L. Impacts of group stunning on the behavioral and physiological parameters of pigs and sheep in a small abattoir. Meat Sci. 2021, 179, 108538. [Google Scholar] [CrossRef] [PubMed]
- Urrea, V.M.; Bridi, A.M.; Ceballos, M.C.; Paranhos da Costa, M.J.R.; Faucitano, L. Behavior, blood stress indicators, skin lesions, and meat quality in pigs transported to slaughter at different loading densities. J. Anim. Sci. 2021, 99, skab119. [Google Scholar] [CrossRef] [PubMed]
- Čobanović, N.; Stajković, S.; Blagojević, B.; Betić, N.; Dimitrijević, M.; Vasilev, D.; Stojanović, N.; Milinković-Tur, S.; Bajić, I.; Pavlović, I.; et al. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int. J. Biometeorol. 2020, 64, 1899–1909. [Google Scholar] [CrossRef]
- Faucitano, L.; Conte, S.; Pomar, C.; Paiano, D.; Duan, Y.; Zhang, P.; Martelli, G.; Dalla Costa, F.A.; Devillers, N.; Gil, M.; et al. Application of extended feed withdrawal time preslaughter and its effects on animal welfare and carcass and meat quality of enriched-housed pigs. Meat Sci. 2020, 167, 108163. [Google Scholar] [CrossRef]
- Sardi, L.; Gastaldo, A.; Borciani, M.; Bertolini, A.; Musi, V.; Martelli, G.; Bonicelli, L.; Trachtman, A.R.; Del Negro, E.; Rosamilia, A.; et al. Identification of Possible Pre-Slaughter Indicators to Predict Stress and Meat Quality: A Study on Heavy Pigs. Animals 2020, 10, 945. [Google Scholar] [CrossRef]
- Acevedo-Giraldo, J.D.; Sánchez, J.A.; Romero, M.H. Effects of feed withdrawal times prior to slaughter on some animal welfare indicators and meat quality traits in commercial pigs. Meat Sci. 2020, 167, 107993. [Google Scholar] [CrossRef]
- Dalla Costa, F.A.; Dalla Costa, O.A.; Coldebella, A.; De Lima, G.J.M.M.; Ferraudo, A.S. How do season, on-farm fasting interval and lairage period affect swine welfare, carcass and meat quality traits? Int. J. Biometeorol. 2019, 63, 1497–1505. [Google Scholar] [CrossRef]
- Dalla Costa, F.; Paranhos da Costa, M.; Faucitano, L.; Dalla Costa, O.; Lopes, L.; Renuncio, E. Ease of handling, physiological response, skin lesions and meat quality in pigs transported in two truck types. Arch. Med. Vet. 2016, 48, 299–304. [Google Scholar] [CrossRef]
- Aboagye, G.; Dall’Olio, S.; Tassone, F.; Zappaterra, M.; Carpino, S.; Nanni Costa, L. Apulo-Calabrese and Crossbreed Pigs Show Different Physiological Response and Meat Quality Traits after Short Distance Transport. Animals 2018, 8, 177. [Google Scholar] [CrossRef]
- Carroll, G.A.; Boyle, L.A.; Hanlon, A.; Palmer, M.A.; Collins, L.; Griffin, K.; Lynch, S.; Cronin, G.M.; Duffy, S.; Prendiville, R.; et al. Identifying physiological measures of lifetime welfare status in pigs: Exploring the usefulness of haptoglobin, C-reactive protein and hair cortisol sampled at the time of slaughter. Ir. Vet. J. 2018, 71, 8. [Google Scholar] [CrossRef] [PubMed]
- Dalla Costa, F.; Lopes, L.; Dalla Costa, O. Effects of the Truck Suspension System on Animal Welfare, Carcass and Meat Quality Traits in Pigs. Animals 2017, 7, 5. [Google Scholar] [CrossRef]
- Dokmanovic, M.; Ivanovic, J.; Janjic, J.; Boskovic, M.; Laudanovic, M.; Pantic, S.; Milinkovic-Tur, S.; Djuricic, D.; Zdelar-Tuk, M.; Vasiljevic, D.; et al. Effect of lairage time, behaviour and gender on stress and meat quality parameters in pigs. Anim. Sci. J. 2017, 88, 500–506. [Google Scholar] [CrossRef]
- Wirthgen, E.; Kunze, M.; Goumon, S.; Walz, C.; Höflich, C.; Spitschak, M.; Zucker, I.; Wellenreuther, G.; Kluge, S.; Wichmann, M.; et al. Interference of stress with the somatotropic axis in pigs—lights on new biomarkers. Sci. Rep. 2017, 7, 12055. [Google Scholar] [CrossRef]
- Sommavilla, R.; Faucitano, L.; Gonyou, H.; Seddon, Y.; Bergeron, R.; Widowski, T.; Dalla Costa, F.; Devillers, N.; Haley, D.; Toscano, M.; et al. Season, Transport Duration and Trailer Compartment Effects on Blood Stress Indicators in Pigs: Relationship to Environmental, Behavioral and Other Physiological Factors, and Pork Quality Traits. Animals 2017, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Carreras, R.; Mainau, E.; Arroyo, L.; Moles, X.; González, J.; Bassols, A.; Coma, J.; Villarroel, M.; Miró, J.; Dalmau, A.; et al. Housing conditions do not alter cognitive bias but affect serum cortisol, qualitative behaviour assessment and wounds on the carcass in pigs. Appl. Anim. Behav. Sci. 2016, 185, 39–44. [Google Scholar] [CrossRef]
- Dalla Costa, F.A.; Devillers, N.; Paranhos da Costa, M.J.R.; Faucitano, L. Effects of applying preslaughter feed withdrawal at the abattoir on behaviour, blood parameters and meat quality in pigs. Meat Sci. 2016, 119, 89–94. [Google Scholar] [CrossRef]
- Dalla Costa, O.A.; Diesel, T.A.; Costa, M.J.R.P.; Dalla Costa, F.A. O uso de ducha: Efeito sobre o bem-estar e a qualidade da carcaça e da carne em suínos transportados para o abate. Arq. Bras. Med. Vet. Zootec. 2015, 67, 600–606. [Google Scholar] [CrossRef]
- Lebret, B.; Ecolan, P.; Bonhomme, N.; Méteau, K.; Prunier, A. Influence of production system in local and conventional pig breeds on stress indicators at slaughter, muscle and meat traits and pork eating quality. Animal 2015, 9, 1404–1413. [Google Scholar] [CrossRef]
- Correa, J.; Gonyou, H.; Torrey, S.; Widowski, T.; Bergeron, R.; Crowe, T.; Haley, D.; Toscano, M.; Faucitano, L.; Devillers, N.; et al. Welfare of Pigs Being Transported over Long Distances Using a Pot-Belly Trailer during Winter and Summer. Animals 2014, 4, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Dokmanović, M.; Baltić, Ž.M.; Marković, R.; Bošković, M.; Lončina, J.; Glamočlija, N.; Milinković-Tur, S.; Djuricic, D.; Pantic, S.; Ivanovic, J.; et al. Relationships among pre-slaughter stress, rigor mortis, blood lactate, and meat and carcass quality in pigs. Acta Vet. Scand. 2014, 64, 124–137. [Google Scholar]
- Brandt, P.; Rousing, T.; Herskin, M.S.; Aaslyng, M.D. Identification of post-mortem indicators of welfare of finishing pigs on the day of slaughter. Livest. Sci. 2013, 157, 535–544. [Google Scholar] [CrossRef]
- Correa, J.A.; Gonyou, H.W.; Torrey, S.; Widowski, T.; Bergeron, R.; Crowe, T.G.; Haley, D.; Toscano, M.; Faucitano, L.; Devillers, N.; et al. Welfare and carcass and meat quality of pigs being transported for two hours using two vehicle types during two seasons of the year. Can. J. Anim. Sci. 2013, 93, 43–55. [Google Scholar] [CrossRef]
- Fries, R.; Rindermann, G.; Siegling-Vlitakis, C.; Bandick, N.; Bräutigam, L.; Buschulte, A.; Tholen, E.; Murani, E.; Wimmers, K.; Ponsuksili, S.; et al. Blood parameters and corneal-reflex of finishing pigs with and without lung affections observed post mortem in two abattoirs stunning with CO2. Res. Vet. Sci. 2013, 94, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, A.; Danuser, J.; Frey, J.; Regula, G. Evaluation of the acute phase protein haptoglobin as an indicator of herd health in slaughter pigs. Anim. Welf. 2007, 16, 157–159. [Google Scholar] [CrossRef]
- Prunier, A.; Brillouët, A.; Merlot, E.; Meunier-Salaün, M.C.; Tallet, C. Influence of housing and season on pubertal development, boar taint compounds and skin lesions of male pigs. Animal 2013, 7, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Valros, A.; Munsterhjelm, C.; Puolanne, E.; Ruusunen, M.; Heinonen, M.; Peltoniemi, O.A.T.; Rydhmer, L.; Hänninen, L.; Vesala, K.; Ahola, L.; et al. Physiological indicators of stress and meat and carcass characteristics in tail bitten slaughter pigs. Acta Vet. Scand. 2013, 55, 75. [Google Scholar] [CrossRef]
- Blumetto Velazco, O.R.; Calvet Sanz, S.; Estellés Barber, F.; Villagrá García, A. Comparison of extensive and intensive pig production systems in Uruguay in terms of ethologic, physiologic and meat quality parameters. R. Bras. Zootec. 2013, 42, 521–529. [Google Scholar] [CrossRef]
- Weschenfelder, A.V.; Torrey, S.; Devillers, N.; Crowe, T.; Bassols, A.; Saco, Y.; Guàrdia, M.; Estany, J.; Faucitano, L. Effects of trailer design on animal welfare parameters and carcass and meat quality of three Pietrain crosses being transported over a short distance. Livest. Sci. 2013, 157, 234–244. [Google Scholar] [CrossRef]
- Zhen, S.; Liu, Y.; Li, X.; Ge, K.; Chen, H.; Li, C.; Ren, F. Effects of lairage time on welfare indicators, energy metabolism and meat quality of pigs in Beijing. Meat Sci. 2013, 93, 287–291. [Google Scholar] [CrossRef]
- Garcia-Celdran, M.; Ramis, G.; Quereda, J.J.; Armero, E. Reduction of transport-induced stress on finishing pigs by increasing lairage time at the slaughter house. J. Swine Health Prod. 2012, 20, 118–122. [Google Scholar] [CrossRef]
- Guàrdia, M.; Estany, J.; Álvarez-Rodríguez, J.; Manteca, X.; Tor, M.; Oliver, M.; Gispert, M.; Diestre, A. A field assessment of the effect of pre-slaughter conditions and genetic-stress susceptibility on blood welfare indicators in pigs. Anim. Welf. 2012, 21, 517–526. [Google Scholar] [CrossRef]
- Foury, A.; Lebret, B.; Chevillon, P.; Vautier, A.; Terlouw, C.; Mormède, P. Alternative rearing systems in pigs: Consequences on stress indicators at slaughter and meat quality. Animal 2011, 5, 1620–1625. [Google Scholar] [CrossRef]
- Chai, J.; Xiong, Q.; Zhang, C.X.; Miao, W.; Li, F.E.; Zheng, R.; Peng, J.; Jiang, S.W. Effect of pre-slaughter transport plant on blood constituents and meat quality in halothane genotype of NN Large White × Landrace pigs. Livest. Sci. 2010, 127, 211–217. [Google Scholar] [CrossRef]
- Correa, J.A.; Torrey, S.; Devillers, N.; Laforest, J.P.; Gonyou, H.W.; Faucitano, L. Effects of different moving devices at loading on stress response and meat quality in pigs. J. Anim. Sci. 2010, 88, 4086–4093. [Google Scholar] [CrossRef] [PubMed]
- D’Eath, R.B.; Turner, S.P.; Kurt, E.; Evans, G.; Thölking, L.; Looft, H.; Wimmers, K.; Murani, E.; Klont, R.; Foury, A.; et al. Pigs’ aggressive temperament affects pre-slaughter mixing aggression, stress and meat quality. Animal 2010, 4, 604–616. [Google Scholar] [CrossRef]
- Edwards, L.N.; Grandin, T.; Engle, T.E.; Porter, S.P.; Ritter, M.J.; Sosnicki, A.A.; Anderson, D.B. Use of exsanguination blood lactate to assess the quality of pre-slaughter pig handling. Meat Sci. 2010, 86, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Becerril-Herrera, M.; Alonso-Spilsbury, M.; Lemus-Flores, C.; Guerrero-Legarreta, I.; Olmos-Hernández, A.; Ramírez-Necoechea, R.; Mota-Rojas, D. CO2 stunning may compromise swine welfare compared with electrical stunning. Meat Sci. 2009, 81, 233–237. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Becerril Herrera, M.; Trujillo, M.; Alonso-Spilsbury, M.; Flores-Peinado, S.C.; Guerrero Legarreta, I. Effects of pre-slaughter transport, lairage and sex on pig chemical serologic profiles. J. Anim. Vet. Adv. 2009, 8, 246–250. [Google Scholar]
- Piñeiro, M.; Gymnich, S.; Knura, S.; Piñeiro, C.; Petersen, B. Meat juice: An alternative matrix for assessing animal health by measuring acute phase proteins. Correlations of pig-MAP and haptoglobin concentrations in pig meat juice and plasma. Res. Vet. Sci. 2009, 87, 273–276. [Google Scholar] [CrossRef]
- Barton Gade, P. Effect of rearing system and mixing at loading on transport and lairage behaviour and meat quality: Comparison of free range and conventionally raised pigs. Animal 2008, 2, 1238–1246. [Google Scholar] [CrossRef]
- Dalla Costa, O.A.; Ludke, J.V.; Costa, M.J.R.P.D.; Faucitano, L.; Coldebella, A.; Kich, J.D.; Peloso, J.V.; Dalla Roza, D. Tempo de jejum na granja sobre o perfil hormonal e os parâmetros fisiológicos em suínos de abate pesados. Cienc. Rural 2008, 38, 2300–2306. [Google Scholar] [CrossRef]
- Averos, X.; Herranz, A.; Sanchez, R.; Comella, J.X.; Gosalvez, L.F. Serum stress parameters in pigs transported to slaughter under commercial conditions in different seasons. Vet. Med. 2007, 52, 333–342. [Google Scholar] [CrossRef]
- Nowak, B.; Mueffling, T.V.; Hartung, J. Effect of different carbon dioxide concentrations and exposure times in stunning of slaughter pigs: Impact on animal welfare and meat quality. Meat Sci. 2007, 75, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Chennells, D.J.; Campbell, F.M.; Hunt, B.; Armstrong, D.; Taylor, L.; Gill, B.P.; Edwards, S.A. The welfare of finishing pigs in two contrasting housing systems: Fully-slatted versus straw-bedded accommodation. Livest. Sci. 2006, 103, 104–115. [Google Scholar] [CrossRef]
- Hambrecht, E.; Eissen, J.J.; Newman, D.J.; Smits, C.H.M.; den Hartog, L.A.; Verstegen, M.W.A. Negative effects of stress immediately before slaughter on pork quality are aggravated by suboptimal transport and lairage conditions. J. Anim. Sci. 2005, 83, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Salajpal, K.; Dikić, M.; Karolyi, D.; Sinjeri, Z.; Liker, B.; Kostelić, A.; Jurić, I. Blood serum metabolites and meat quality in crossbred pigs experiencing different lairage time. Ital. J. Anim. Sci. 2005, 4, 119–121. [Google Scholar] [CrossRef]
- Warriss, P.D.; Brown, S.N.; Knowles, T.G. Measurements of the degree of development of rigor mortis as an indicator of stress in slaughtered pigs. Vet. Rec. 2003, 153, 739–742. [Google Scholar] [CrossRef]
- Fàbrega, E.; Manteca, X.; Font, J.; Gispert, M.; Carrión, D.; Velarde, A.; Ruiz-De-La-Torre, J.L.; Diestre, A. Effects of halothane gene and pre-slaughter treatment on meat quality and welfare from two pig crosses. Meat Sci. 2002, 62, 463–472. [Google Scholar] [CrossRef]
- Hartung, J.; Nowak, B.; Waldmann, K.H.; Ellerbrock, S. CO2 stunning of slaughter pigs: Effects on EEG, catecholamines and clinical reflexes. Dtsch. Tierärztl. Wochenschr. 2002, 109, 135–139. [Google Scholar] [PubMed]
- Hemsworth, P.; Barnett, J.L.; Hofmeyr, C.; Coleman, G.J.; Dowling, S.; Boyce, J. The effects of fear of humans and pre-slaughter handling on the meat quality of pigs. Aust. J. Agric. Res. 2002, 53, 493–501. [Google Scholar] [CrossRef]
- Pérez, M.P.; Palacio, J.; Santolaria, M.P.; Aceña, M.D.C.; Chacón, G.; Verde, M.T.; Calvo, J.H.; Zaragoza, M.P.; Gascón, M.; García-Belenguer, S. Influence of lairage time on some welfare and meat quality parameters in pigs. Vet. Res. 2002, 33, 239–250. [Google Scholar] [CrossRef]
- Gispert, M.; Faucitano, L.; Oliver, M.A.; Guàrdia, M.D.; Coll, C.; Siggens, K.; Diestre, A. A survey of pre-slaughter conditions, halothane gene frequency, and carcass and meat quality in five Spanish pig commercial abattoirs. Meat Sci. 2000, 55, 97–106. [Google Scholar] [CrossRef]
- Lee, J.; Kang, D.; Shim, K. Effect of lairage time prior to slaughter on stress in pigs: A path analysis. Porc. Health Manag. 2023, 9, 55. [Google Scholar] [CrossRef]
- Ogawa, N.N.; Silva, G.L.; Barbon, A.P.A.D.C.; Flaiban, K.K.M.D.C.; Silva, C.A.D.; Rocha, L.M.; Bridi, A.M. Animal welfare assessment and meat quality through assessment of stress biomarkers in fattening pigs with and without visible damage during slaughter. Animals 2024, 14, 700. [Google Scholar] [CrossRef] [PubMed]
- Warriss, P.D.; Pope, S.J.; Brown, S.N.; Wilkins, L.J.; Knowles, T.G. Estimating the body temperature of groups of pigs by thermal imaging. Vet. Rec. 2006, 158, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Bolaños-López, D.; Mota-Rojas, D.; Guerrero-Legarreta, I.; Flores-Peinado, S.; Mora-Medina, P.; Roldan-Santiago, P.; Borderas-Tordesillas, F.; García-Herrera, R.; Trujillo-Ortega, M.; Ramírez-Necoechea, R. Recovery of consciousness in hogs stunned with CO2: Physiological responses. Meat Sci. 2014, 98, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Arango, E.; Ramírez, R.; Mota-Rojas, D.; Roldán-Santiago, P.; Becerril Herrera, M.; Alonso-Spilsbury, M. Effect of the stunning method on the physiometabolic profile of hogs sacrificed at three different abattoirs. Rev. Cient. Vet. 2017, 25, 412–419. [Google Scholar]
- Jama, N.; Maphosa, V.; Hoffman, L.C.; Muchenje, V. Effect of sex and time to slaughter (transportation and lairage duration) on the levels of cortisol, creatine kinase and subsequent relationship with pork quality. Meat Sci. 2016, 116, 43–49. [Google Scholar] [CrossRef]
- Vogel, K.D.; Badtram, G.; Claus, J.R.; Grandin, T.; Turpin, S.; Weyker, R.E.; Voogd, E. Head-only followed by cardiac arrest electrical stunning is an effective alternative to head-only electrical stunning in pigs. J. Anim. Sci. 2011, 89, 1412–1418. [Google Scholar] [CrossRef]
- Ludtke, C.B.; Dalla Costa, O.A.; Roça, R.D.O.; Silveira, E.T.F.; Athayde, N.B.; Araújo, A.P.D.; Mello Júnior, A.D.; Azambuja, N.C.D. Bem-estar animal no manejo pré-abate e a influência na qualidade da carne suína e nos parâmetros fisiológicos do estresse. Cienc. Rural 2012, 42, 532–537. [Google Scholar] [CrossRef]
- Pérez, M.P.; Palacio, J.; Santolaria, M.P.; Aceña, M.C.; Chacón, G.; Gascón, M.; Calvo, J.; Zaragoza, P.; Beltran, J.; Garcı́a-Belenguer, S. Effect of transport time on welfare and meat quality in pigs. Meat Sci. 2002, 61, 425–433. [Google Scholar] [CrossRef]
- Rabaste, C.; Faucitano, L.; Saucier, L.; Mormède, P.; Correa, J.A.; Giguère, A.; Bergeron, R. The effects of handling and group size on welfare of pigs in lairage and their influence on stomach weight, carcass microbial contamination and meat quality. Can. J. Anim. Sci. 2007, 87, 3–12. [Google Scholar] [CrossRef]
- Faucitano, L.; Saucier, L.; Correa, J.A.; Méthot, S.; Giguère, A.; Foury, A.; Mormède, P.; Bergeron, R. Effect of feed texture, meal frequency and pre-slaughter fasting on carcass and meat quality, and urinary cortisol in pigs. Meat Sci. 2006, 74, 697–703. [Google Scholar] [CrossRef]
- López-Arjona, M.; Escribano, D.; Mateo, S.V.; Contreras-Aguilar, M.D.; Rubio, C.P.; Tecles, F.; Cerón, J.J.; Martínez-Subiela, S. Changes in oxytocin concentrations in saliva of pigs after a transport and during lairage at slaughterhouse. Res. Vet. Sci. 2020, 133, 26–30. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; Martinez-Carballo, E.; Fajardo, P.; Chapela, M.J.; Espiñeira, M.; Simal-Gandara, J. Meat quality in relation to swine well-being after transport and during lairage at the slaughterhouse. Meat Sci. 2018, 142, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Soler, L.; Gutiérrez, A.; Escribano, D.; Fuentes, M.; Cerón, J.J. Response of salivary haptoglobin and serum amyloid A to social isolation and short road transport stress in pigs. Res. Vet. Sci. 2013, 95, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Botía, M.; Escribano, D.; Ortín-Bustillo, A.; López-Martínez, M.J.; Fuentes, P.; Jiménez-Caparrós, F.J.; Hernández-Gómez, J.L.; Avellaneda, A.; Cerón, J.J.; Rubio, C.P.; et al. Comparison of the Effect of Two Different Handling Conditions at Slaughter in Saliva Analytes in Pigs. Metabolites 2024, 14, 234. [Google Scholar] [CrossRef]
- Chaloupková, H.; Illmann, G.; Neuhauserová, K.; Tománek, M.; Vališ, L. Preweaning housing effects on behavior and physiological measures in pigs during the suckling and fattening periods. J. Anim. Sci. 2007, 85, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Vitali, M.; Conte, S.; Lessard, M.; Deschêne, K.; Benoit-Biancamano, M.O.; Celeste, C.; Martelli, G.; Sardi, L.; Guay, F.; Faucitano, L. Use of the spectrophotometric color method for the determination of the age of skin lesions on the pig carcass and its relationship with gene expression and histological and histochemical parameters. J. Anim. Sci. 2017, 95, 3873. [Google Scholar]
- May, K.; Hartmann, L.; Von Wenzlawowicz, M.; Bühler, C.; König, S. Key parameters of head-heart electrical stunning need to be adapted to improve stunning effectiveness and meat quality in pigs of different genetic lines. Meat Sci. 2022, 190, 108829. [Google Scholar] [CrossRef]
- Jongman, E.C.; Woodhouse, R.; Rice, M.; Rault, J.L. Pre-slaughter factors linked to variation in responses to carbon dioxide gas stunning in pig abattoirs. Animals 2021, 15, 100134. [Google Scholar] [CrossRef]
- Lechner, I.; Léger, A.; Zimmermann, A.; Atkinson, S.; Schuppers, M. Discomfort period of fattening pigs and sows stunned with CO2: Duration and potential influencing factors in a commercial setting. Meat Sci. 2021, 179, 108535. [Google Scholar] [CrossRef]
- Atkinson, S.; Algers, B.; Pallisera, J.; Velarde, A.; Llonch, P. Animal Welfare and Meat Quality Assessment in Gas Stunning during Commercial Slaughter of Pigs Using Hypercapnic-Hypoxia (20% CO2 2% O2) Compared to Acute Hypercapnia (90% CO2 in Air). Animals 2020, 10, 2440. [Google Scholar] [CrossRef] [PubMed]
- Vom Brocke, A.L.; Karnholz, C.; Madey-Rindermann, D.; Gauly, M.; Leeb, C.; Winckler, C.; Schrader, L.; Dippel, S. Tail lesions in fattening pigs: Relationships with postmortem meat inspection and influence of a tail biting management tool. Animal 2019, 13, 835–844. [Google Scholar] [CrossRef]
- Terlouw, C.; Berne, A.; Astruc, T. Effect of rearing and slaughter conditions on behaviour, physiology and meat quality of Large White and Duroc-sired pigs. Livest. Sci. 2009, 122, 199–213. [Google Scholar] [CrossRef]
- Briefer, E.F.; Sypherd, C.C.R.; Linhart, P.; Leliveld, L.M.C.; Padilla De La Torre, M.; Read, E.R.; Guérin, C.; Deiss, V.; Monestier, C.; Rasmussen, J.H.; et al. Classification of pig calls produced from birth to slaughter according to their emotional valence and context of production. Sci. Rep. 2022, 12, 3409. [Google Scholar] [CrossRef] [PubMed]
- Trachtman, A.R.; Bergamini, L.; Palazzi, A.; Porrello, A.; Capobianco Dondona, A.; Del Negro, E.; Paolini, A.; Vignola, G.; Calderara, S.; Marruchella, G. Scoring pleurisy in slaughtered pigs using convolutional neural networks. Vet. Res. 2020, 51, 51. [Google Scholar] [CrossRef]
- Gronskyte, R.; Clemmensen, L.H.; Hviid, M.S.; Kulahci, M. Monitoring pig movement at the slaughterhouse using optical flow and modified angular histograms. Biosyst. Eng. 2016, 141, 19–30. [Google Scholar] [CrossRef]
- Gronskyte, R.; Clemmensen, L.H.; Hviid, M.S.; Kulahci, M. Pig herd monitoring and undesirable tripping and stepping prevention. Comput. Electron. Agric. 2015, 119, 51–60. [Google Scholar] [CrossRef]
- Melo, K.K.D.S.V.; Machado, N.A.F.; Barbosa Filho, J.A.D.; Peixoto, M.S.M.; Andrade, A.P.C.D.; Costa, J.A.D.; Oliveira, A.B.A.; Sales, J.J.d.M. Pre-slaughter management in Northeast Brazil and the effects on thermophysiological indicators in pigs and pH45. Rev. Bras. Eng. Agríc. Ambient. 2023, 27, 287–292. [Google Scholar] [CrossRef]
- Machado, S.T.; Nääs, I.D.A.; Reis, J.G.M.D.; Costa Neto, P.L.D.O.; Toloi, R.C.; Santos, R.C.; Vendrametto, O.; Sanches, A.C. Impact of body truck’s microclimate on pig skin temperature during pre-slaughter logistics. Res. Soc. Dev. 2021, 10, e115101321077. [Google Scholar] [CrossRef]
- Teixeira, D.L.; Boyle, L.A.; Enríquez-Hidalgo, D. Skin Temperature of Slaughter Pigs With Tail Lesions. Front. Vet. Sci. 2020, 7, 198. [Google Scholar] [CrossRef]
- Taylor, W.E.; Humphrey, D.C.; Peyer, B.D.; Cassady, C.J.; Lonergan, S.M.; Stalder, K.J. Thermal Imaging Efficacy in Predicting Trim Loss from Cull Sow Carcasses. Meat Muscle Biol. 2023, 7, 1. Available online: https://www.iastatedigitalpress.com/mmb/article/id/16758 (accessed on 9 February 2025). [CrossRef]
- Weschenfelder, A.V.; Saucier, L.; Maldague, X.; Rocha, L.M.; Schaefer, A.L.; Faucitano, L. Use of infrared ocular thermography to assess physiological conditions of pigs prior to slaughter and predict pork quality variation. Meat Sci. 2013, 95, 616–620. [Google Scholar] [CrossRef]
- Brown, S.N.; Knowles, T.G.; Wilkins, L.J.; Pope, S.J.; Kettlewell, P.J.; Chadd, S.A.; Warriss, P. A note on variations in pig blood temperature measured at exsanguination. Anim. Welf. 2007, 16, 331–334. [Google Scholar] [CrossRef]
- Hötzel, M.; Lopes, E.; De Oliveira, P.; Guidoni, A. Behaviour and performance of pigs finished on deep bedding with wood shavings or rice husks in summer. Anim. Welf. 2009, 18, 65–71. [Google Scholar] [CrossRef]
- Kephart, R.; Johnson, A.; Sapkota, A.; Stalder, K.; McGlone, J. Establishing Bedding Requirements on Trailers Transporting Market Weight Pigs in Warm Weather. Animals 2014, 4, 476–493. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Becerril-Herrera, M.; Roldan-Santiago, P.; Alonso-Spilsbury, M.; Flores-Peinado, S.; Ramírez-Necoechea, R.; Ramírez-Telles, J.; Mora-Medina, P.; Pérez, M.; Molina, E.; et al. Effects of long distance transportation and CO2 stunning on critical blood values in pigs. Meat Sci. 2012, 90, 893–898. [Google Scholar] [CrossRef]
- Pereira, T.L.; Corassa, A.; Komiyama, C.M.; Ton, A.P.S.; Polizel Neto, Â.; Araújo, C.V.D.; Stuani, J.L.; Honório, R.M. The effect of transport density and gender on skin temperature and carcass and meat quality in pigs. Biosci. J. 2017, 33, 1576–1585. [Google Scholar] [CrossRef]
- Rocha, L.M.; Devillers, N.; Maldague, X.; Kabemba, F.Z.; Fleuret, J.; Guay, F.; Faucitano, L. Validation of Anatomical Sites for the Measurement of Infrared Body Surface Temperature Variation in Response to Handling and Transport. Animals 2019, 9, 425. [Google Scholar] [CrossRef]
- Støier, S.; Sell, A.M.; Christensen, L.B.; Blaabjerg, L.O.; Aaslyng, M.D. Vocalization as a measure of welfare in slaughter pigs at Danish slaughterhouses. In Proceedings of the 57th International Congress of Meat Science and Technology, Ghent, Belgium, 7–12 August 2011. [Google Scholar]
- Choe, J.H.; Kim, B.C. Association of blood glucose, blood lactate, serum cortisol levels, muscle metabolites, muscle fiber type composition, and pork quality traits. Meat Sci. 2014, 97, 137–142. [Google Scholar] [CrossRef]
- Lindahl, C.; Sindhøj, E.; Gerritzen, M.A.; Reimert, H.G.M.; Berg, C.; Blad, M.; Wallenbeck, A. Pigs exposed to nitrogen, argon or carbon dioxide filled high-expansion foam: Behavioural responses, stun process and blood lactate concentration. Animals 2025, 19, 101573. [Google Scholar] [CrossRef]
- Purwono, P.; Ma’arif, A.; Rahmaniar, W.; Fathurrahman, H.I.K.; Frisky, A.Z.K.; Haq, Q.M.U. Understanding of Convolutional Neural Network (CNN): A Review. Int. J. Robot. Control Syst. 2022, 2, 739–748. [Google Scholar] [CrossRef]
- Taye, M.M. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Computation 2023, 11, 52. [Google Scholar] [CrossRef]
- Algers, B.; Nordensten, L.; Velarde, A. Measuring high pitch vocalisations in pigs driven to slaughter at abattoirs. Welf. Qual. Rep. 2009, 10, 207–212. Available online: https://res.slu.se/id/publ/26695 (accessed on 23 April 2025).
- Manteuffel, G.; Schön, P.C. STREMODO, an innovative technique for continuous stress assessment of pigs in housing and transport. Arch. Tierz. 2004, 47, 173–181. [Google Scholar] [CrossRef]
- Welfare Quality®. Welfare Quality® Assessment Protocol for Pigs (Sows and Piglets, Growing and Finishing Pigs); Welfare Quality® Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Alfarano, A.; Maiano, L.; Papa, L.; Amerini, I. Estimating optical flow: A comprehensive review of the state of the art. Comput. Vis. Image Underst. 2024, 249, 104160. [Google Scholar] [CrossRef]
- Government of Spain. Real Decreto 159/2023, de 7 de Marzo, por el que se Establecen Disposiciones para la Aplicación en España de la Normativa de la Unión Europea sobre Controles Oficiales en Materia de Bienestar Animal, y se Modifican Varios Reales Decretos. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2023-6083 (accessed on 13 March 2025).
- Soerensen, D.D.; Clausen, S.; Mercer, J.B.; Pedersen, L.J. Determining the emissivity of pig skin for accurate infrared thermography. Comput. Electron. Agric. 2014, 109, 52–58. [Google Scholar] [CrossRef]
- Vermeer, H.M.; Aarnink, A.J.A. Review on Heat Stress in Pigs on Farm. 2023. Available online: https://research.wur.nl/en/publications/review-on-heat-stress-in-pigs-on-farm (accessed on 14 February 2025).
- Directive 2007/51/EC. Available online: https://eur-lex.europa.eu/eli/dir/2007/51/oj/eng (accessed on 27 April 2025).
- Youssef, A.; Peña Fernández, A.; Wassermann, L.; Biernot, S.; Wittauer, E.M.; Bleich, A.; Hartung, J.; Berckmans, D.; Norton, T. An Approach towards Motion-Tolerant PPG-Based Algorithm for Real-Time Heart Rate Monitoring of Moving Pigs. Sensors 2020, 20, 4251. [Google Scholar] [CrossRef]
Classification | Validity and Feasibility (V&F) of Indicators | Practicality of Implementation | Level of Implementation |
---|---|---|---|
High | Uses ≥1 of the 29 high V&F indicators identified by Huanca-Marca et al. [8] | Requires personnel, but the method is fast, easy to perform at the abattoir, and results are available immediately | Commercially available or widely validated |
Medium | Uses V&F indicators, but requires contextual validation or a less standardised application | Requires personnel to collect samples and send them to a laboratory; portable in some cases but with added complexity | Tested prototype or limited commercial availability |
Low | Uses indicators with low V&F (Huanca-Marca et al. [8]) | Requires personnel, complex protocols, and lab-based analysis with significant delays; no automation potential | Still at the proof-of-concept stage or tested in very few studies |
Classification | Validity and Feasibility (V&F) of Indicators | Practicality of Implementation | Level of Implementation |
---|---|---|---|
High | Uses ≥1 of the 29 high V&F indicators identified by Huanca-Marca et al. [8] | Fully automated real-time analysis with no human input required | Commercially available or widely validated |
Medium | Uses V&F indicators but requires contextual validation or has a less standardised application | Semi-automated systems or methods requiring human supervision | Tested prototype or limited commercial availability |
Low | Uses indicators with low V&F (Huanca-Marca et al. [8]) | Manual data analysis or human-dependent image review | Still at the proof-of-concept stage or tested in very few studies |
Classification | Validity and Feasibility (V&F) of Indicators | Practicality of Implementation | Level of Implementation |
---|---|---|---|
High | Uses ≥1 of the 29 high V&F indicators identified by Huanca-Marca et al. [8] | Automatic, continuous, and real-time data capture with minimal or no human intervention | Commercially available or widely validated |
Medium | Uses V&F indicators, but requires contextual validation or a less standardised application | Requires some manual setup, calibration, or human involvement for data collection or interpretation | Tested prototype or limited commercial availability |
Low | Uses indicators with low V&F (Huanca-Marca et al. [8]) | Complex equipment; full operator involvement; not feasible for high-throughput abattoirs | Still at the proof-of-concept stage or tested in very few studies |
Method | Articles | Indicators | Validity and Feasibility | Practicality of Implementation | Level of Implementation |
---|---|---|---|---|---|
Blood Collection | [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75] | Acute phase proteins ACTH Amylase Blood pH Corticosterone Cortisol Creatine kinase Creatine phosphokinase Electrolytes Glucose Haematocrit Insulin-like growth factor Lactate Lactate dehydrogenase Non-esterified fatty acids Testosterone and oestradiol Total serum protein Gasometria parameters Other haematological parameters Other biochemical parameters Genetic analysis (gDNA, ryr-1) | Medium Medium NR1 NR1 Medium Medium Medium Medium NR1 Medium NR1 NR1 Medium Medium Medium NR1 NR1 NR1 NR1 NR1 NR1 | Medium-High | High |
Urine Collection | [46,72,76,77] | Cortisol Cortisone Catecholamines Creatinine | NR1 Low Low Medium | Medium | Low |
Saliva Collection | [40,55,72,78,79,80,81,82] | Acute phase proteins Adenosine deaminase Alpha-amylase Butyrylcholinesterase Calprotectin Cortisol Lactate dehydrogenase Oxytocin Total esterase activity | Medium NR1 Medium NR1 NR1 NR1 Medium NR1 NR1 | Medium | High |
Tissue Collection | [40,83] | Skin lesions Heat shock protein HSP70 | High NR1 | Medium | Low |
Meat Juice Samples | [38,53] | Acute phase proteins | Medium | Medium | Medium |
Method | Articles | Indicators | Validity and Feasibility | Practicality of Implementation | Level of Implementation |
---|---|---|---|---|---|
Video Recording | [18,30,35,65,84,85,86,87,88,89] | Pre-slaughter behaviours Slaughter behaviours Tail lesions | Medium-High Medium-High High | Low | High |
Convolutional Neural Networks | [1,7,9,10,90,91] | Vocalisation Tail lesions Pleurisy Pneumonia Milk spot liver Pericarditis | High High Medium High Medium High | High | High |
Optical Flow | [92,93] | Pig movement | NR1 | Medium | Low |
Automated Camera-Based System | [6] | Ear and tail lesions | High | High | Low |
Method | Articles | Indicators | Validity and Feasibility | Practicality of Implementation | Level of Implementation |
---|---|---|---|---|---|
Thermal Infrared Camera | [61,68,94,95,96,97,98] | Skin temperature Ocular temperature | High Medium | Medium | High |
Thermometer | [35,50,51,68,69,71,94,99,100,101,102,103] | Skin temperature Body temperature Rectal temperature Blood temperature | High High NR1 NR1 | Low | High |
Heart Rate Monitor | [36,55,104] | Heart Rate | Medium | Low | Low |
Sound Recorder | [27,105] | Vocalisation | High | Medium | Medium |
Reference | Organ Evaluated | Specific Lesions | CVS 1 Performance |
---|---|---|---|
[91] | Lungs (pleura) | Pleurisy | SE 2: 92.0% SP 3: 96.0% |
[10] | Liver Heart | Milk spots Pericarditis | SE: 77.3%, SP: 86.4% (milk spots) SE: 92.6%, SP: 93.4% (pericarditis) |
[1] | Lungs | Enzootic pneumonia-like lesions | SE: 81.3% (lesion size <2% of the entire lung surface) SE: 100% (lesion size between 2 and 5% of the entire lung surface) SE: 100% (lesion size between 5 and 10% of the entire lung surface) SE: 100% (lesions >10% of the entire lung surface) SP: 99.4% |
[9] | Lungs | Enzootic pneumonia-like lesions | SE: 85.0% SP: 95.5% |
[7] | Skin | Tail lesions | SE; SP: not reported Agreement for tail lesions: 0.74 Agreement for tail loss: 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.F.; Nunes, M.; Vieira-Pinto, M. Non-Invasive Human-Free Diagnosis Methods for Assessing Pig Welfare at Abattoirs: A Systematic Review. Animals 2025, 15, 2500. https://doi.org/10.3390/ani15172500
Ferreira MF, Nunes M, Vieira-Pinto M. Non-Invasive Human-Free Diagnosis Methods for Assessing Pig Welfare at Abattoirs: A Systematic Review. Animals. 2025; 15(17):2500. https://doi.org/10.3390/ani15172500
Chicago/Turabian StyleFerreira, Maria Francisca, Márcia Nunes, and Madalena Vieira-Pinto. 2025. "Non-Invasive Human-Free Diagnosis Methods for Assessing Pig Welfare at Abattoirs: A Systematic Review" Animals 15, no. 17: 2500. https://doi.org/10.3390/ani15172500
APA StyleFerreira, M. F., Nunes, M., & Vieira-Pinto, M. (2025). Non-Invasive Human-Free Diagnosis Methods for Assessing Pig Welfare at Abattoirs: A Systematic Review. Animals, 15(17), 2500. https://doi.org/10.3390/ani15172500