Editorial: Fish Welfare in Aquaculture and Research—Where Are We Going?
1. Introduction
2. Views on Fish Welfare
2.1. Environmental Welfare Parameters
2.2. Fish-Based Parameters
2.3. Management and Experience with Fish
2.4. Available Tools for Fish Welfare Monitoring
3. Welfare of Fish in Aquaculture
3.1. What Is Important for Fish Farmers and Facility Managers?
3.2. What Are the Main Issues in Aquaculture?
3.3. Benefit of Welfare for Aquaculture
4. Fish Welfare in Science
4.1. Which Fish Species Are Used?
4.2. What Is Important for Science?
4.3. Benefit of Welfare for Research Outcomes
5. Conclusions or “What About the Future”?
Conflicts of Interest
References
- FAO. In brief to the state of World Fisheries and Aquaculture 2024. In Blue Transformation in Action; FAO: Rome, Italy, 2024; 264p. [Google Scholar] [CrossRef]
- Sneddon, L.U. Evolution of nociception and pain: Evidence from fish models. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20190290. [Google Scholar] [CrossRef] [PubMed]
- Conte, F.S. Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci. 2004, 86, 205–223. [Google Scholar] [CrossRef]
- Barber, I. Parasites, behaviour and welfare in fish. Appl. Anim. Behav. Sci. 2007, 104, 251–264. [Google Scholar] [CrossRef]
- Sirot, E. An evolutionarily stable strategy for aggressiveness in feeding groups. Behav. Ecol. 2000, 11, 351–356. [Google Scholar] [CrossRef]
- Poli, B.M. Farmed fish welfare-suffering assessment and impact on product quality. Ital. J. Anim. Sci. 2009, 8, 139–169. [Google Scholar] [CrossRef]
- Swain, H.S.; Das, B.K.; Upadhyay, A.; Ramteke, M.H.; Kumar, V.; Kumar Meena, D.; Kumar Sarkar, U.; Kumar Chadha, N.; Rawat, K.D. Stocking density mediated stress modulates growth attributes in cage reared Labeo rohita (Hamilton) using multifarious biomarker approach. Sci. Rep. 2022, 12, 9869. [Google Scholar] [CrossRef]
- O’Toole, C.; White, P.; Thomas, K.; O’Maoiléidigh, N.; Fjelldal, P.G.; Hansen, T.J.; Graham, C.T.; Brophy, D. Effects of temperature and feeding regime on cortisol concentrations in scales of Atlantic salmon post-smolts. J. Exp. Mar. Biol. Ecol. 2023, 569, 151955. [Google Scholar] [CrossRef]
- Green, C.; Haukenes, A. The Role of Stress in Fish Disease; Publication No. 474; SRAC: Penrith, Australia, 2015; p. 3. [Google Scholar]
- Mushtaq, S.T. Aggression in aquatic environments and its relevance in aquaculture and conservation efforts. Discov. Anim. 2024, 1, 28. [Google Scholar] [CrossRef]
- Lahti, K.; Lower, N. Effects of size asymmetry on aggression and food acquisition in Arctic charr. J. Fish Biol. 2000, 56, 915–922. [Google Scholar] [CrossRef]
- Yue, S.; Duncan, I.J.H.; Moccia, R.D. Do differences in conspecific body size induce social stress in domestic rainbow trout? Environ. Biol. Fish. 2006, 76, 425–431. [Google Scholar] [CrossRef]
- Nunes Barreto, T.; Pereira Boscolo, C.N.; Gonçalves de-Freitas, E. Homogeneously sized groups increase aggressive interaction and affect social stress in Thai strain Nile tilapia (Oreochromis niloticus). Mar. Freshw. Behav. Physiol. 2015, 48, 309–318. [Google Scholar] [CrossRef]
- Yousif, O.M. The effects of stocking density, water exchange rate, feeding frequency and grading on size hierarchy development in juvenile Nile tilapia, Oreochromis niloticus L. Emir. J. Agric. Sci. 2002, 14, 45–53. [Google Scholar] [CrossRef]
- Bortoletti, M.; Fonsatti, E.; Leva, F.; Maccatrozzo, L.; Ballarin, C.; Radaelli, G.; Caberlotto, S.; Bertotto, D. Influence of transportation on stress response and cellular oxidative stress markers in juvenile meagre (Argyrosomus regius). Animals 2023, 13, 3288. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, K.; Chen, X.; Wang, H.; Li, Z. Effects of transport stress (duration and density) on the physiological conditions of marbled rockfish (Sebastiscus marmoratus, Cuvier 1829) juveniles and water quality. Fishes 2024, 9, 474. [Google Scholar] [CrossRef]
- Matos, E.; Gonçalves, A.; Nunes, M.L.; Dinis, M.T.; Dias, J. Effect of harvesting stress and slaughter conditions on selected flesh quality criteria of gilthead seabream (Sparus aurata). Aquacult 2010, 305, 66–72. [Google Scholar] [CrossRef]
- Huntingford, F.A.; Adams, C.; Braithwaite, V.A.; Kadri, S.; Pottinger, T.G.; Sandøe, P.; Turnbull, J.F. Current issues in fish welfare. J. Fish Biol. 2006, 68, 332–372. [Google Scholar] [CrossRef]
- Ohl, F.; Putman, R.J. Animal welfare at the group level: More than the sum of individual welfare? Acta Biotheor. 2014, 62, 35–45. [Google Scholar] [CrossRef]
- Brunet, V.; Kleiber, A.; Patinote, A.; Sudan, P.-L.; Duret, C.; Gourmelen, G.; Moreau, E.; Fournel, C.; Pineau, L.; Calvez, S.; et al. Positive welfare effects of physical enrichments from the nature-, functions and feeling- based approaches in farmed rainbow trout (Oncorhynchus mykiss). Aquacult 2022, 550, 737825. [Google Scholar] [CrossRef]
- McEwen, B.S. Allostasis and allostatic load: Implications for neuropsycho-pharmacology. Neuropsychopharmacology 2000, 22, 108–124. [Google Scholar] [CrossRef]
- Selye, H. Stress and the general adaptation syndrome. Br. Med. J. 1950, 1, 1383–1392. [Google Scholar] [CrossRef]
- Schreck, C.B.; Tort, L.; Farrell, A.P.; Brauner, C.J. Biology of Stress in Fish, 1st ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2016; Volume 35, p. 602. [Google Scholar]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef]
- Braithwaite, V.A.; Ebbesson, L.O.E. Pain and stress responses in farmed fish. Rev. Sci. Tech. Off. Int. Epiz. 2014, 33, 245–253. [Google Scholar] [CrossRef]
- Flik, G.; Klaren, P.H.M.; Van den Burg, E.H.; Metz, J.R.; Huising, M.O. CRF and stress in fish. Gen. Comp. Endocrinol. 2006, 146, 36–44. [Google Scholar] [CrossRef]
- Pijanowski, L.; Jurecka, P.; Irnazarow, I.; Kepka, M.; Szwejser, E.; Verburg-van Kemenade, B.M.L.; Chadzinska, M. Activity of the hypothalamus–pituitary–interrenal axis (HPI axis) and immune response in carp lines with different susceptibility to disease. Fish Physiol. Biochem. 2015, 41, 1261–1278. [Google Scholar] [CrossRef]
- Rupia, E.J.; Binning, S.A.; Roche, D.G.; Lu, W. Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish. J. Anim. Ecol. 2016, 85, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Folkedal, O.; Ferno, A.; Nederlof, M.A.J.; Fosseidengen, J.E.; Cerqueira, M.; Olsen, R.E.; Nilsson, J. Habituation and conditioning in gilthead sea bream (Sparus aurata): Effects of aversive stimuli, reward and social hierarchies. Aquac. Res. 2018, 49, 335–340. [Google Scholar] [CrossRef]
- Pickering, A.D.; Pottinger, T.G.; Sumpter, J.P.; Carragher, J.F.; Le Bail, P.Y. Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 1991, 83, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, M.; Theodoridi, A.; Tsalafouta, A. Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 60, 121–131. [Google Scholar] [CrossRef]
- Raposo de Magalhães, C.; Schrama, D.; Farinha, A.P.; Revets, D.; Kuehn, A.; Planchon, S.; Rodrigues, P.M.; Cerqueira, M. Protein changes as robust signatures of fish chronic stress: A proteomics approach to fish welfare research. BMC Genom. 2020, 21, 309. [Google Scholar] [CrossRef]
- Kirsten, K.; Pompermaier, A.; Koakoski, G.; Mendonça-Soares, S.; da Costa, R.A.; Maffi, V.C.; Kreutz, L.C.; Barcellos, L.J.G. Acute and chronic stress differently alter the expression of cytokine and neuronal markers genes in zebrafish brain. Stress 2021, 1, 107–112. [Google Scholar] [CrossRef]
- Pawlak, P.; Konrad, A.; Seitz, A.; Pietsch, C. Effects of acute distress and eustress on immune-related gene expression in the pituitary and head kidney of carp (Cyprinus carpio L.). Aquac. Fish. Sci. 2024; in press. [Google Scholar] [CrossRef]
- Madaro, A.; Olsen, R.E.; Kristiansen, T.S.; Ebbesson, L.O.E.; Nilsen, T.O.; Flik, G.; Gorissen, M. Stress in Atlantic salmon: Response to unpredictable chronic stress. J. Exp. Biol. 2015, 218, 2538–2550. [Google Scholar] [CrossRef]
- Cerqueira, M.; Millot, S.; Felix, A.; Silva, T.; Oliveira, G.A.; Oliveira, C.C.V.; Rey, S.; MacKenzie, S.; Oliveira, R. Cognitive appraisal in fish: Stressor predictability modulates the physiological and neurobehavioural stress response in sea bass. Proc. Biol. Sci. 2020, 287, 20192922. [Google Scholar] [CrossRef]
- Davis, K.B., Jr.; McEntire, M.E. Comparison of the cortisol and glucose stress response to acute confinement and resting insulin-like growth factor-I concentrations among white bass, striped bass and sunshine bass. In Proceedings of the Aquaculture America Conference, Las Vegas, NV, USA, 13–16 February 2006; p. 79. [Google Scholar]
- Fast, M.D.; Hosoya, S.; Johnson, S.C.; Afonso, L.O.B. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol. 2008, 24, 194–204. [Google Scholar] [CrossRef]
- Bonier, F.; Martin, P.R.; Moore, I.T.; Wingfield, J.C. Do baseline glucocorticoids predict fitness? Trends Ecol. Evol. 2009, 24, 634–642. [Google Scholar] [CrossRef]
- Martinez-Porchas, M.; Martinez-Cordova, L.R.; Ramos-Enriquez, R. Cortisol and glucose: Reliable indicators of fish stress? Panam. J. Aquat. Sci. 2009, 4, 158–178. [Google Scholar]
- Koakoski, G.; Oliveira, T.A.; da Rosa, J.G.S.; Fagundes, M.; Kreutz, L.C.; Barcellos, L.J.G. Divergent time course of cortisol response to stress in fish of different ages. Physiol. Behav. 2012, 106, 129–132. [Google Scholar] [CrossRef]
- Madaro, A.; Fernö, A.; Kristiansen, T.S.; Olsen, R.E.; Gorissen, M.; Flik, G.; Nilsson, J. Effect of predictability on the stress response to chasing in Atlantic salmon (Salmo salar L.) parr. Physiol. Behav. 2016, 153, 1–6. [Google Scholar] [CrossRef]
- Fusani, B.; Oliveira, R.F. “Why (zebra)fish may get ulcers”: Cognitive and social modulation of stress in fish. Brain Behav. Evol. 2024, 99, 248–256. [Google Scholar] [CrossRef]
- McCormick, S.D.; Shrimpton, J.M.; Carey, J.B.; O’Dea, M.F.; Sloan, K.E.; Moriyama, S.; Björnsson, B.T. Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 1998, 168, 221–235. [Google Scholar] [CrossRef]
- Philip, A.M.; Vijayan, M.M. Stress-immune-growth interactions: Cortisol modulates suppressors of cytokine signaling and JAK/STAT pathway in rainbow trout liver. PLoS ONE 2015, 10, e0129299. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Stewart, A.M.; Kyzar, E.J.; Cachat, J.; Gebhardt, M.; Landsman, S.; Robinson, K.; Maximino, C.; Herculano, A.M.; Jesuthasan, S.; et al. Time to recognize zebrafish ‘affective’ behavior. Behaviour 2012, 149, 1019–1036. [Google Scholar] [CrossRef]
- Kittilsen, S. Functional aspects of emotions in fish. Behav. Process 2013, 100, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Proctor, H.S.; Carder, G.; Cornish, A.R. Searching for animal sentience: A systematic review of the scientific literature. Animals 2013, 3, 882–906. [Google Scholar] [CrossRef]
- de Abreu, M.S.; Demin, K.A.; Giacomini, A.C.V.V.; Amstislavskaya, T.G.; Strekalova, T.; Maslov, G.O.; Kositsin, Y.; Petersen, E.V.; Kalueff, A.V. Understanding how stress responses and stress-related behaviors have evolved in zebrafish and mammals. Neurobiol. Stress. 2021, 15, 100405. [Google Scholar] [CrossRef]
- Burren, A.; Pietsch, C. Distress regulates different pathways in the carp brain: A preliminary study. Animals 2021, 11, 585. [Google Scholar] [CrossRef]
- Pawlak, P.; Burren, A.; Seitz, A.; Glauser, G.; Pietsch, C. Differential effects of acute eustress and distress on gene regulation patterns in the carp brain. Aquac. Res. 2022, 53, 5075–5096. [Google Scholar] [CrossRef]
- Noble, C.; Gismervik, K.; Iversen, M.H.; Kolarevic, J.; Nilsson, J.; Stien, L.H.; Turnbull, J.F. Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare. 2018. 351p. Available online: https://nofima.no/wp-content/uploads/2021/05/FISHWELL-Welfare-indicators-for-farmed-Atlantic-salmon-November-2018.pdf (accessed on 11 August 2025).
- Calabrese, S.; Nilsen, T.O.; Kolarevic, J.; Ebbesson, L.O.E.; Pedrosa, C.; Fivelstad, S.; Hosfeld, C.; Stefansson, S.O.; Terjesen, B.F.; Takle, H.; et al. Stocking density limits for post-smolt Atlantic salmon (Salmo salar L.) with emphasis on production performance and welfare. Aquaculture 2017, 468, 363–370. [Google Scholar] [CrossRef]
- Taranger, G.L.; Karlsen, Ø.; Bannister, R.J.; Glover, K.A.; Husa, V.; Karlsbakk, E.; Kvamme, B.O.; Kroon Boxaspen, K.; Bjørn, P.A.; Finstad, B.; et al. Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J. Mar. Sci. 2015, 72, 997–1021. [Google Scholar] [CrossRef]
- Lindholm-Lehto, P. Water quality monitoring in recirculating aquaculture systems. Aquac. Fish Fish. 2023, 3, 113–131. [Google Scholar] [CrossRef]
- Pettersen, J.M.; Bracke, M.B.M.; Midtlyng, P.J.; Folkedal, O.; Stien, L.H.; Steffenak, H.; Kristiansen, T.S. Salmon welfare index model 2.0: An extended model for overall welfare assessment of caged Atlantic salmon, based on a review of selected welfare indicators and intended for fish health professionals. Rev. Aquac. 2013, 6, 162–179. [Google Scholar] [CrossRef]
- Bordignon, F.; Ferrarese, L.; Solimeo, A.; Di Leva, V.; Trocino, A. Animal-based measures for operational welfare indicators at wholesale level in gilthead seabream (Sparus aurata) reared in the Mediterranean Sea. Aquaculture 2025, 603, 742417. [Google Scholar] [CrossRef]
- Latremouille, D.N. Fin erosion in aquaculture and natural environments. Rev. Fish. Sci. 2003, 11, 315–335. [Google Scholar] [CrossRef]
- Yildiz, H.Y.; Chatzifotis, S.; Anastasiadis, P.; Parisi, G.; Papandroulakis, N. Testing of the salmon welfare index model (SWIM 1.0) as a computational welfare assessment for sea-caged European sea bass. Ital. J. Anim. Sci. 2021, 20, 1423–1430. [Google Scholar] [CrossRef]
- Sadoul, B.; Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish Biol. 2018, 94, 540–555. [Google Scholar] [CrossRef]
- Madaro, A.; Nilsson, J.; Whatmore, P.; Roh, H.J.; Grove, S.; Stien, L.H.; Olsen, R.E. Acute stress response on Atlantic salmon: A time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. Fish Physiol. Biochem. 2023, 49, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Opinion, A.G.R.; Vanhomwegen, M.; De Boeck, G.; Aerts, J. Long-term stress induced cortisol downregulation, growth reduction and cardiac remodeling in Atlantic salmon. J. Exp. Biol. 2023, 226, jeb246504. [Google Scholar] [CrossRef]
- Madaro, A.; Lai, F.; Fjelldal, P.G.; Hansen, T.; Gelebart, V.; Muren, B.; Rønnestad, I.; Olsen, R.E.; Stien, L.H. Comparing physiological responses of acute and chronically stressed diploid and triploid Atlantic salmon (Salmo salar). Aquac. Rep. 2024, 36, 102041. [Google Scholar] [CrossRef]
- Marques Maia, C. Individuality really matters for fish welfare. Vet. Quart. 2023, 43, 1–5. [Google Scholar] [CrossRef]
- DiVincenti, L., Jr.; McDowell, A.; Herrelko, E.S. Integrating individual animal and population welfare in zoos and aquariums. Animals 2023, 13, 1577. [Google Scholar] [CrossRef]
- Vieira, A.; Battini, M.; Can, E.; Mattiello, S.; Stilwell, G. Inter-observer reliability of animal-based welfare indicators included in the animal welfare indicators welfare assessment protocol for dairy goats. Animal 2018, 12, 1942–1949. [Google Scholar] [CrossRef]
- Kent, M.L.; Feist, S.W.; Harper, C.; Hoogstraten-Miller, S.; Law, J.M.; Sánchez-Morgado, J.M.; Tanguay, R.L.; Sanders, G.E.; Spitsbergen, J.M.; Whipps, C.M. Recommendations for control of pathogens and infectious diseases in fish research facilities. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 240–248. [Google Scholar] [CrossRef]
- Stien, L.H.; Bracke, M.B.M.; Folkedal, O.; Nilsson, J.; Oppedal, F.; Torgersen, T.; Kittilsen, S.; Midtlyng, P.J.; Vindas, M.A.; Øverli, Ø.; et al. Salmon Welfare Index Model (SWIM 1.0): A semantic model for overall welfare assessment of caged Atlantic salmon: Review of the selected welfare indicators and model presentation. Rev. Aquac. 2013, 5, 33–57. [Google Scholar] [CrossRef]
- Folkedal, O.; Pettersen, J.M.; Bracke, M.B.M.; Stien, L.H.; Nilsson, J.; Martins, C.; Breck, O.; Midtlyng, P.J.; Kristiansen, T. On-farm evaluation of the salmon welfare index model (SWIM 1.0): Theoretical and practical considerations. Anim. Welf. 2016, 25, 135–149. [Google Scholar] [CrossRef]
- Noble, C.; Gismervik, K.; Iversen, M.H.; Kolarevic, J.; Nilsson, J.; Stien, L.H.; Turnbull, J.F. Welfare Indicators for Farmed Rainbow Trout: Tools for Assessing Fish Welfare. 2020. 310p. Available online: https://nofima.no/wp-content/uploads/2020/05/Welfare-Indicators-for-farmed-rainbow-trout-Noble-et-al.-2020.pdf (accessed on 11 August 2025).
- Boissonnot, L.; Karlsen, C.; Reynolds, P.; Austad, M.; Stensby-Skjærvik, S.; Remen, M.; Imsland, A.K.D. Welfare and survival of lumpfish (Cyclopterus lumpus) in Norwegian commercial Atlantic salmon (Salmo salar) production. Aquaculture 2023, 572, 739496. [Google Scholar] [CrossRef]
- Lertwanakarn, T.; Purimayata, T.; Luengyosluechakul, T.; Grimalt, P.B.; Pedrazzani, A.S.; Quintiliano, M.H.; Surachetpong, W. Assessment of tilapia (Oreochromis spp.) welfare in the semi-intensive and intensive culture systems in Thailand. Animals 2023, 13, 2498. [Google Scholar] [CrossRef]
- Pedrazzani, A.S.; Quintiliano, M.H.; Bolfe, F. Tilapia on-farm welfare assessment protocol for semi-intensive production systems. Front. Vet. Sci. 2017, 7, 606388. [Google Scholar] [CrossRef] [PubMed]
- Moltumyr, L.; Nilsson, J.; Madaro, A.; Seternes, T.; Winger, F.A.; Rønnestad, I.; Stien, L.H. Long-term welfare effects of repeated warm water treatments on Atlantic salmon (Salmo salar). Aquaculture 2022, 548, 737670. [Google Scholar] [CrossRef]
- Fulton, T.W. Rate of growth of seas fishes. In Proceedings of the 20th Annual Report of the Fishery Board for Scotland, London, UK, 11 April 1902; pp. 326–439. [Google Scholar]
- Ragheb, E. Length-weight relationship and well-being factors of 33 fish species caught by gillnets from the Egyptian Mediterranean waters off Alexandria. Egypt. J. Aquat. Res. 2023, 49, 361–367. [Google Scholar] [CrossRef]
- Höglund, E.; Sørensen, C.; Jørgensen, B.M.; Nilsson, G.E.; Øverli, Ø. Attenuation of stress-induced anorexia in brown trout (Salmo trutta) by pretreatment with dietary L-tryptophan. Br. J. Nutr. 2007, 97, 786–789. [Google Scholar] [CrossRef]
- Leal, E.; Fernandez-Duran, B.; Guillot, R.; Rios, D.; Cerda-Reverter, J.M. Stress-induced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): A selffeeding approach. J. Comp. Physiol. B 2011, 181, 1035–1044. [Google Scholar] [CrossRef]
- Muñoz, D.; Fuentes, R.; Carnicero, B.; Aguilar, A.; Sanhueza, N.; San-Martin, S.; Agurto, C.; Donoso, A.; Valdivia, L.E.; Miguez, J.M.; et al. Viral infection drives the regulation of feeding behavior related genes in Salmo salar. Int. J. Mol. Sci. 2021, 22, 11391. [Google Scholar] [CrossRef]
- Pawlak, P.; Burren, A.; Seitz, A.; Pietsch, C. Effects of different acute stressors on the regulation of appetite genes in the carp (Cyprinus carpio L.) brain. R. Soc. Open Sci. 2023, 10, 230040. [Google Scholar] [CrossRef] [PubMed]
- Ellis, T.; North, B.; Scott, A.P.; Bromage, N.R.; Porter, M.; Gadd, D. The relationships between stocking density and welfare in farmed rainbow trout. J. Fish Biol. 2002, 61, 493–531. [Google Scholar] [CrossRef]
- North, B.P.; Turnbull, J.F.; Ellis, T.; Porter, M.J.; Migaud, H.; Bron, J.N.R.; Bromage, N.R. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 255, 466–479. [Google Scholar] [CrossRef]
- Kjartansson, H.; Fivelstad, S.; Thomassen, J.M.; Smith, M.J. Effects of different stocking densities on physiological parameters and growth of adult Atlantic salmon (Salmo salar L.) reared in circular tanks. Aquaculture 1988, 73, 261–274. [Google Scholar] [CrossRef]
- Huang, W.-B.; Chiu, T.-S. Effects of stocking density on survival, growth, size variation, and production of tilapia fry. Aquac. Res. 1997, 28, 165–173. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, L.; Zhang, X. Environmental enrichment increases aquatic animal welfare: A systematic review and meta-analysis. Rev. Aquac. 2022, 14, 1120–1135. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Cabrera-Álvarez, M.J.; Maia, C.M.; Saraiva, J.L. Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Rev. Aquac. 2021, 14, 704–728. [Google Scholar] [CrossRef]
- dos Santos Gauy, A.C.; Bolognesi, M.C.; Gonçalves-de-Freitas, E. Long-term body tactile stimulation reduces aggression and improves productive performance in Nile tilapia groups. Sci. Rep. 2022, 12, 20239. [Google Scholar] [CrossRef]
- Williams, T.D.; Readman, G.D.; Owen, S.F. Key issues concerning environmental enrichment for laboratory-held fish species. Lab. Anim. 2009, 43, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lin, W.; Li, Y.; Yuan, X.; He, X.; Zhao, H.; Mo, J.; Lin, J.; Yang, L.; Liang, B.; et al. Physical enrichment for improving welfare in fish aquaculture and fitness of stocking fish: A review of fundamentals, mechanisms and applications. Aquaculture 2023, 574, 739651. [Google Scholar] [CrossRef]
- Gaignon, J.L.; Prouzet, P. Elevage su saumon Atlantique (S. salar) enecloserie: Essai d’utilisation de substrats. Bull. Franc. Piscic. 1982, 287, 1–5. [Google Scholar]
- Nguyen, R.M.; Crocker, C.E. The effects of substrate composition on foraging behavior and growth rate of larval green sturgeon, Acipenser medirostris. Environ. Biol. Fish. 2007, 79, 231–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, Y.; Li, Z.; Tao, Y.; Yang, Y. Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. Sci. Tot. Environ. 2021, 771, 145418. [Google Scholar] [CrossRef] [PubMed]
- Fred-Ahmadu, O.H.; Ahmadu, F.O.; Adedapo, A.E.; Oghenovo, I.; Ogunmodede, O.T.; Benson, N.U. Microplastics and chemical contamination in aquaculture ecosystems: The role of climate change and implications for food safety—A review. Environ. Sci. Eur. 2024, 36, 181. [Google Scholar] [CrossRef]
- Koletsi, P.; Wiegertjes, G.F.; Schrama, J.W.; Pietsch, C. Occurrence of mycotoxins in feedstuffs and fish feeds in Europe and the potential effects of deoxynivalenol DON on important farmed fish species. Toxins 2021, 13, 403. [Google Scholar] [CrossRef]
- Limbu, S.M.; Chen, L.-Q.; Zhang, M.-L.; Du, Z.-Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: A review. Rev. Aquac. 2020, 13, 1015–1059. [Google Scholar] [CrossRef]
- Serpa, B.J.; Bullard, J.D.; Mendiola, V.C.; Smith, C.J.; Stewart, B.; Ganser, L.R. D-amphetamine exposure differentially disrupts signaling across ontogeny in the zebrafish. Bioelectricity 2019, 1, 85–104. [Google Scholar] [CrossRef] [PubMed]
- Aparna, S.; Patri, M. Benzo[a]pyrene exposure and overcrowding stress impacts anxiety-like behavior and impairs learning and memory in adult zebrafish, Danio rerio. Environ. Toxicol. 2020, 36, 352–361. [Google Scholar] [CrossRef]
- Sanahuja, I.; Ibarz, A. Skin mucus proteome of gilthead sea bream: A non-invasive method to screen for welfare indicators. Fish Shellfish Immunol. 2015, 46, 426–435. [Google Scholar] [CrossRef]
- Lecocq, T.; Benard, A.; Pasquet, A.; Nahon, S.; Ducret, A.; Dupont-Marin, K.; Lang, I.; Thomas, M. TOFF, a database of traits of fish to promote advances in fish aquaculture. Sci. Data 2019, 6, 301. [Google Scholar] [CrossRef] [PubMed]
- Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisydem, N.; Gatward, I.; et al. Aquaculture: Global status and trends. Philos. Trans. R. Soc. B 2010, 365, 2897–2912. [Google Scholar] [CrossRef] [PubMed]
- Gjedrem, T.; Robinson, N.; Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 2012, 350–353, 117–129. [Google Scholar] [CrossRef]
- Small, B.C.; Hardy, R.W.; Tucker, C.S. Enhancing fish performance in aquaculture. Anim. Front. 2016, 6, 42–49. [Google Scholar] [CrossRef]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Besson, M.; Aubin, J.; Komen, H.; Poelman, M.; Quillet, E.; Vandeputte, M.; Van Arendonk, J.A.M.; De Boer, I.J.M. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 2016, 116, 100–109. [Google Scholar] [CrossRef]
- Little, D.C.; MacKenzie, S. Grand challenges for global aquaculture. Front. Aquac. 2023, 2, 1232936. [Google Scholar] [CrossRef]
- Gabriel, U.U.; Akinrotimi, O.A. Management of stress in fish for sustainable aquaculture development. Researcher 2011, 3, 28–38. [Google Scholar]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Flueck-Giraud, M.; Schmidt-Posthaus, H.; Bergadano, A.; Adrian-Kalchhauser, I. An adaptable, user-friendly score sheet to monitor welfare in experimental fish. Lab. Anim. 2024, 59, 226–241. [Google Scholar] [CrossRef]
- Zrncic, S. Diagnostic manual for the main pathogens in European seabass and Gilthead seabream aquaculture OPTIONS méditerranéennes Series B: Studies and Research. In Plácido Plaza Centre International de Hautes Etudes Agronomiques Méditerranéennes International Centre for Advanced Mediterranean Agronomic Studies; CIHEAM: Zaragoza, Spain, 2020; p. 178. [Google Scholar]
- Damsgård, B.; Bjørklund, F.; Johnsen, H.K.; Toften, H. Short- and long-term effects of fish density and specific water flow on the welfare of Atlantic cod, Gadus morhua. Aquaculture 2011, 322–323, 184–190. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Moutou, K.A.; Conceição, L.E.C.; Engrola, S.; Fernandes, J.M.O.; Johnston, I.A. What determines growth potential and juvenile quality of farmed fish species? Rev. Aquac. 2013, 5, S168–S193. [Google Scholar] [CrossRef]
- Granada, L.; Lemos, M.F.L.; Cabral, H.N.; Bossier, P.; Novais, S.C. Epigenetics in aquaculture—The last frontier. Rev. Aquac. 2018, 10, 994–1013. [Google Scholar] [CrossRef]
- Lovell, T. Nutrition and Feeding of Fish; Kluwer Academic Publishers: Dordrecht, The Netherlands; Springer: Boston, MA, USA, 1998; p. 267. [Google Scholar]
- Teles, A.O.; Couto, A.; Enes, P.; Peres, H. Dietary protein requirements of fish—A meta-analysis. Rev. Aquac. 2020, 12, 1445–1477. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, S.; Felix, N.; Ahilan, B.; Ruby, P. An overview on significance of fish nutrition in aquaculture industry. Int. J. Fish. Aquat. Stud. 2017, 5, 349–355. [Google Scholar]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Alfonso, S.; Mente, E.; Fiocchi, E.; Manfrin, A.; Dimitroglou, A.; Papaharisis, L.; Barkas, D.; Toomey, L.; Boscarato, M.; Losasso, C.; et al. Growth performance, gut microbiota composition, health and welfare of European sea bass (Dicentrarchus labrax) fed an environmentally and economically sustainable low marine protein diet in sea cages. Sci. Rep. 2023, 13, 21269. [Google Scholar] [CrossRef]
- Anka, I.Z.; Webster, T.U.; McLaughlin, S.; Overland, B.; Hitchings, M.; Garcia de Leaniz, C.; Consuegra, S. Gut microbiota diversity affects fish behaviour and is influenced by host genetics and early rearing conditions. Open Biol. 2025, 15, 240232. [Google Scholar] [CrossRef]
- Milla, S.; Pasquet, A.; El Mohajer, L.; Fontaine, P. How domestication alters fish phenotypes. Rev. Aquac. 2021, 13, 388–405. [Google Scholar] [CrossRef]
- Huntingford, F.A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 2004, 65, 122–142. [Google Scholar] [CrossRef]
- Johnston, I.A.; Kent, M.P.; Boudinot, P.; Looseley, M.; Bargelloni, L.; Faggion, S.; Merino, G.A.; Ilsley, G.R.; Bobe, J.; Tsigenopoulos, C.S.; et al. Advancing fish breeding in aquaculture through genome functional annotation. Aquaculture 2024, 583, 740589. [Google Scholar] [CrossRef]
- Flores, C.; Bryant, C.; Bakr, M.; Emam, W. Farmed fish welfare in Egypt: Surveying current practices and future directions for tilapia culture. Aquac. Rep. 2025, 41, 102594. [Google Scholar] [CrossRef]
- Mocho, J.-P.; von Krogh, K. A FELASA working group survey on fish species used for research, methods of euthanasia, health monitoring, and biosecurity in Europe, North America, and Oceania. Biology 2022, 11, 1259. [Google Scholar] [CrossRef]
- Katsiadaki, I.; Ellis, T.; Andersen, L.; Antczak, P.; Blaker, E.; Burden, N.; Fisher, T.; Green, C.; Labram, B.; Pearson, A.; et al. Dying for change: A roadmap to refine the fish acute toxicity test after 40 years of applying a lethal endpoint. Ecotoxicol. Environ. Saf. 2021, 223, 112585. [Google Scholar] [CrossRef]
- Moritz, T.; Bierbach, D.; Schwarzer, J.; Grunow, B. Recommendations for scientific fish husbandry—A series for promoting animal welfare, reproducibility and transferability in ichthyologic research. Bull. Fish. Biol. 2024, 20, 35–48. [Google Scholar]
- Andersson, M.; Kettunen, P. Effects of holding density on the welfare of zebrafish: A systematic review. Zebrafish 2021, 18, 297–306. [Google Scholar] [CrossRef]
- Sen Sarma, O.; Frymus, N.; Axling, F.; Thörnqvist, P.-O.; Roman, E.; Winberg, S. Optimizing zebrafish rearing−Effects of fish density and environmental enrichment. Front. Behav. Neurosci. 2023, 17, 1204021. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, J.A.; Bart, H.L., Jr.; Bowker, J.D.; Bowser, P.R.; MacMillan, J.R.; Nickum, J.G.; Rose, J.D.; Sorensen, P.W.; Whitledge, G.W.; Rachlin, J.W.; et al. Guidelines for the Use of Fishes in Research; American Fisheries Society: Bethesda, MD, USA, 2014; p. 104. [Google Scholar]
- Goodwin, N.; Westall, L.; Karp, N.A.; Hazlehurst, D.; Kovacs, C.; Keeble, R.; Thompson, P.; Collins, R.; Bussell, J. Evaluating and optimizing fish health and welfare during experimental procedures. Zebrafish 2016, 13, S-127. [Google Scholar] [CrossRef] [PubMed]
- Pratiwy, F.M.; Cahya, M.D.; Andriani, Y. Digitization of aquaculture: A review. Int. J. Fish. Aquat. Stud. 2022, 10, 18–22. [Google Scholar] [CrossRef]
- Setiyowati, H.; Thalib, S.; Setiawati, R.; Nurjannah; Akbariani, N.V. An aquaculture disrupted by digital technology. Austenit 2022, 14, 5. [Google Scholar] [CrossRef]
- Rowan, N.J. The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain—Quo Vadis? Aquac. Fish 2023, 8, 365–374. [Google Scholar] [CrossRef]
- Verma, D.K.; Barad, R.R.; Singh, S.; Chandra, I.; Maurya, N.K.; Ranjan, D. Digitalization as Innovative Development in Aquaculture and Fisheries as Future Importance. In Futuristic Trends in Agriculture Engineering & Food Sciences; IIP Series: Chikkamagaluru, India, 2024; Volume 3, Book 15, Part 6, Chapter 1; p. 21. ISBN 978-93-5747-931-8. [Google Scholar]
- Rastegari, H.; Nadi, F.; Lam, S.S.; Ikhwanuddin, M.; Kasan, N.A.; Rahmat, R.F.; Mahari, W.A.W. Internet of things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agric. Technol. 2023, 4, 100187. [Google Scholar] [CrossRef]
- Dikel, S. The power of technology in smart aquaculture. In Marine and Freshwater Advances: Ecology, Nutrition and Technology; Kop, A., Karatas, B., Eds.; İksad Publisihing House: Ankara, Turkey, 2024; Volume Chapter 10, p. 63. [Google Scholar]
- Føre, M.; Alver, M.O.; Alfredsen, J.A.; Rasheed, A.; Hukkelås, T.; Bjelland, H.V.; Su, B.; Ohrem, S.J.; Kelasidi, E.; Norton, T.; et al. Digital twins in intensive aquaculture—Challenges, opportunities and future prospects. Comput. Electron. Agric. 2024, 218, 108676. [Google Scholar] [CrossRef]
- Narsale, S.A.; Prakash, P.; Mohale, H.P.; Baraiya, R.; Sheikh, S.; Kirtikumar, P.B.; Mansukhbhai, C.R.; Kadam, R.V.; Tekam, I. Precision aquaculture: A way forward for sustainable agriculture. J. Exp. Agric. Int. 2024, 46, 83–97. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Akerkar, R.; Hong, M. Big Data in Aquaculture: Opportunities and Challenges for SOGN Og Fjordane Region; Vestlandsforsking: Sogndal, Norway, 2021. [Google Scholar]
- Biazi, V.; Marques, C. Industry 4.0-based smart systems in aquaculture: A comprehensive review. Aquac. Eng. 2023, 103, 102360. [Google Scholar] [CrossRef]
- Mustafa, F.H.; Bagul, A.H.B.P.; Senoo, S.; Shapawi, R. A review of smart fish farming systems. J. Aquac. Eng. Fish. Res. 2016, 2, 185–192. [Google Scholar] [CrossRef]
- Toni, M.; Manciocco, A.; Angiulli, E.; Alleva, E.; Cioni, C.; Malavasi, S. Review: Assessing fish welfare in research and aquaculture, with a focus on European directives. Animal 2019, 13, 161–170. [Google Scholar] [CrossRef]
- Pavlidis, M.; Papaharisis, L.; Adamek, M.; Steinhagen, D.; Jung-Schroers, V.; Kristiansen, T.; Theodoridi, A.; Otero Lourido, F. Animal welfare of farmed fish. In Department for Structural and Cohesion Policies, European Parliament; Policy: Brussels, Belgium, 2023; p. 135. [Google Scholar]
- Jeong, J.; Arriagada, G.; Revie, C.W. Targets and measures: Challenges associated with reporting low sea lice levels on Atlantic salmon farms. Aquaculture 2023, 563, 738865. [Google Scholar] [CrossRef]
- Gilmour, K.M.; Bard, B. Social buffering of the stress response: Insights from fishes. Biol. Lett. 2022, 18, 20220332. [Google Scholar] [CrossRef]
- Giacomini, A.C.V.V.; de Abreu, M.S.; Koakoski, G.; Idalêncio, R.; Kalichak, F.; Oliveira, T.A.; da Rosa, J.G.; Gusso, D.; Piato, A.L.; Barcellos, L.J. My stress, our stress: Blunted cortisol response to stress in isolated housed zebrafish. Physiol. Behav. 2015, 139, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.P.; Garcia de Leaniz, C.; Luchiari, A.C. Fear contagion in zebrafish: A behaviour affected by familiarity. Anim. Behav. 2019, 153, 95–103. [Google Scholar] [CrossRef]
- Borowiec, B.G.; O’Connor, C.M.; Goodick, K.; Scott, G.R.; Balshine, S. The preference for social affiliation renders fish willing to accept lower O2 levels. Physiol. Biochem. Zool. 2018, 91, 716–724. [Google Scholar] [CrossRef]
- Currie, S.; Tattersall, G.J. Social cues can push amphibious fish to their thermal limits. Biol. Lett. 2018, 14, 20180492. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietsch, C. Editorial: Fish Welfare in Aquaculture and Research—Where Are We Going? Animals 2025, 15, 2367. https://doi.org/10.3390/ani15162367
Pietsch C. Editorial: Fish Welfare in Aquaculture and Research—Where Are We Going? Animals. 2025; 15(16):2367. https://doi.org/10.3390/ani15162367
Chicago/Turabian StylePietsch, Constanze. 2025. "Editorial: Fish Welfare in Aquaculture and Research—Where Are We Going?" Animals 15, no. 16: 2367. https://doi.org/10.3390/ani15162367
APA StylePietsch, C. (2025). Editorial: Fish Welfare in Aquaculture and Research—Where Are We Going? Animals, 15(16), 2367. https://doi.org/10.3390/ani15162367