Assessment of Diagnostic Value of Post Mortem Tongue Tip Fluids for Disease Detection in Growing Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Specimen Collection and Processing
2.3. Diagnostic Testing
2.4. Data Analysis
3. Results
3.1. Pathogen Detection in Post Mortem Specimens
3.2. Sensitivity, Specificity, and Predictive Values of PRRSV-2 Post Mortem Specimens
3.3. Pathogen Detection Agreement Among Post Mortem Specimens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TT | Tongue tip |
TTF | Tongue tip fluid |
ONS | Oronasal swab |
SILN | Superficial inguinal lymph node |
RS | Rectal swab |
ICB | Intracardiac blood |
ICS | Intracardiac serum |
PRRS | Porcine reproductive and respiratory syndrome |
PCV | Porcine circovirus |
PPV | Porcine parvovirus |
IAV | Influenza A virus |
RT | Reverse transcription |
PCR | Polymerase chain reaction |
AASV | American Association of Swine Veterinarians |
WOA | Weeks of age |
AVMA | American Veterinary Medical Association |
UMN | University of Minnesota |
VDL | Veterinary diagnostic laboratory |
Se | Sensitivity |
Sp | Specificity |
Ppv | Positive predictive value |
Npv | Negative predictive value |
CI | Confidence interval |
References
- Turlewicz-Podbielska, H.; Włodarek, J.; Pomorska-Mól, M. Noninvasive Strategies for Surveillance of Swine Viral Diseases: A Review. J. Vet. Diagn. Investig. 2020, 32, 503–512. [Google Scholar] [CrossRef]
- Baliellas, J.; Novell, E.; Enric-Tarancón, V.; Vilalta, C.; Fraile, L. Porcine Reproductive and Respiratory Syndrome Surveillance in Breeding Herds and Nurseries Using Tongue Tips from Dead Animals. Vet. Sci. 2021, 8, 259. [Google Scholar] [CrossRef]
- Kikuti, M.; Melini, C.M.; Yue, X.; Culhane, M.; Corzo, C.A. Postmortem Sampling in Piglet Populations: Unveiling Specimens Accuracy for Porcine Reproductive and Respiratory Syndrome Detection. Pathogens 2024, 13, 649. [Google Scholar] [CrossRef]
- Kreutzmann, H.; Unterweger, C.; Schwarz, L.; Dimmel, K.; Auer, A.; Rümenapf, T.; Ladinig, A. Pluck-Pools as Diagnostic Samples for Detecting Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2 in Porcine Abortion Material and Stillbirths. Vet. J. 2024, 304, 106081. [Google Scholar] [CrossRef]
- Machado, I.F.; Magalhaes, E.; Poeta, A.P.; Moraes, D.; Cezar, G.; Mil-Homens, M.; Osemeke, O.; Paiva, R.; Moura, C.; Gauger, P.; et al. Porcine Reproductive and Respiratory Syndrome Virus RNA Detection in Tongue Tips from Dead Animals. Front. Vet. Sci. 2022, 9, 993442. [Google Scholar] [CrossRef]
- Holtkamp, D.; Torremorell, M.; Corzo, C.; Linhares, D.; Almeida, M.; Yeske, P.; Polson, D.; Becton, L.; Snelson, H.; Donovan, T.; et al. Proposed Modifications to Porcine Reproductive and Respiratory Syndrome Virus Herd Classification. J. Swine Health Prod. 2021, 29, 261–270. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Leary, S.; Underwood, W.; Anthony, R.; Cartner, S.; Grandin, T.; Greenacre, C.; Gwaltney-Brant, S.; McCrackin, M.A.; Meyer, R.; Miller, D.; et al. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition; AVMA: Schaumberg, IL, USA, 2020; ISBN 978-1-882691-09-8. [Google Scholar]
- Xiao, C.-T.; Gerber, P.F.; Giménez-Lirola, L.G.; Halbur, P.G.; Opriessnig, T. Characterization of Porcine Parvovirus Type 2 (PPV2) Which Is Highly Prevalent in the USA. Vet. Microbiol. 2013, 161, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.F.; Ward, G.E.; Murtaugh, M.P.; Lin, G.; Gebhart, C.J. Enhanced Detection of Intracellular Organism of Swine Proliferative Enteritis, Ileal Symbiont Intracellularis, in Feces by Polymerase Chain Reaction. J. Clin. Microbiol. 1993, 31, 2611–2615. [Google Scholar] [CrossRef] [PubMed]
- Osemeke, O.H.; VanKley, N.; LeFevre, C.; Peterson, C.; Linhares, D.C.L. Evaluating Oral Swab Samples for PRRSV Surveillance in Weaning-Age Pigs under Field Conditions. Front. Vet. Sci. 2023, 10, 1072682. [Google Scholar] [CrossRef] [PubMed]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research; Northwestern University: Evanston, IL, USA, 2025. [Google Scholar]
- Zeileis, A.; Meyer, D.; Hornik, K. Residual-Based Shadings for Visualizing (Conditional) Independence. J. Comput. Graph. Stat. 2007, 16, 507–525. [Google Scholar] [CrossRef]
- Barrera-Zarate, J.A.; Andrade, M.R.; Pereira, C.E.R.; Vasconcellos, A.; Wagatsuma, M.M.; Sato, J.P.H.; Daniel, A.G.S.; Rezende, L.A.; Otoni, L.A.V.; Laub, R.P.; et al. Oral Fluid for Detection of Exposure to Lawsonia intracellularis in Naturally Infected Pigs. Vet. J. 2019, 244, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Campler, M.; Cheng, T.-Y.; Angulo, J.; Van De Weyer, L.; Goncalves Arruda, A. Detection of Lawsonia intracellularis by Oral Fluids and Fecal Samples in Canadian Swine. J. Swine Health Prod. 2024, 32, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Detmer, S.E.; Patnayak, D.P.; Jiang, Y.; Gramer, M.R.; Goyal, S.M. Detection of Influenza a Virus in Porcine Oral Fluid Samples. J. Vet. Diagn. Investig. 2011, 23, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Frana, T.; Warneke, H.; Stensland, W.; Kinyon, J.; Bower, L.; Burrough, E. Comparative Detection of Lawsonia intracellularis, Salmonella and Brachyspira from Oral Fluids and feces. In Proceedings of the 2014 AASV Annual Meeting: Our Oath in Practice, Dallas, TX, USA, 1–4 March 2014; American Association of Swine Veterinarians: Perry, IA, USA, 2014; pp. 67–69. [Google Scholar]
- Goodell, C.K.; Prickett, J.; Kittawornrat, A.; Zhou, F.; Rauh, R.; Nelson, W.; O’Connell, C.; Burrell, A.; Wang, C.; Yoon, K.-J.; et al. Probability of Detecting Influenza A Virus Subtypes H1N1 and H3N2 in Individual Pig Nasal Swabs and Pen-Based Oral Fluid Specimens over Time. Vet. Microbiol. 2013, 166, 450–460. [Google Scholar] [CrossRef]
- Henao-Diaz, A.; Giménez-Lirola, L.; Baum, D.H.; Zimmerman, J. Guidelines for Oral Fluid-Based Surveillance of Viral Pathogens in Swine. Porc. Health Manag. 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- LaVigne, K.A.; Pierdon, M.K.; Armbruster, G.A.; Rincker, P.J. Comparison of Sampling Methods for Lawsonia intracellularis Testing Using qPCR. In Proceedings of the 2013 AASV Annual Meeting: Purpose-Inspired Practice, San Diego, CA, USA, 2–5 March 2013; American Association of Swine Veterinarians: Perry, IA, USA, 2013; pp. 69–71. [Google Scholar]
- Prickett, J.; Simer, R.; Christopher-Hennings, J.; Yoon, K.-J.; Evans, R.B.; Zimmerman, J.J. Detection of Porcine Reproductive and Respiratory Syndrome Virus Infection in Porcine Oral Fluid Samples: A Longitudinal Study under Experimental Conditions. J. Vet. Diagn. Investig. 2008, 20, 156–163. [Google Scholar] [CrossRef]
- Prickett, J.R.; Kim, W.; Simer, R.; Yoon, K.-J.; Zimmerman, J. Oral-Fluid Samples for Surveillance of Commercial Growing Pigs for Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2 infections. J. Swine Health Prod. 2008, 16, 86–91. [Google Scholar] [CrossRef]
- Rotolo, M.L.; Sun, Y.; Wang, C.; Giménez-Lirola, L.; Baum, D.H.; Gauger, P.C.; Harmon, K.M.; Hoogland, M.; Main, R.; Zimmerman, J.J. Sampling Guidelines for Oral Fluid-Based Surveys of Group-Housed Animals. Vet. Microbiol. 2017, 209, 20–29. [Google Scholar] [CrossRef]
- Osemeke, O.H.; Machado, I.; Mil-Homens, M.; Allison, G.; Paustian, M.; Linhares, D.C.L.; Silva, G.S. Evaluating Postmortem Tongue Fluids as a Tool for Monitoring PRRSV and IAV in the Post-Wean Phases of Swine Production. Porc. Health Manag. 2025, 11, 18. [Google Scholar] [CrossRef]
- Berte, A.; Rippel, N.; Aljets, K.; Greiner, K. Agreement between the Detection of PCV2 via Tongue Tip Samples, Processing Fluids, Placental Umbilical Cord Blood Serum Samples, and Colostrum by PCR. In Proceedings of the AASV Annual Meeting, Nashville, TN, USA, 24–27 February 2024; American Association of Swine Veterinarians: Perry, IA, USA, 2024; p. 78. [Google Scholar]
- Eterpi, M.; McDonnell, G.; Thomas, V. Disinfection Efficacy against Parvoviruses Compared with Reference Viruses. J. Hosp. Infect. 2009, 73, 64–70. [Google Scholar] [CrossRef]
- Kim, H.B.; Lyoo, K.S.; Joo, H.S. Efficacy of Different Disinfectants in Vitro against Porcine Circovirus Type 2. Vet. Rec. 2009, 164, 599–600. [Google Scholar] [CrossRef]
- Prikhod’ko, G.G.; Reyes, H.; Vasilyeva, I.; Busby, T.F. Establishment of a Porcine Parvovirus (PPV) DNA Standard and Evaluation of a New LightCycler Nested-PCR Assay for Detection of PPV. J. Virol. Methods 2003, 111, 13–19. [Google Scholar] [CrossRef]
- Rose, N.; Opriessnig, T.; Grasland, B.; Jestin, A. Epidemiology and Transmission of Porcine Circovirus Type 2 (PCV2). Virus Res. 2012, 164, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Carasova, P.; Celer, V.; Takacova, K.; Trundova, M.; Molinkova, D.; Lobova, D.; Smola, J. The Levels of PCV2 Specific Antibodies and Viremia in Pigs. Res. Vet. Sci. 2007, 83, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.; Segalés, J.; Rosell, C.; Calsamiglia, M.; Rodríguez-Arrioja, G.M.; Chianini, F.; Folch, J.M.; Maldonado, J.; Domingo, M.; Canal, M.; et al. Clinical and Pathological Observations on Pigs with Postweaning Multisystemic Wasting Syndrome. Vet. Rec. 2001, 149, 357–361. [Google Scholar] [CrossRef]
- Rovira, A.; Balasch, M.; Segalés, J.; García, L.; Plana-Durán, J.; Rosell, C.; Ellerbrok, H.; Mankertz, A.; Domingo, M. Experimental Inoculation of Conventional Pigs with Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus 2. J. Virol. 2002, 76, 3232–3239. [Google Scholar] [CrossRef]
- Shibata, I.; Okuda, Y.; Yazawa, S.; Ono, M.; Sasaki, T.; Itagaki, M.; Nakajima, N.; Okabe, Y.; Hidejima, I. PCR Detection of Porcine Circovirus Type 2 DNA in Whole Blood, Serum, Oropharyngeal Swab, Nasal Swab, and Feces from Experimentally Infected Pigs and Field Cases. J. Vet. Med. Sci. 2003, 65, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, M.; Segalés, J.; Quintana, J.; Rosell, C.; Domingo, M. Detection of Porcine Circovirus Types 1 and 2 in Serum and Tissue Samples of Pigs with and without Postweaning Multisystemic Wasting Syndrome. J. Clin. Microbiol. 2002, 40, 1848–1850. [Google Scholar] [CrossRef]
- Chae, C. Commercial Porcine Circovirus Type 2 Vaccines: Efficacy and Clinical Application. Vet. J. 2012, 194, 151–157. [Google Scholar] [CrossRef]
- Kim, J.; Chae, C. Multiplex Nested PCR Compared with in Situ Hybridization for the Differentiation of Porcine Circoviruses and Porcine Parvovirus from Pigs with Postweaning Multisystemic Wasting Syndrome. Can. J. Vet. Res. 2003, 67, 133–137. [Google Scholar]
- Opriessnig, T.; Meng, X.-J.; Halbur, P.G. Porcine Circovirus Type 2–Associated Disease: Update on Current Terminology, Clinical Manifestations, Pathogenesis, Diagnosis, and Intervention Strategies. J. Vet. Diagn. Investig. 2007, 19, 591–615. [Google Scholar] [CrossRef]
- Segalés, J. Porcine Circovirus Type 2 (PCV2) Infections: Clinical Signs, Pathology and Laboratory Diagnosis. Virus Res. 2012, 164, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Cságola, A.; Lőrincz, M.; Cadar, D.; Tombácz, K.; Biksi, I.; Tuboly, T. Detection, Prevalence and Analysis of Emerging Porcine Parvovirus Infections. Arch. Virol. 2012, 157, 1003–1010. [Google Scholar] [CrossRef]
- Saekhow, P.; Mawatari, T.; Ikeda, H. Coexistence of Multiple Strains of Porcine Parvovirus 2 in Pig Farms. Microbiol. Immunol. 2014, 58, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Saekhow, P.; Ikeda, H. Prevalence and Genomic Characterization of Porcine Parvoviruses Detected in Chiangmai Area of Thailand in 2011. Microbiol. Immunol. 2015, 59, 82–88. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, X.; Zhang, W.; Li, Y.; Zhang, Z. Rapid and Specific Detection of Porcine Parvovirus by Isothermal Recombinase Polymerase Amplification Assays. Mol. Cell. Probes 2016, 30, 300–305. [Google Scholar] [CrossRef] [PubMed]
- De Vleeschauwer, A.; Van Poucke, S.; Braeckmans, D.; Van Doorsselaere, J.; Van Reeth, K. Efficient Transmission of Swine-Adapted but Not Wholly Avian Influenza Viruses among Pigs and from Pigs to Ferrets. J. Infect. Dis. 2009, 200, 1884–1892. [Google Scholar] [CrossRef]
- Diaz, A.; Perez, A.; Sreevatsan, S.; Davies, P.; Culhane, M.; Torremorell, M. Association between Influenza A Virus Infection and Pigs Subpopulations in Endemically Infected Breeding Herds. PLoS ONE 2015, 10, e0129213. [Google Scholar] [CrossRef]
- Landolt, G.A.; Karasin, A.I.; Hofer, C.; Mahaney, J.; Svaren, J.; Olsen, C.W. Use of Real-Time Reverse Transcriptase Polymerase Chain Reaction Assay and Cell Culture Methods for Detection of Swine Influenza A Viruses. Am. J. Vet. Res. 2005, 66, 119–124. [Google Scholar] [CrossRef]
- De Vleeschauwer, A.; Atanasova, K.; Van Borm, S.; Van Den Berg, T.; Rasmussen, T.B.; Uttenthal, Å.; Van Reeth, K. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs. PLoS ONE 2009, 4, e6662. [Google Scholar] [CrossRef] [PubMed]
- Bean, B.; Moore, B.M.; Sterner, B.; Peterson, L.R.; Gerding, D.N.; Balfour, H.H. Survival of Influenza Viruses on Environmental Surfaces. J. Infect. Dis. 1982, 146, 47–51. [Google Scholar] [CrossRef]
- Greatorex, J.S.; Digard, P.; Curran, M.D.; Moynihan, R.; Wensley, H.; Wreghitt, T.; Varsani, H.; Garcia, F.; Enstone, J.; Nguyen-Van-Tam, J.S. Survival of Influenza A(H1N1) on Materials Found in Households: Implications for Infection Control. PLoS ONE 2011, 6, e27932. [Google Scholar] [CrossRef]
- Mukherjee, D.V.; Cohen, B.; Bovino, M.E.; Desai, S.; Whittier, S.; Larson, E.L. Survival of Influenza Virus on Hands and Fomites in Community and Laboratory Settings. Am. J. Infect. Control 2012, 40, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Pirtle, E.C.; Beran, G.W. Virus Survival in the Environment. Rev. Sci. Tech. l’OIE 1991, 10, 733–748. [Google Scholar] [CrossRef]
- Collins, A.; Love, R.J.; Pozo, J.; Smith, S.H.; McOrist, S. Studies on the Ex Vivo Survival of Lawsonia intracellularis. Swine Health Prod. 2000, 8, 211–215. [Google Scholar]
- McOrist, S. Defining the Full Costs of Endemic Porcine Proliferative Enteropathy. Vet. J. 2005, 170, 8–9. [Google Scholar] [CrossRef]
- Marsteller, T.; Armbruster, G.; Bane, D. Monitoring the Prevalence of Lawsonia intracellularis IgG Antibodies Using Serial Sampling in Growing and Breeding Swine Herds. J. Swine Health Prod. 2003, 11, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.H.; McOrist, S. Development of Persistent Intestinal Infection and Excretion of Lawsonia intracellularis by Piglets. Res. Vet. Sci. 1997, 62, 6–10. [Google Scholar] [CrossRef]
- Guedes, R.M.C.; Gebhart, C.J.; Armbruster, G.A.; Roggow, B.D. Serologic Follow-up of a Repopulated Swine Herd after an Outbreak of Proliferative Hemorrhagic Enteropathy. Can. J. Vet. Res. 2002, 66, 258–263. [Google Scholar]
- Karuppannan, A.K.; Opriessnig, T. Lawsonia intracellularis: Revisiting the Disease Ecology and Control of This Fastidious Pathogen in Pigs. Front. Vet. Sci. 2018, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, M.R.; Wilson, H.L. Immune Response and Protection against Lawsonia intracellularis Infections in Pigs. Vet. Immunol. Immunopathol. 2020, 219, 109959. [Google Scholar] [CrossRef] [PubMed]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR Inhibitors—Occurrence, Properties and Removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Specimen * | Number of Positive Samples by Pathogen and Ct Values of Positive Samples by Farm and Visit | Overall | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farm 1 | Farm 2 | ||||||||||||
Visit 1 (6 Weeks of Age) | Visit 2 (12 Weeks of Age) | Visit 3 (15 Weeks of Age) | |||||||||||
n/N (%) | Median (IQR) | Min, Max | n/N (%) | Median (IQR) | Min, Max | n/N (%) | Median (IQR) | Min, Max | n/N (%) | Median (IQR) | Min, Max | ||
PRRSV-2 | ONS | 30/30 | 24.5 | 18.9, 30.1 | 17/30 | 31.7 | 24.5, 35.8 | 30/30 | 28.7 | 22.8, 37.8 | 77/90 | 28.1 | 18.9, 37.8 |
(100%) | (22.2, 27.3) | (57%) | (29.3, 33.3) | (100%) | (26.5, 32.1) | (86%) | (24.9, 31.6) | ||||||
SILN | 30/30 | 22.3 | 17.9, 28.9 | 29/30 | 26.4 | 20.5, 33.3 | 30/30 | 24.2 | 20.2, 30.1 | 89/90 | 24.1 | 17.9, 33.3 | |
(100%) | (20.9, 24.0) | (97%) | (23.6, 29.7) | (100%) | (23.3, 26.3) | (99%) | (22.1, 26.9) | ||||||
ICS | 27/27 ¶ | 16.1 | 11.6, 22.9 | 19/30 | 31.0 | 26.3, 35.3 | 27/30 | 28.5 | 15.6, 35.5 | 73/87 | 26.3 | 11.6, 35.5 | |
(100%) | (14.7, 18.2) | (63%) | (29.3, 33.2) | (90%) | (23.8, 31.5) | (84%) | (17.1, 31.1) | ||||||
TTF | 30/30 | 21.6 | 18.3, 27.2 | 26/30 | 33.2 | 27.7, 36.0 | 30/30 | 29.3 | 22.9, 34.9 | 86/90 | 28.4 | 18.3, 36.0 | |
(100%) | (20.0, 23.7) | (87%) | (31.8, 35.0) | (100%) | (26.8, 32.0) | (96%) | (23.6, 32.6) | ||||||
PCV-2 | SILN | 0/30 | - | - | 8/30 | 30.6 | 9.7, 35.9 | 2/30 | 32.0 | 30.4, 33.7 | 10/90 | 30.8 | 9.7, 35.9 |
(0%) | - | (27%) | (27.2, 34.0) | (7%) | (31.2, 32.9) | (11%) | (28.9, 33.7) | ||||||
TTF | 1/30 | 33.5 | - | 27/30 | 31.5 | 18.9, 35.4 | 9/30 | 34.4 | 31.7, 35.9 | 37/90 | 32.2 | 18.9, 35.9 | |
(3%) | (-,-) | (90%) | (29.2, 32.8) | (30%) | (33.6, 35.7) | (41%) | (30.5, 34.4) | ||||||
PCV-3 | SILN | 0/30 | - | - | 0/30 | - | - | 0/30 | - | - | 0/90 | - | - |
(0%) | - | (0%) | - | (0%) | - | (0%) | - | ||||||
TTF | 0/30 | - | - | 0/30 | - | - | 0/30 | - | - | 0/90 | - | - | |
(0%) | - | (0%) | - | (0%) | - | (0%) | - | ||||||
PPV-1 | RS | 0/30 | - | - | 0/30 | - | - | 0/30 | - | - | 0/90 | - | - |
(0%) | - | (0%) | - | (0%) | - | (0%) | - | ||||||
TTF | 0/30 | - | - | 0/30 | - | - | 1/30 | 25.5 | - | 1/90 | 25.5 | - | |
(0%) | - | (0%) | - | (3%) | (-,-) | (1%) | (-,-) | ||||||
PPV-2 | RS | 16/30 | 32.8 | 16.1, 35.8 | 22/30 | 34.3 | 28.2, 35.8 | 8/30 | 32.2 | 28.1, 35.7 | 46/90 | 33.4 | 16.1, 35.8 |
(53%) | (30.6, 34.0) | (73%) | (32.3, 35.0) | (27%) | (30.2, 34.2) | (51%) | (31.2, 34.6) | ||||||
TTF | 30/30 | 32.7 | 16.6, 35.9 | 29/30 | 29.6 | 19.6, 33.6 | 30/30 | 28.6 | 19.7, 32.6 | 89/90 | 29.6 | 16.6, 35.9 | |
(100%) | (29.8, 33.5) | (97%) | (28.2, 30.7) | (100%) | (26.1, 30.0) | (99%) | (28.1, 31.7) | ||||||
IAV | ONS | 0/30 | - | - | 30/30 | 21.9 | 17.0, 31.9 | 3/30 | 28.9 | 28.5, 35.0 | 33/90 | 22.2 | 17.0, 35.0 |
(0%) | - | (100%) | (20.1, 24.4) | (10%) | (28.7, 31.9) | (37%) | (20.2, 24.6) | ||||||
TTF | 0/30 | - | - | 30/30 | 26.7 | 18.1, 31.4 | 4/30 | 34.4 | 32.4, 35.9 | 34/90 | 26.9 | 18.1, 35.9 | |
(0%) | - | (100%) | (23.9, 29.0) | (13%) | (33.3, 35.3) | (38%) | (24.1, 30.1) | ||||||
L. intracellularis | RS | 0/30 | - | - | 0/30 | - | - | 0/30 | - | - | 0/90 | - | - |
(0%) | - | (0%) | - | (0%) | - | (0%) | - | ||||||
TTF | 0/30 | - | - | 0/30 | - | - | 5/30 | 35.5 | 34.3, 35.5 | 5/90 | 35.5 | 34.3, 35.5 | |
(0%) | - | (0%) | - | (17%) | (35.3, 35.5) | (6%) | (35.3, 35.5) |
Specimen | Measure | Farm and Visits (95% CI) | Overall (95% CI) | ||
---|---|---|---|---|---|
Farm 1 | Farm 2 | ||||
Visit 1 | Visit 2 | Visit 3 | |||
Tongue tip fluid | Se | 100% (88%, 100%) | 84% (60%, 97%) | 100% (87%, 100%) | 96% (88%, 99%) |
Sp | NA | 9% (0%, 41%) | 0% (0%, 71%) | 7% (0.1%, 34%) | |
Ppv | 100% (88%, 100%) | 62% (41%, 80%) | 90% (73%, 98%) | 84% (75%, 91%) | |
Npv | NA | 25% (1%,81%) | NA | 25% (0.6%, 81%) | |
Oronasal swab | Se | 100% (88%, 100%) | 74% (49%, 91%) | 100% (87%, 100%) | 93% (85%, 98%) |
Sp | NA | 73% (39%, 94%) | 0% (0%, 71%) | 57% (29%, 82%) | |
Ppv | 100% (88%, 100%) | 82% (56%, 96%) | 90% (73%, 98%) | 92% (83%, 97%) | |
Npv | NA | 62% (32%, 86%) | NA | 62% (32%, 86%) | |
Superficial inguinal lymph node | Se | 100% (88%, 100%) | 100% (82%, 100%) | 100% (87%, 100%) | 100% (95%, 100%) |
Sp | NA | 9% (2%, 41%) | 0% (0%, 71%) | 7% (0.1%, 34%) | |
Ppv | 100% (88%, 100%) | 66% (46%, 82%) | 90% (73%, 98%) | 85% (76%, 92%) | |
Npv | NA | 100% (3%, 100%) | NA | 100% (2.5%, 100%) |
Pathogen | Specimens * | Cohen’s Kappa (95% CI) | COHEN’S Kappa p-Value | Global Agreement |
---|---|---|---|---|
PRRSV-2 | ICS and TTF | 0.04 (−0.16, 0.24) | 0.67 | 82% |
ICS and ONS | 0.52 (0.27, 0.77) | <0.001 | 87% | |
ICS and SILN | 0.11 (−0.09, 0.32) | 0.27 | 85% | |
ONS and TTF | 0.31 (0.02, 0.59) | 0.04 | 87% | |
ONS and SILN | 0.12 (−0.09, 0.35) | 0.27 | 87% | |
SILN and TTF | −0.02 (−0.05, 0.01) | 0.22 | 94% | |
PCV-2 | SILN and TTF | 0.2 (0.04, 0.36) | 0.01 | 66% |
PCV-3 | SILN and TTF | NA | NA | 100% |
PPV-1 | RS and TTF | NA | NA | 99% |
PPV-2 | RS and TTF | −0.02 (−0.07, 0.02) | 0.31 | 50% |
IAV | ONS and TTF | 0.98 (0.93, 1.00) | 0.00 | 99% |
L. intracellularis | RS and TTF | 0.00 (0.00, 0.00) | NA | 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melini, C.M.; Kikuti, M.; Yue, X.; Paploski, I.A.D.; Canturri, A.; Rossow, S.; Leuwerke, B.; Stone, S.; Corzo, C.A. Assessment of Diagnostic Value of Post Mortem Tongue Tip Fluids for Disease Detection in Growing Pigs. Animals 2025, 15, 2434. https://doi.org/10.3390/ani15162434
Melini CM, Kikuti M, Yue X, Paploski IAD, Canturri A, Rossow S, Leuwerke B, Stone S, Corzo CA. Assessment of Diagnostic Value of Post Mortem Tongue Tip Fluids for Disease Detection in Growing Pigs. Animals. 2025; 15(16):2434. https://doi.org/10.3390/ani15162434
Chicago/Turabian StyleMelini, Claudio Marcello, Mariana Kikuti, Xiaomei Yue, Igor A. D. Paploski, Albert Canturri, Stephanie Rossow, Brad Leuwerke, Steve Stone, and Cesar A. Corzo. 2025. "Assessment of Diagnostic Value of Post Mortem Tongue Tip Fluids for Disease Detection in Growing Pigs" Animals 15, no. 16: 2434. https://doi.org/10.3390/ani15162434
APA StyleMelini, C. M., Kikuti, M., Yue, X., Paploski, I. A. D., Canturri, A., Rossow, S., Leuwerke, B., Stone, S., & Corzo, C. A. (2025). Assessment of Diagnostic Value of Post Mortem Tongue Tip Fluids for Disease Detection in Growing Pigs. Animals, 15(16), 2434. https://doi.org/10.3390/ani15162434