Effects of Spent Mushroom Substrates and Compound Microorganism Preparation on the Growth Performance, Hematological Changes, and Intestinal Microbiota of Young Sika Deer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Design, Feed Composition, and Feeding Protocol
2.3. Body Weight Measurement
2.4. Fecal and Feed Sample Collection
2.5. Blood Sample Collection and Analysis
2.6. Growth Performance and Digestibility of Macro-Nutrients Measurement
2.7. Fecal Microbiota Analysis
2.8. Statistical Analysis
3. Results
3.1. Feed Nutrient Content
3.2. Growth Performance and Apparent Digestibility
3.3. Serum Biochemical and Serum Immune Indicators
3.4. Intestinal Microbiota Community
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kim, Y.I.; Cho, W.M.; Hong, S.K.; Oh, Y.K.; Kwak, W.S. Yield, Nutrient Characteristics, Ruminal Solubility and Degradability of Spent Mushroom (Agaricus bisporus) Substrates for Ruminants. Asian-Australas. J. Anim. Sci. 2011, 24, 1560–1568. [Google Scholar] [CrossRef]
- Baptista, F.; Campos, J.; Costa-Silva, V.; Pinto, A.R.; Saavedra, M.J.; Ferreira, L.M.; Barros, A.N. Nutraceutical Potential of Lentinula edodes’ Spent Mushroom Substrate: A Comprehensive Study on Phenolic Composition, Antioxidant Activity, and Antibacterial Effects. J. Fungi 2023, 9, 1200. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Ryś, E.; Sławińska, A.; Radzki, W.; Gustaw, W. Evaluation of the Potential Use of Probiotic Strain Lactobacillus plantarum 299v in Lactic Fermentation of Button Mushroom Fruiting Bodies. Acta Sci. Pol. Technol. Aliment. 2016, 15, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Mahfuz, S.; He, T.; Liu, S.; Wu, D.; Long, S.; Piao, X. Dietary Inclusion of Mushroom (Flammulina velutipes) Stem Waste on Growth Performance, Antibody Response, Immune Status, and Serum Cholesterol in Broiler Chickens. Animals 2019, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.K.; Lee, W.M.; Choi, C.W.; Kim, K.H.; Hong, S.K.; Lee, S.C.; Seol, Y.J.; Kwak, W.S.; Choi, N.J. Effects of Spent Mushroom Substrates Supplementation on Rumen Fermentation and Blood Metabolites in Hanwoo Steers. Asian-Australas. J. Anim. Sci. 2010, 23, 1608–1613. [Google Scholar] [CrossRef]
- National Research Council (US), Committee on Nutrient Requirements of Small Ruminants. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Bao, K.; Wang, X.; Wang, K.; Li, G.; Liu, H. Energy and Protein Requirements for the Maintenance of Growing Male Sika Deer (Cervus nippon). Front. Vet. Sci. 2021, 8, 745426. [Google Scholar] [CrossRef]
- Tian, B.; Pan, Y.; Wang, J.; Cai, M.; Ye, B.; Yang, K.; Sun, P. Insoluble Dietary Fibers from By-Products of Edible Fungi Industry: Basic Structure, Physicochemical Properties, and Their Effects on Energy Intake. Front. Nutr. 2022, 9, 851228. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Lin, D.; Lin, H.; Lin, Z. Effect of Water Extract from Spent Mushroom Substrate after Ganoderma balabacense Cultivation by Using JUNCAO Technique on Production Performance and Hematology Parameters of Dairy Cows. Anim. Sci. J. 2015, 86, 855–862. [Google Scholar] [CrossRef]
- Long, J.; Wang, X.; Qiu, S.; Zhou, W.; Zhou, S.; Shen, K.; Xie, L.; Ma, X.; Zhang, X. Construction of Cellulose-Degrading Microbial Consortium and Evaluation of Their Ability to Degrade Spent Mushroom Substrate. Front. Microbiol. 2024, 15, 1356903. [Google Scholar] [CrossRef]
- Chuang, W.Y.; Liu, C.L.; Tsai, C.F.; Lin, W.C.; Chang, S.C.; Shih, H.D.; Shy, Y.M.; Lee, T.T. Evaluation of Waste Mushroom Compost as a Feed Supplement and Its Effects on the Fat Metabolism and Antioxidant Capacity of Broilers. Animals 2020, 10, 445. [Google Scholar] [CrossRef]
- Camay, R.M. Mushroom (Pleurotus ostreatus) Waste Powder: Its Influence on the Growth and Meat Quality of Broiler Chickens (Gallus gallus domesticus). World J. Agric. Res. 2016, 4, 98–108. [Google Scholar]
- Zhang, A.; He, W.; Han, Y.; Zheng, A.; Chen, Z.; Meng, K.; Yang, P.; Liu, G. Cooperative Fermentation Using Multiple Microorganisms and Enzymes Potentially Enhances the Nutritional Value of Spent Mushroom Substrate. Agriculture 2024, 14, 629. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, H.G.; Park, J.A.; Kang, S.K.; Choi, Y.J. Recycling of fermented sawdust-based oyster mushroom spent substrate as a feed supplement for postweaning calves. Asian-Australas. J. Anim. Sci. 2011, 24, 493–499. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Durand, H. Probiotics in Animal Nutrition and Health. Benef. Microbes 2009, 1, 3–9. [Google Scholar]
- Farhan, M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024, 29, 865. [Google Scholar] [CrossRef]
- Mohd Hanafi, F.H.; Rezania, S.; Mat Taib, S.; Md Din, M.F.; Yamauchi, M.; Sakamoto, M.; Hara, H.; Park, J.; Ebrahimi, S.S. Environmentally Sustainable Applications of Agro-Based Spent Mushroom Substrate (SMS): An Overview. J. Mater. Cycles Waste Manag. 2018, 20, 1383–1396. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, R.; Chen, L.; Xie, F.; Li, K.; Liu, L.; Zhang, H. Effects of Collection Durations on the Determination of Energy Values and Nutrient Digestibility of High-Fiber Diets in Growing Pigs by Total Fecal Collection Method. Animals 2020, 10, 228. [Google Scholar] [CrossRef]
- Midthun, K.; Pang, L.Z.; Flores, J.; Kapikian, A.Z. Comparison of Immunoglobulin A (IgA), IgG, and IgM Enzyme-Linked Immunosorbent Assays, Plaque Reduction Neutralization Assay, and Complement Fixation in Detecting Serological Responses to Rotavirus Vaccine Candidates. J. Clin. Microbiol. 1989, 27, 2799–2804. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Agricultural Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- Sweeney, R.A. Generic Combustion Method for Determination of Crude Protein in Feeds: Collaborative Study. J. Assoc. Off. Anal. Chem. 1989, 72, 770–774. [Google Scholar] [CrossRef]
- Fleischer, H.; Vorberg, E.; Thurow, K.; Warkentin, M.; Behrend, D. Determination of Calcium and Phosphorus in Bones Using Microwave Digestion and ICP-MS. In Proceedings of the IMEKO TC19 Symposium, Lecce, Italy, 23–24 September 2014; International Measurement Confederation (IMEKO). Volume 5, pp. 94–99. [Google Scholar]
- Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation Evaluation and Phylogenetic Diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Pielou, E.C. The Measurement of Diversity in Different Types of Biological Collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Good, I.J. The Population Frequency of Species and the Estimation of the Population Parameters. Biometrics 1953, 40, 237–246. [Google Scholar] [CrossRef]
- Ramette, A. Multivariate Analyses in Microbial Ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An Improved Greengenes Taxonomy with Explicit Ranks for Ecological and Evolutionary Analyses of Bacteria and Archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef]
- Musa, H.H.; Wu, S.L.; Zhu, C.H.; Seri, H.I.; Zhu, G.Q. The Potential Benefits of Probiotics in Animal Production and Health. J. Anim. Vet. Adv. 2009, 8, 313–321. [Google Scholar]
- Zhang, C.K.; Gong, F.; Li, D.S. A Note on the Utilisation of Spent Mushroom Composts in Animal Feeds. Bioresour. Technol. 1995, 52, 89–91. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, M.; Tahir, S.M.; Chen, X.; Li, C.; Zhang, A.; Lu, W. Velvet Antler Production and Hematological Changes in Male Sika Deers Fed with Spent Mushroom Substrate. Animals 2022, 12, 1689. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, M.; Chen, X.; Li, C.; Zhang, A.; Lu, W. Growth Performance and Hematological Changes in Growing Sika Deers Fed with Spent Mushroom Substrate of Pleurotus ostreatus. Animals 2022, 12, 765. [Google Scholar] [CrossRef]
- Howarth, N.C.; Saltzman, E.; Roberts, S.B. Dietary Fiber and Weight Regulation. Nutr. Rev. 2001, 59, 129–139. [Google Scholar] [CrossRef]
- Kim, Y.I.; Lee, Y.H.; Kim, K.H.; Oh, Y.K.; Moon, Y.H.; Kwak, W.S. Effects of Supplementing Microbially-Fermented Spent Mushroom Substrates on Growth Performance and Carcass Characteristics of Hanwoo Steers (a Field Study). Asian-Australas. J. Anim. Sci. 2012, 25, 1575–1581. [Google Scholar] [CrossRef]
- Marx, F.R.; Machado, G.S.; Kessler, A.d.M.; Trevizan, L. Dietary Fibre Type Influences Protein and Fat Digestibility in Dogs. Ital. J. Anim. Sci. 2022, 21, 1411–1418. [Google Scholar] [CrossRef]
- Floch, M.H. The Effect of Probiotics on Host Metabolism: The Microbiota and Fermentation. J. Clin. Gastroenterol. 2010, 44, S19–S21. [Google Scholar] [CrossRef] [PubMed]
- Wieërs, G.; Belkhir, L.; Enaud, R.; Leclercq, S.; Philippart de Foy, J.M.; Dequenne, I.; de Timary, P.; Cani, P.D. How Probiotics Affect the Microbiota. Front. Cell. Infect. Microbiol. 2020, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Ephraim, E.; Cochrane, C.Y.; Jewell, D.E. Varying Protein Levels Influence Metabolomics and the Gut Microbiome in Healthy Adult Dogs. Toxins 2020, 12, 517. [Google Scholar] [CrossRef]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef]
- Meyer, J.H.; Stevenson, E.A.; Watts, H.D. The Potential Role of Protein in the Absorption of Fat. Gastroenterology 1976, 70, 232–239. [Google Scholar] [CrossRef]
- Narinx, N.; David, K.; Walravens, J.; Vermeersch, P.; Claessens, F.; Fiers, T.; Lapauw, B.; Antonio, L.; Vanderschueren, D. Role of Sex Hormone-Binding Globulin in the Free Hormone Hypothesis and the Relevance of Free Testosterone in Androgen Physiology. Cell. Mol. Life Sci. 2022, 79, 543. [Google Scholar] [CrossRef] [PubMed]
- Don, B.R.; Kaysen, G. Poor Nutritional Status and Inflammation: Serum Albumin: Relationship to Inflammation and Nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Bruckert, E.; Hansel, B. HDL-c Is a Powerful Lipid Predictor of Cardiovascular Diseases. Int. J. Clin. Pract. 2007, 61, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Mackness, B.; Mackness, M. Anti-Inflammatory Properties of Paraoxonase-1 in Atherosclerosis. In Paraoxonases in Inflammation, Infection, and Toxicology; Humana Press: Totowa, NJ, USA, 2009; pp. 143–151. [Google Scholar]
- Mineo, C.; Deguchi, H.; Griffin, J.H.; Shaul, P.W. Endothelial and Antithrombotic Actions of HDL. Circ. Res. 2006, 98, 1352–1364. [Google Scholar] [CrossRef]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and Function of Immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef]
- Ching, J.J.; Shuib, A.S.; Abdullah, N.; Majid, N.A.; Taufek, N.M.; Sutra, J.; Azmai, M.N.A. Hot Water Extract of Pleurotus pulmonarius Stalk Waste Enhances Innate Immune Response and Immune-Related Gene Expression in Red Hybrid Tilapia Oreochromis sp. Following Challenge with Pathogen-Associated Molecular Patterns. Fish Shellfish Immunol. 2021, 116, 61–73. [Google Scholar] [CrossRef]
- Wang, C.Y. A Review on the Potential Reuse of Functional Polysaccharides Extracted from the By-Products of Mushroom Processing. Food Bioprocess Technol. 2020, 13, 217–228. [Google Scholar] [CrossRef]
- Fan, X.; Hu, H.; Chen, D.; Yu, B.; He, J.; Yu, J.; Luo, J.; Eckhardt, E.; Luo, Y.; Wang, J.; et al. Lentinan Administration Alleviates Diarrhea of Rotavirus-Infected Weaned Pigs via Regulating Intestinal Immunity. J. Anim. Sci. Biotechnol. 2021, 12, 43. [Google Scholar] [CrossRef]
- Fu, X.Z.; Shi, B.L.; Li, T.Y.; Tian, L.X.; Li, J.L.; Yue, Y.X.; Su, J.L. Effects of Complex Probiotics on Immune and Antioxidative Function in Dairy Cattle. Cereal Feed Ind. 2014, 9, 56–58. [Google Scholar]
- Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, Prebiotics and Synbiotics: Safe Options for Next-Generation Therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef]
- Zhu, H.; Sheng, K.; Yan, E.; Qiao, J.; Lv, F. Extraction, Purification and Antibacterial Activities of a Polysaccharide from Spent Mushroom Substrate. Int. J. Biol. Macromol. 2012, 50, 840–843. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Xu, C.; Huang, W.; He, P. Characterization and Antiproliferative Effect of Novel Acid Polysaccharides from the Spent Substrate of Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Cultivation. Int. J. Med. Mushrooms 2017, 19, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zheng, T.; Li, Z.; Gu, D.; Wang, X.; Xiao, Z.; Wang, G.; Fan, J. Study on In Vitro Simulated Digestion and Fermentation Characteristics of Polysaccharides from Leccinum crocipodium (Letellier.) Watliag. J. Food Sci. Technol. 2024, 42, 68–78. [Google Scholar]
- Wang, M.; Guo, Q.; Shan, Y.; Cheng, Z.; Zhang, Q.; Bai, J.; Dong, Y.; Zhong, Z. Effects of Probiotic Supplementation on Body Weight, Growth Performance, Immune Function, Intestinal Microbiota and Metabolites in Fallow Deer. Biology 2024, 13, 603. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, W.; Yu, D.; Cheng, J.G.; Luo, Y.; Wang, Y.; Yang, Z.X.; Yao, X.P.; Wu, S.S.; Wang, W.Y.; et al. Effects of Compound Probiotics on the Weight, Immunity Performance and Fecal Microbiota of Forest Musk Deer. Sci. Rep. 2019, 9, 19146. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Lin, D.; Huang, X.; Zhong, W.; Liu, J.; Zhou, X. Effects of Fermented Flammulina velutipes Residue Feed on Growth Performance, Serum Biochemical, Immune, and Antioxidant Indexes of Sika Deer. Feed Res. 2023, 20, 63–66. [Google Scholar]
- Sommer, F.; Bäckhed, F. The Gut Microbiota—Masters of Host Development and Physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef]
- Whittaker, R.H. Evolution and Measurement of Species Diversity. Taxon 1972, 21, 213. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Nie, Q.; He, H.; Tan, H.; Geng, F.; Ji, H.; Hu, J.; Nie, S. Gut Firmicutes: Relationship with Dietary Fiber and Role in Host Homeostasis. Crit. Rev. Food Sci. Nutr. 2023, 63, 12073–12088. [Google Scholar] [CrossRef]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Parker, J. Brock Biology of Microorganisms, 11th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Li, Y.; Gao, J.; Lv, J.; Lambo, M.T.; Wang, Y.; Wang, L.; Zhang, Y. Replacing Soybean Meal with High-Oil Pumpkin Seed Cake in the Diet of Lactating Holstein Dairy Cows Modulated Rumen Bacteria and Milk Fatty Acid Profile. J. Dairy Sci. 2023, 106, 1803–1814. [Google Scholar] [CrossRef]
- Na, S.P.; Pristaš, P.; Hrehová, L.; Javorský, P.; Stams, A.J.; Plugge, C.M. Actinomyces succiniciruminis sp. nov. and Actinomyces glycerinitolerans sp. nov., Two Novel Organic Acid-Producing Bacteria Isolated from Rumen. Syst. Appl. Microbiol. 2016, 39, 445–452. [Google Scholar] [CrossRef]
- Jindou, S.; Brulc, J.M.; Levy-Assaraf, M.; Rincon, M.T.; Flint, H.J.; Berg, M.E.; Wilson, M.K.; White, B.A.; Bayer, E.A.; Lamed, R.; et al. Cellulosome Gene Cluster Analysis for Gauging the Diversity of the Ruminal Cellulolytic Bacterium Ruminococcus flavefaciens. FEMS Microbiol. Lett. 2008, 285, 188–194. [Google Scholar] [CrossRef]
- Bermingham, E.N.; Maclean, P.; Thomas, D.G.; Cave, N.J.; Young, W. Key Bacterial Families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) Are Related to the Digestion of Protein and Energy in Dogs. PeerJ 2017, 5, e3019. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Fang, K.; Mao, K.; Dou, J.; Fan, H.; Zhou, C.; Wang, H. Lactobacillus acidophilus and Clostridium butyricum Ameliorate Colitis in Murine by Strengthening the Gut Barrier Function and Decreasing Inflammatory Factors. Benef. Microbes 2018, 9, 775–788. [Google Scholar] [CrossRef]
- Konikoff, T.; Gophna, U. Oscillospira: A Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016, 24, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Tauch, A.; Sandbote, J. The Family Corynebacteriaceae. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 239–277. [Google Scholar]
Item | Content (%) | Item | Content (%) |
---|---|---|---|
Corn | 59.00 | Moisture | 13.51 |
Soybean Meal | 30.00 | Crude Protein | 18.80 |
Corn Germ Meal | 5.00 | Crude Fat | 2.52 |
Cane Molasses | 1.00 | Crude Ash | 7.37 |
Sodium Chloride | 2.00 | Calcium | 1.83 |
Limestone | 1.00 | Total Phosphorus | 0.55 |
Minerals | 1.00 | ||
Vitamins | 1.00 | ||
Total | 100.00 |
Item | Content (%) |
---|---|
Lactic Acid (%) | 1.92 |
Crude Protein (%) | 7.6 |
Crude Fat (%) | 2.96 |
Crude Ash (%) | 5.6 |
Acidic Detergent Fiber (ADF) (%) | 19.55 |
Neutral Detergent Fiber (NDF) (%) | 33.05 |
Item | Content (%; mg/kg) |
---|---|
Moisture (%) | 10.53 |
Crude Protein (%) | 13.72 |
Crude Fat (%) | 11.63 |
Crude Ash (%) | 4.65 |
Calcium (mg/kg) | 62.55 |
Total Phosphorus (mg/kg) | 193.05 |
Items | Groups | ||
---|---|---|---|
Control | LE1 | LE2 | |
Initial Weight (IW) | 43.00 ± 0.92 | 42.70 ± 1.71 | 41.43 ± 1.19 |
Final Weight (FW) | 49.20 ± 0.56 | 48.93 ± 1.75 | 48.70 ± 0.87 |
Total Weight Gain (TWG) | 6.20 ± 0.36 b | 6.23 ± 0.15 b | 7.27 ± 0.40 a |
Avg. Daily Gain (ADG) | 0.22 ± 0.01 b | 0.22 ± 0.01 b | 0.26 ± 0.01 a |
Digestibility of DM (%) | 71.02 ± 1.14 | 71.85 ± 1.22 | 72.97 ± 1.22 |
Digestibility of OM (%) | 72.06 ± 1.85 | 71.74 ± 1.54 | 73.51 ± 2.47 |
Digestibility of EE (%) | 64.37 ± 1.30 b | 66.81 ± 0.98 a | 66.70 ± 0.68 a |
Digestibility of CP (%) | 69.83 ± 0.95 b | 71.07 ± 1.48 b | 74.54 ± 0.67 a |
Items | Groups | ||
---|---|---|---|
Control | LE1 | LE2 | |
TP (g/L) | 45.50 ± 0.53 c | 53.03 ± 2.90 b | 57.23 ± 0.81 a |
ALB (g/L) | 24.40 ± 0.26 c | 26.87 ± 1.54 b | 30.57 ± 0.32 a |
HDL (mmol/L) | 0.95 ± 0.01 b | 1.29 ± 0.09 a | 1.28 ± 0.05 a |
LDL (mmol/L) | 0.18 ± 0.03 b | 0.22 ± 0.01 a | 0.17 ± 0.06 b |
GLU (mmol/L) | 5.03 ± 0.09 c | 5.44 ± 0.22 b | 7.87 ± 0.17 a |
Urea (mmol/L) | 9.62 ± 0.07 b | 10.08 ± 0.25 a | 9.27 ± 0.31 b |
IgG (g/L) | 1.95 ± 0.13 c | 2.39 ± 0.70 b | 2.66 ± 0.42 a |
IgM (mg/L) | 2.52 ± 0.47 c | 4.39 ± 0.15 b | 5.14 ± 0.29 a |
IgA (mg/L) | 58.21 ± 4.16 c | 76.20 ± 5.73 b | 88.62 ± 3.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Hou, T.; Li, Y.; Cheng, S.; Zhang, S.; Wu, M.; Yuan, C.; Zhang, A. Effects of Spent Mushroom Substrates and Compound Microorganism Preparation on the Growth Performance, Hematological Changes, and Intestinal Microbiota of Young Sika Deer. Animals 2025, 15, 2390. https://doi.org/10.3390/ani15162390
Shi H, Hou T, Li Y, Cheng S, Zhang S, Wu M, Yuan C, Zhang A. Effects of Spent Mushroom Substrates and Compound Microorganism Preparation on the Growth Performance, Hematological Changes, and Intestinal Microbiota of Young Sika Deer. Animals. 2025; 15(16):2390. https://doi.org/10.3390/ani15162390
Chicago/Turabian StyleShi, Huali, Tao Hou, Yundi Li, Sibo Cheng, Shukun Zhang, Min Wu, Chongshan Yuan, and Aiwu Zhang. 2025. "Effects of Spent Mushroom Substrates and Compound Microorganism Preparation on the Growth Performance, Hematological Changes, and Intestinal Microbiota of Young Sika Deer" Animals 15, no. 16: 2390. https://doi.org/10.3390/ani15162390
APA StyleShi, H., Hou, T., Li, Y., Cheng, S., Zhang, S., Wu, M., Yuan, C., & Zhang, A. (2025). Effects of Spent Mushroom Substrates and Compound Microorganism Preparation on the Growth Performance, Hematological Changes, and Intestinal Microbiota of Young Sika Deer. Animals, 15(16), 2390. https://doi.org/10.3390/ani15162390