Equine Asthma in a Comparative Perspective: Cardiovascular and Neurological Manifestations of Asthma Across Different Species
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Peer-reviewed original research articles;
- Review papers;
- Experimental studies on animal models;
- Studies comparing asthma between species;
- English-language articles.
- Abstract-only publications;
- Non-English studies;
- Case reports without mechanistic discussions.
3. Cross-Species Perspectives on Asthma: From Human Medicine to Veterinary Applications
4. Cardiovascular Implications of Asthma
4.1. Structural and Functional Consequences in the Cardiovascular System During Asthma
4.2. Cardiac Biomarkers in Asthma
4.3. Vascular Remodeling
5. Heart Rate Variability as a Non-Invasive Marker of Autonomic Dysfunction in Asthma
6. The Role of the Renin–Angiotensin–Aldosterone System in the Pathophysiology of Asthma
6.1. General Overview of the Renin–Angiotensin–Aldosterone System
6.2. The Role of the Renin–Angiotensin System (RAS) in Experimental Murine Models of Asthma
7. Neuroregulatory Changes in Asthma
8. Summary
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodrow, J.S.; Sheats, M.K.; Cooper, B.; Bayless, R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023, 12, 1091. [Google Scholar] [CrossRef] [PubMed]
- Couëtil, L.; Cardwell, J.; Gerber, V.; Lavoie, J.; Léguillette, R.; Richard, E. Inflammatory Airway Disease of Horses—Revised Consensus Statement. J. Vet. Intern. Med. 2016, 30, 503–515. [Google Scholar] [CrossRef]
- Pirie, R.S. Mild to moderate equine asthma—An overview. Equine Health 2017, 2017, 34–40. [Google Scholar] [CrossRef]
- Mims, J.W. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol. 2015, 5 (Suppl. S1), S2–S6. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
- Iordanidou, M.; Loukides, S.; Paraskakis, E. Asthma phenotypes in children and stratified pharmacological treatment regimens. Expert. Rev. Clin. Pharmacol. 2017, 10, 293–303. [Google Scholar] [CrossRef]
- Sze, E.; Bhalla, A.; Nair, P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020, 75, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Adamama-Moraitou, K.K.; Patsikas, M.N.; Koutinas, A.F. Feline lower airway disease: A retrospective study of 22 naturally occurring cases from Greece. J. Feline Med. Surg. 2004, 6, 227–233. [Google Scholar] [CrossRef]
- Reinero, C.R. Advances in the understanding of pathogenesis, and diagnostics and therapeutics for feline allergic asthma. Vet. J. 1 Październik 2011, 190, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S. Feline lower airway disease: Asthma and beyond. Vet. Nurse. 2017, 8, 17–23. [Google Scholar] [CrossRef]
- Ceriotti, S.; Bullone, M.; Leclere, M.; Ferrucci, F.; Lavoie, J.P. Severe asthma is associated with a remodeling of the pulmonary arteries in horses. PLoS ONE 2020, 15, e0239561. [Google Scholar] [CrossRef]
- Couetil, L.; Cardwell, J.M.; Leguillette, R.; Mazan, M.; Richard, E.; Bienzle, D.; Bullone, M.; Gerber, V.; Ivester, K.; Lavoie, J.-P.; et al. Equine Asthma: Current Understanding and Future Directions. Front. Vet. Sci. 2020, 7, 450. [Google Scholar] [CrossRef]
- Pirie, R. Severe equine asthma—An overview. Equine Health. 2018, 2018, 21–28. [Google Scholar] [CrossRef]
- Simões, J.; Batista, M.; Tilley, P. The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Anim. Open Access J. 2022, 12, 744. [Google Scholar] [CrossRef]
- Miller, R.L.; Grayson, M.H.; Strothman, K. Advances in asthma: New understandings of asthma’s natural history, risk factors, underlying mechanisms, and clinical management. J. Allergy Clin. Immunol. 2021, 148, 1430–1441. [Google Scholar] [CrossRef]
- RuDusky, B.M. Acute Myocardial Infarction and Status Asthmaticus: A Case Report. Angiology 2006, 57, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel Working Group of the National Heart, Lung, and Blood Institute (NHLBI) administered and coordinated National Asthma Education and Prevention Program Coordinating Committee (NAEPPCC); Cloutier, M.M.; Baptist, A.P.; Blake, K.V.; Brooks, E.G.; Bryant-Stephens, T.; DiMango, E.; Dixon, A.E.; Elward, K.S.; Hartert, T.; et al. 2020 Focused Updates to the Asthma Management Guidelines: A Report from the National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group. J. Allergy Clin. Immunol. 2020, 146, 1217–1270. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.S.; Júnior, A.O.S.; Signori, L.U.; Prietsch, S.O.M.; Zhang, L. Cardiac autonomic modulation assessed by heart rate variability in children with asthma. Pediatr. Pulmonol. 2020, 55, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Manastyrska, M.; Garbiec, A.; Karpinski, M.; Bienko, M.; Radzki, R.; Kimicka, A. The feline asthma (Bronchitis allergica)—Case report and associated overview. HVM Bioflux 2021, 13, 95–100. Available online: https://cabidigitallibrary.org (accessed on 24 June 2025).
- Halliwell, R.; Banovic, F.; Mueller, R.S.; Olivry, T. Immunopathogenesis of the feline atopic syndrome. Vet. Dermatol. 2021, 32, 13-e4. [Google Scholar] [CrossRef]
- Hirshman, C.A.; Malley, A.; Downes, H. Basenji-Greyhound dog model of asthma: Reactivity to Ascaris suum, citric acid, and methacholine. J. Appl. Physiol. 1980, 49, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Bizikova, P.; Pucheu-Haston, C.M.; Eisenschenk, M.N.C.; Marsella, R.; Nuttall, T.; Santoro, D. Review: Role of genetics and the environment in the pathogenesis of canine atopic dermatitis. Vet. Dermatol. 2015, 26, 95-e26. [Google Scholar] [CrossRef]
- Gershwin, L.J. Comparative Immunology of Allergic Responses. Annu. Rev. Anim. Biosci. 2015, 3, 327–346. [Google Scholar] [CrossRef]
- Zur, G.; Ihrke, P.J.; White, S.D.; Kass, P.H. Canine atopic dermatitis: A retrospective study of 266 cases examined at the University of California, Davis, 1992–1998. Part I. Clinical features and allergy testing results. Vet. Dermatol. 2002, 13, 89–102. [Google Scholar] [CrossRef]
- Yu, Q.L.; Chen, Z. Establishment of different experimental asthma models in mice. Exp. Ther. Med. 2018, 15, 2492–2498. [Google Scholar] [CrossRef]
- Casaro, M.; Souza, V.R.; Oliveira, F.A.; Ferreira, C.M. OVA-Induced Allergic Airway Inflammation Mouse Model. In Pre-Clinical Models: Techniques and Protocols; Guest, P., Ed.; Springer: New York, NY, USA, 2019; pp. 297–301. [Google Scholar] [CrossRef]
- Kim, D.I.; Song, M.K.; Lee, K. Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes. BMC Pulm. Med. 2019, 19, 241. [Google Scholar] [CrossRef]
- Enilari, O.; Sinha, S. The Global Impact of Asthma in Adult Populations. Ann. Glob. Health 2019, 85, 2. [Google Scholar] [CrossRef]
- The Global Asthma Report 2014; Global Asthma Network: Auckland, New Zealand, 2014.
- Davis, K.U.; Sheats, M.K. Bronchoalveolar Lavage Cytology Characteristics and Seasonal Changes in a Herd of Pastured Teaching Horses. Front. Vet. Sci. 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, J.W.; Reid, S.W.J.; Christley, R.M. A survey of horse owners in Great Britain regarding horses in their care. Part 2: Risk factors for recurrent airway obstruction. Equine Vet. J. 2007, 39, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Gerber, V.; Robinson, N.E.; Luethi, S.; Marti, E.; Wampfler, B.; Straub, R. Airway inflammation and mucus in two age groups of asymptomatic well-performing sport horses. Equine Vet. J. 2003, 35, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Trzil, J.E. Feline Asthma: Diagnostic and Treatment Update. Vet. Clin. North. Am. Small Anim. Pract. 2020, 50, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xu, J.; Jiang, C.; Lu, S. Neuro-Immune Regulation in Inflammation and Airway Remodeling of Allergic Asthma. Front. Immunol. 2022, 13, 894047. [Google Scholar] [CrossRef] [PubMed]
- Giguère, S.; Viel, L.; Lee, E.; MacKay, R.J.; Hernandez, J.; Franchini, M. Cytokine induction in pulmonary airways of horses with heaves and effect of therapy with inhaled fluticasone propionate. Vet. Immunol. Immunopathol. 2002, 85, 147–158. [Google Scholar] [CrossRef]
- Davis, K.U.; Sheats, M.K. The Role of Neutrophils in the Pathophysiology of Asthma in Humans and Horses. Inflammation. 2021, 44, 450–465. [Google Scholar] [CrossRef]
- Pacholewska, A.; Jagannathan, V.; Drögemüller, M.; Klukowska-Rötzler, J.; Lanz, S.; Hamza, E.; Dermitzakis, E.T.; Marti, E.; Leeb, T.; Gerber, V.; et al. Impaired Cell Cycle Regulation in a Natural Equine Model of Asthma. PLoS ONE 2015, 10, e0136103. [Google Scholar] [CrossRef]
- Pacholewska, A.; Kraft, M.F.; Gerber, V.; Jagannathan, V. Differential Expression of Serum MicroRNAs Supports CD4+ T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes 2017, 8, 383. [Google Scholar] [CrossRef]
- Cordeau, M.E.; Joubert, P.; Dewachi, O.; Hamid, Q.; Lavoie, J.P. IL-4, IL-5 and IFN-γ mRNA expression in pulmonary lymphocytes in equine heaves. Vet. Immunol. Immunopathol. 2004, 97, 87–96. [Google Scholar] [CrossRef]
- Kleiber, C.; McGorum, B.C.; Horohov, D.W.; Pirie, R.S.; Zurbriggen, A.; Straub, R. Cytokine profiles of peripheral blood and airway CD4 and CD8 T lymphocytes in horses with recurrent airway obstruction. Vet. Immunol. Immunopathol. 2005, 104, 91–97. [Google Scholar] [CrossRef]
- Vientós-Plotts, A.I.; Ericsson, A.C.; McAdams, Z.L.; Rindt, H.; Reinero, C.R. Respiratory dysbiosis in cats with spontaneous allergic asthma. Front. Vet. Sci. 2022, 9, 930385. [Google Scholar] [CrossRef] [PubMed]
- Norris Reinero, C.R.; Decile, K.C.; Berghaus, R.D.; Williams, K.J.; Leutenegger, C.M.; Walby, W.F.; Schelegle, E.S.; Hyde, D.M.; Gershwin, L.J. An Experimental Model of Allergic Asthma in Cats Sensitized to House Dust Mite or Bermuda Grass Allergen. Int. Arch. Allergy Immunol. 2004, 135, 117–131. [Google Scholar] [CrossRef]
- Reinero, C.R.; DeClue, A.E.; Rabinowitz, P. Asthma in humans and cats: Is there a common sensitivity to aeroallegens in shared environments? Environ. Res. 2009, 109, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Page, C.P.; Hanania, N.A.; Calzetta, L.; Matera, M.G.; Rogliani, P. Asthma and Cardiovascular Diseases: Navigating Mutual Pharmacological Interferences. Drugs 2024, 84, 1251–1273. [Google Scholar] [CrossRef] [PubMed]
- Caplan, M.; Hamzaoui, O. Cardio-respiratory interactions in acute asthma. Front Physiol. 2023, 14, 1232345. [Google Scholar] [CrossRef]
- Undem, B.J.; Carr, M.J. The role of nerves in asthma. Curr. Allergy Asthma Rep. 2002, 2, 159–165. [Google Scholar] [CrossRef]
- Simões, J.; Sales Luís, J.; Tilley, P. Contribution of lung function tests to the staging of severe equine asthma syndrome in the field. Res. Vet. Sci. 2019, 123, 112–117. [Google Scholar] [CrossRef]
- Halliwell, R.; Pucheu-Haston, C.M.; Olivry, T.; Prost, C.; Jackson, H.; Banovic, F.; Nuttall, T.; Santoro, D.; Bizikova, P.; Mueller, R.S. Feline allergic diseases: Introduction and proposed nomenclature. Vet. Dermatol. 2021, 32, 8-e2. [Google Scholar] [CrossRef]
- Bronchoscopic Findings in 48 Cats with Spontaneous Lower Respiratory Tract Disease (2002–2009). J. Vet. Intern. Med. 2011, 25, 236–243. [CrossRef]
- Decloedt, A.; Borowicz, H.; Slowikowska, M.; Chiers, K.; van Loon, G.; Niedzwiedz, A. Right ventricular function during acute exacerbation of severe equine asthma. Equine Vet. J. 2017, 49, 603–608. [Google Scholar] [CrossRef]
- Bellocchia, M.; Masoero, M.; Ciuffreda, A.; Croce, S.; Vaudano, A.; Torchio, R.; Boita, M.; Bucca, C. Predictors of cardiovascular disease in asthma and chronic obstructive pulmonary disease. Multidiscip. Respir. Med. 2013, 8, 58. [Google Scholar] [CrossRef]
- Yang, Z.; Ge, Y.; Zuo, R.; Wang, J.; Wang, W.; Shao, C.; Chang, C.T.; Tang, Y. Type 2 Inflammation: A Potential Clinical Link Between Asthma and Cardiovascular Diseases. Cardiovasc. Innov. Appl. 2025, 10, 968. [Google Scholar] [CrossRef]
- Cross, T.J.; Kim, C.H.; Johnson, B.D.; Lalande, S. The interactions between respiratory and cardiovascular systems in systolic heart failure. J. Appl. Physiol. 2020, 128, 214–224. [Google Scholar] [CrossRef]
- Cepelis, A.; Brumpton, B.M.; Malmo, V.; Laugsand, L.E.; Loennechen, J.P.; Ellekjær, H.; Langhammer, A.; Janszky, I.; Strand, L.B. Associations of Asthma and Asthma Control With Atrial Fibrillation Risk: Results From the Nord-Trøndelag Health Study (HUNT). JAMA Cardiol. 2018, 3, 721–728. [Google Scholar] [CrossRef]
- Kulkarni, H.; Akwei, S.; Luyt, D.K.; Gaillard, E.A.; Mulla, H.; Pandya, H.C. Cardiac Troponin I Levels in Children with Acute Severe Asthma Treated with IV Salbutamol. J. Lung Dis. Treat. 2015, 1, 1000102. [Google Scholar] [CrossRef]
- Jain, M.; Jain, D.; Das, B.K.; Prasad, R.; Sihag, B.K. Evaluation of cardiac biomarkers in children with acute severe bronchial Asthma-A prospective study from tertiary care center in northern India. Indian. Heart J. 2018, 70, S204–S207. [Google Scholar] [CrossRef] [PubMed]
- Yalta, K.; Yalta, T.; Gurdogan, M.; Palabıyık, O.; Yetkın, E. Cardiac Biomarkers in the Setting of Asthma Exacerbations: A Review of Clinical Implications and Practical Considerations. Curr. Allergy Asthma Rep. 2020, 20, 17. [Google Scholar] [CrossRef]
- Shafuddin, E.; Chang, C.L.; Cooray, M.; Tuffery, C.M.; Hopping, S.J.; Sullivan, G.D.; Jacobson, G.A.; Hancox, R.J. Changes in biomarkers of cardiac dysfunction during exacerbations of chronic obstructive pulmonary disease. Respir. Med. 2018, 145, 192–199. [Google Scholar] [CrossRef]
- Voelkel, N.F.; Cool, C.D. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Eur. Respir. J. 2003, 22 (Suppl. 46), 28s–32s. [Google Scholar] [CrossRef]
- D’Annunzio, G.; Gobbo, F.; Avallone, G.; Bacci, B.; Sabattini, S.; Sarli, G. Airway Remodeling in Feline Lungs. Top. Companion Anim. Med. 2022, 46, 100587. [Google Scholar] [CrossRef]
- Ishaque, S.; Khan, N.; Krishnan, S. Trends in Heart-Rate Variability Signal Analysis. Front. Digit. Health 2021, 3, 639444. [Google Scholar] [CrossRef] [PubMed]
- Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. In Comprehensive Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 1239–1278. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public. Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Shashikant, R.; Chetankumar, P. A Review on Impact Application of Heart Rate Variability (HRV). In Advances in Decision Sciences, Image Processing, Security and Computer Vision; Satapathy, S.C., Raju, K.S., Shyamala, K., Krishna, D.R., Favorskaya, M.N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Schiwe, D.; Vendrusculo, F.M.; Becker, N.A.; Donadio, M.V.F. Impact of asthma on heart rate variability in children and adolescents: Systematic review and meta-analysis. Pediatr Pulmonol. 2023, 58, 1310–1321. [Google Scholar] [CrossRef]
- Nyerges-Bohák, Z.; Kovács, L.; Povázsai, Á.; Hamar, E.; Póti, P.; Ladányi, M. Heart rate variability in horses with and without severe equine asthma. Equine Vet. J. 2025, 57, 611–618. [Google Scholar] [CrossRef]
- Ames, M.K.; Atkins, C.E.; Pitt, B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [Google Scholar] [CrossRef] [PubMed]
- Gregório, J.F.; Rodrigues-Machado, M.d.G.; Santos, R.A.S.; Carvalho-Ribeiro, I.A.; Nunes, O.M.; Oliveira, I.F.A.; Nunes, O.M.; Oliveira, I.F.A.; Vasconcellos, A.V.d.O.; Campagnole-Santos, M.J.; et al. Asthma: Role of the angiotensin-(1-7)/Mas (MAS1) pathway in pathophysiology and therapy. Br. J. Pharmacol. 2021, 178, 4428–4439. [Google Scholar] [CrossRef]
- Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am. J. Physiol-Cell Physiol. 2007, 292, C82–C97. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.O.; Freeman, R.H. Mechanisms regulating renin release. Physiol. Rev. 1976, 56, 1–56. [Google Scholar] [CrossRef]
- Dhindsa, S.; Garg, R.; Bandyopadhyay, A.; Dandona, P. Angiotensin II and Inflammation: The Effect of ACE Inhibition and Angiotensin II Receptor Blockade. Metab. Syndr. Relat. Disord. 2003, 1, 255–259. [Google Scholar] [CrossRef]
- Groeschel, M.; Braam, B. Connecting chronic and recurrent stress to vascular dysfunction: No relaxed role for the renin-angiotensin system. Am. J. Physiol-Ren. Physiol. 2011, 300, F1–F10. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, A. Control of Renin Synthesis and Secretion. Am. J. Hypertens. 2012, 25, 839–847. [Google Scholar] [CrossRef]
- Leeuw, P.W.D.; Bos, R.D.; Es, P.N.V.; Birkenhäger, W.H. Effect of sympathetic stimulation and intrarenal alpha-blockade on the secretion of renin by the human kidney. Eur. J. Clin. Investig. 1985, 15, 166–170. [Google Scholar] [CrossRef]
- El-Hashim, A.Z.; Renno, W.M.; Raghupathy, R.; Abduo, H.T.; Akhtar, S.; Benter, I.F. Angiotensin-(1–7) inhibits allergic inflammation, via the MAS1 receptor, through suppression of ERK1/2- and NF-κB-dependent pathways. Br. J. Pharmacol. 2012, 166, 1964–1976. [Google Scholar] [CrossRef]
- Magalhães, G.S.; Rodrigues-Machado, M.G.; Motta-Santos, D.; Silva, A.R.; Caliari, M.V.; Prata, L.O.; Abreu, S.C.; Rocco, P.R.M.; Barcelos, L.S.; Santos, R.A.S.; et al. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. Br. J. Pharmacol. 2015, 172, 2330–2342. [Google Scholar] [CrossRef]
- Millar, E.A.; Angus, R.M.; Hulks, G.; Morton, J.J.; Connell, J.M.; Thomson, N.C. Activity of the renin-angiotensin system in acute severe asthma and the effect of angiotensin II on lung function. Thorax 1994, 49, 492–495. [Google Scholar] [CrossRef]
- D’Agostino, B.; Advenier, C.; Falciani, M.; Gallelli, L.; Marrocco, G.; Piegari, E.; Filippelli, A.; Rossi, F. Endothelin-1 increases cholinergic nerve-mediated contraction of human bronchi via tachykinin synthesis induction. Br. J. Pharmacol. 2001, 134, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cai, R.; Niu, Y.; Shen, B.; Xu, J.; Cheng, Y. Inhibition of angiotensin II-induced contraction of human airway smooth muscle cells by angiotensin-(1-7) via downregulation of the RhoA/ROCK2 signaling pathway. Int. J. Mol. Med. 2012, 30, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, G.S.; Rodrigues-Machado, M.G.; Motta-Santos, D.; Alenina, N.; Bader, M.; Santos, R.A.; Barcelos, L.S.; Campagnole-Santos, M.J. Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1-7) Mas receptor knockout mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L1141–L1148. [Google Scholar] [CrossRef]
- Lindsay, R.M.; Harmar, A.J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 1989, 337, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Neurogenic inflammation and asthma. J. Asthma Off. J. Assoc. Care Asthma. 1992, 29, 165–180. [Google Scholar] [CrossRef]
- Nockher, W.A.; Renz, H. Neurotrophins and asthma: Novel insight into neuroimmune interaction. J. Allergy Clin. Immunol. 2006, 117, 67–71. [Google Scholar] [CrossRef]
- Polverino, M.; Polverino, F.; Fasolino, M.; Andò, F.; Alfieri, A.; De Blasio, F. Anatomy and neuro-pathophysiology of the cough reflex arc. Multidiscip. Respir. Med. 2012, 7, 5. [Google Scholar] [CrossRef]
- Leduc, L.; Leclère, M.; Gauthier, L.G.; Marcil, O.; Lavoie, J.P. Severe asthma in horses is associated with increased airway innervation. J. Vet. Intern. Med. 2024, 38, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Matera, M.G.; Amorena, M.; Lucisano, A. Innervation of Equine Airways. Pulm. Pharmacol. Ther. 2002, 15, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, S.B.; Undem, B.J. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol. Rev. 2016, 96, 975–1024. [Google Scholar] [CrossRef] [PubMed]
- Leclere, M.; Lavoie-Lamoureux, A.; Lavoie, J.P. Heaves, an asthma-like disease of horses. Respirology 2011, 16, 1027–1046. [Google Scholar] [CrossRef]
- Robinson, N.E. International Workshop on Equine Chronic Airway Disease. Michigan State University 16-18 June 2000. Equine Vet. J. 2001, 33, 5–19. [Google Scholar] [CrossRef]
- Barchilon, M.; Reinero, C.R. Breathe easy: Inhalational therapy for feline inflammatory airway disease. J. Feline Med. Surg. 2023, 25, 1098612X231193054. [Google Scholar] [CrossRef] [PubMed]
Feature | Humans | Horses | Cats |
---|---|---|---|
Prevalence | 334 million people worldwide, 1–18% of population in different countries [28,29] | 10–20% of adult horses in temperate climate (sEA), 60% or more may have mild/moderate form [2,30,31,32] | 1–5% of cat population [33] |
Immunological mechanisms | T2-high (allergic): presence of eosinophils, IL-4, IL-5, IL-13, IgE; T2-low (non-allergic): presence of neutrophils, Th1/Th17 response; mixed cytokine profiles [5,15,34] | Heterogeneous immune response; neutrophil dominance in severe form; IL-4, IL-5 expression in BAL; increased expression of IL-1β, IL-8, IFNγ, TNFα, IL-17 [14,35,36,37,38,39,40] | Dominant T2-high response; eosinophilic airway inflammation; IgE-dependent activation; similar immunological profile to human allergic asthma; presence of Th2 cells [20,41,42,43] |
Types/phenotypes | Allergic (early onset); non-allergic (late onset); obesity-related; aspirin-induced; eosinophilic; neutrophilic [5,17,44] | Mild/moderate (mEA) with various inflammation types; severe (sEA) with neutrophil dominance; different phenotypes depending on environmental factors [2,3,39] | Allergic form of asthma; chronic bronchitis as a possible equivalent of non-allergic asthma; dominance of allergic type [9,10,20,33] |
Clinical symptoms | Dyspnea; wheezing; cough; chest tightness; reduced exercise tolerance; nocturnal attacks [5,16,45,46] | Cough; respiratory effort; exercise intolerance; nasal discharge; wheezing; exacerbations with dust/hay exposure [2,3,13,47] | Chronic cough; wheezing; exercise-induced dyspnea; episodic respiratory distress; reversible airway obstruction [10,33,48,49] |
Location | Humans | Horses | Cats |
---|---|---|---|
Cardiovascular changes | Increased risk of cardiovascular disease, atrial fibrillation, cardiac arrhythmias, and right ventricular changes; elevated TnI, BNP, CK-MB during exacerbations [54,56,58] | Pulmonary artery wall thickening (7% larger area in vivo, 12% post-mortem); no increase in cardiac biomarkers (TnI, TnT, CK); structural and functional changes in right ventricle; pulmonary hypertension [11,12,50] | Increased vascularization in bronchial submucosa; vascular muscle layer hypertrophy; extensive vascular network confirmed by CD31 marker; changes in TGFβ-1 expression; development of pulmonary hypertension [60] |
HRV changes | Reduced total heart rate variability; altered sympathetic–parasympathetic balance; elevated HF values; reduced LF values; decreased LF/HF ratio; disturbed autonomic modulation [18,63,65] | Reduced autonomic cardiac control; relative increase in parasympathetic modulation; changes in SDNN, RMSSD parameters; disturbed autonomic regulation [66] | No detailed HRV studies in cats with asthma; presumed autonomic control disturbances similar to humans |
Neurological changes | Airway hyperresponsiveness; increased sensory nerve sensitivity; bronchial receptor reflex disturbances; increased nerve density in airways; parasympathetic system dysfunction [18,46,82,87] | Increased peripheral airway innervation; bronchial innervation dysfunction; airway hyperresponsiveness; increased number and surface area of peribronchial nerves; impact on smooth muscle remodeling [11,86,89] | Similarities in non-adrenergic, non-cholinergic control of airway diameter to humans; preserved response to beta-agonists; hyperresponsiveness to methacholine; reversibility of bronchospasm [33,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlugopolska, D.; Siwinska, N.; Noszczyk-Nowak, A. Equine Asthma in a Comparative Perspective: Cardiovascular and Neurological Manifestations of Asthma Across Different Species. Animals 2025, 15, 2371. https://doi.org/10.3390/ani15162371
Dlugopolska D, Siwinska N, Noszczyk-Nowak A. Equine Asthma in a Comparative Perspective: Cardiovascular and Neurological Manifestations of Asthma Across Different Species. Animals. 2025; 15(16):2371. https://doi.org/10.3390/ani15162371
Chicago/Turabian StyleDlugopolska, Dorota, Natalia Siwinska, and Agnieszka Noszczyk-Nowak. 2025. "Equine Asthma in a Comparative Perspective: Cardiovascular and Neurological Manifestations of Asthma Across Different Species" Animals 15, no. 16: 2371. https://doi.org/10.3390/ani15162371
APA StyleDlugopolska, D., Siwinska, N., & Noszczyk-Nowak, A. (2025). Equine Asthma in a Comparative Perspective: Cardiovascular and Neurological Manifestations of Asthma Across Different Species. Animals, 15(16), 2371. https://doi.org/10.3390/ani15162371