Translating Antiviral Therapies to Veterinary Use: A Review of Immunomodulatory Agents for Potential Application in Aleutian Mink Diseases
Simple Summary
Abstract
1. Introduction
1.1. Aleutian Mink Disease Virus
1.2. Immunomodulation (Immunosuppression and Immunostimulation)
1.3. Immunosuppression Mechanisms
2. Immunosuppressive Preparations
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMDV | Aleutian mink disease virus |
AMD | Aleutian mink disease |
CIEP | Counter immunoelectrophoresis |
ELISA | Enzyme-linked immunosorbent assay |
ORF | Open reading frames |
MSCs | Mesenchymal stem cel |
GVHD | Graft versus host disease |
SLE | Systemic lupus erythematosus |
RA | Rheumatoid arthritis |
IBD | Crohn’s disease |
HBV | Hepatitis B virus |
TNF | Tumour necrosis factor |
GR | Glucocorticoid receptor |
MAPK | Mitogen activated protein kinase |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
CsA | Cyclosporine A |
CNIs | Calcineurin inhibitors |
TAC | Tacrolimus |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus |
MERS-CoV | Middle east respiratory syndrome coronavirus |
MMF | Mofetil mycophenolate |
MPS | Enteric-coated sodium mycophenolate |
IMPDH | Inosine monophosphate dehydrogenase |
NPs | Nanoparticles |
GM-CSF | Granulocyte macrophage colony-stimulating factor |
JAK | Janus kinase inhibitor |
RMD | Rheumatic and musculoskeletal diseases |
ACR | American College of Rheumatology |
AZA | Azathioprine |
IMIDs | Immune-mediated inflammatory diseases |
NHL | Non-Hodgkin’s lymphoma |
AIDS | Acquired immunodeficiency syndrome |
References
- Cotmore, S.F.; McKenna, M.; Chiorini, J.A.; Mukha, D.V.; Pintel, D.J.; Qiu, J.; Soderlund-Venermo, M.; Tattersall, P.; Tijssen, P.; Gatherer, D.; et al. The family Parvoviridae. Arch. Virol. 2014, 159, 1239–1247. [Google Scholar] [CrossRef]
- Canuti, M.; Whitney, H.G.; Lang, A.S. Amdoparvoviruses in small mammals: Expanding our understanding of parvovirus diversity, distribution and pathology. Front. Microbiol. 2015, 6, 1119. [Google Scholar] [CrossRef]
- Farid, A.H.; Hussain, I.; Rupasinghe, P.P.; Stephen, J.; Arju, I. Long-term antibody production and viremia in American mink (Neovison vison) challenged with Aleutian mink disease virus. BMC Vet. Res. 2022, 18, 364. [Google Scholar] [CrossRef]
- Prieto, A.; Fernández-Antonio, R.; López-Lorenzo, G.; Díaz-Cao, J.M.; López-Novo, C.; Remesar, S.; Panadero, R.; Díaz, P.; Morrondo, P.; Díez-Baños, P.; et al. Molecular epidemiology of Aleutian mink disease virus causing outbreaks in mink farms from Southwestern Europe: A retrospective study from 2012 to 2019. J. Vet. Sci. 2020, 21, e65. [Google Scholar] [CrossRef]
- Farid, A.H.; Rupasinghe, P.P. Serum Analytes of American Mink (Neovison vison) Challenged with Aleutian Mink Disease Virus. Animals 2022, 12, 2725. [Google Scholar] [CrossRef]
- Castelruiz, Y.; Blixenkrone-Moller, M.; Aasted, B. DNA vaccination with the Aleutian mink disease virus NS1 gene confers partial protection against disease. Vaccine 2005, 23, 1225–1231. [Google Scholar] [CrossRef]
- Jakubczak, A.; Kowalczyk, M.; Kostro, K.; Horecka, B.; Jeżewska-Witkowska, G. High molecular polymorphism of the hypervariable region in the VP2 gene of Aleutian mink disease virus. Acta Virol. 2016, 60, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Cheng, F.; Burger, L.P.; Pintel, D. The transcription profile of Aleutian mink disease virus in CRFK cells is generated by alternative processing of pre-mRNAs produced from a single promoter. J. Virol. 2006, 80, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Reichert, M.; Kostro, K. Effect of persistent infection of mink with Aleutian mink disease virus on reproductive failure. Bull. Vet. Inst. Pulawy 2014, 58, 369–373. [Google Scholar] [CrossRef]
- Leimann, A.; Knuuttila, A.; Maran, T.; Vapalahti, O.; Saarma, U. Molecular epidemiology of Aleutian mink disease virus (AMDV) in Estonia and a global phylogeny of AMDV. Virus Res. 2015, 199, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, J.; Shi, K.; Zeng, F.; Zong, Y.; Leng, X.; Lu, H.; Du, R. Construction and Immunogenicity Analysis of Whole-Gene Mutation DNA Vaccine of Aleutian Mink Virus Isolated Virulent Strain. Viral Immunol. 2018, 31, 69–77. [Google Scholar] [CrossRef]
- Isaacs, J.D.; Burmester, G.R. Smart battles: Immunosuppression versus immunomodulation in the inflammatory RMDs. Ann. Rheum. Dis. 2020, 79, 991–993. [Google Scholar] [CrossRef]
- Avorn, J. Learning about the Safety of Drugs. A Half-Century of Evolution. N. Engl. J. Med. 2011, 365, 2151–2153. [Google Scholar] [CrossRef]
- Asherson, R.A.; Gunter, K.; Daya, D.; Shoenfeld, Y. Multiple Autoimmune Diseases in a Young Woman: Tuberculosis and Splenectomy as Possible Triggering Factors? Another Example of the ‘Mosaic’ of Autoimmunity. J. Rheumatol. 2008, 35, 1224–1227. [Google Scholar]
- Chan, L.S. Ocular and oral mucous membrane pemphigoid (Cicatricial pemphigoid). Clin. Dermatol. 2012, 30, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, J.; Hu, X.; Wang, C.; Jia, Y.; Zhu, C.; Xie, S.; Lee, J.; Li, F.; Ling, D. A Peritumorally Injected Immunomodulating Adjuvant Elicits Robust and Safe Metalloimmunotherapy against Solid Tumors. Adv. Mater. 2022, 34, e2206915. [Google Scholar] [CrossRef]
- Carsons, S.E. Issues Related to Clinical Trials of Oral and Biologic Disease-Modifying Agents for Sjögren’s Syndrome. Rheum. Dis. Clin. N. Am. 2008, 34, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Keystone, E.C. Does Anti-Tumor Necrosis Factor-α Therapy Affect Risk of Serious Infection and Cancer in Patients with Rheumatoid Arthritis?: A Review of Longterm Data. J. Rheumatol. 2011, 38, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L.; Hajishengallis, G. A new inflammatory cytokine on the block: Re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J. Dent. Res. 2008, 87, 817–828. [Google Scholar] [CrossRef]
- Feng, Y.; Fan, J.; Wu, D.; Liu, Q.; Li, H.; Zhang, X.; Li, S.; Tang, F.; Liu, Z.; Zhang, L.; et al. DEC-205 receptor targeted poly(lactic-co-glycolic acid) nanoparticles containing Eucommia ulmoides polysaccharide enhances the immune response of foot-and-mouth disease vaccine in mice. Int. J. Biol. Macromol. 2023, 227, 576–589. [Google Scholar] [CrossRef]
- Miller, E.; Ernst, J. Anti-TNF immunotherapy and tuberculosis reactivation: Another mechanism revealed. J. Clin. Investig. 2009, 119, 1079–1082. [Google Scholar] [CrossRef] [PubMed]
- Schonder, K.S.; Mazariegos, G.V.; Weber, R.J. Adverse Effects of Immunosuppression in Pediatric Solid Organ Transplantation. Pediatr. Drugs 2010, 12, 35–49. [Google Scholar] [CrossRef]
- Bax, C.E.; Chakka, S.; Concha, J.S.S.; Zeidi, M.; Werth, V.P. The effects of immunostimulatory herbal supplements on autoimmune skin diseases. J. Am. Acad. Dermatol. 2021, 84, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Toscano, E.; Cotta, J.; Robles, M.; Lucena, M.I.; Andrade, R.J. Toxicidad hepática inducida por los nuevos fármacos inmunosupresores. Gastroenterol. Hepatol. 2010, 33, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Koller, A.; Denhaerynck, K.; Moons, P.; Steiger, J.; Bock, A.; De Geest, S. Distress associated with adverse effects of immunosuppressive medication in kidney transplant recipients. Prog. Transplant. 2010, 20, 40–46. [Google Scholar] [CrossRef]
- Prokai, A.; Fekete, A.; Pasti, K.; Rusai, K.; Banki, N.; Reusz, G.; Szabo, A.J. The importance of different immunosuppressive regimens in the development of posttransplant diabetes mellitus. Pediatr. Diabetes 2012, 13, 81–91. [Google Scholar] [CrossRef]
- Bascones-Martinez, A.; Mattila, R.; Gomez-Font, R.; Meurman, J.H. Immunomodulatory drugs: Oral and systemic adverse effects. Med. Oral Patol. Oral Cir. Bucal 2014, 19, e24–e31. [Google Scholar] [CrossRef]
- Chapman, T.P.; Gomes, C.F.; Louis, E.; Colombel, J.F.; Satsangi, J. De-escalation of immunomodulator and biological therapy in inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2020, 5, 63–79. [Google Scholar] [CrossRef]
- Fahlquist-Hagert, C.; Sareila, O.; Rosendahl, S.; Holmdahl, R. Variants of beta-glucan polysaccharides downregulate autoimmune inflammation. Commun. Biol. 2022, 5, 449. [Google Scholar] [CrossRef]
- Kanno, H.; Wolfinbarger, J.B.; Bloom, M.E. Aleutian mink disease parvovirus infection of mink peritoneal macrophages and human macrophage cell lines. J. Virol. 1993, 67, 2075–2082. [Google Scholar] [CrossRef]
- Käkelä, R.; Jokinen, I.; Käkelä, A.; Hyvärinen, H. Effects of gender, diet, exogenous melatonin and subchronic PCB exposure on plasma immunoglobulin G in mink. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 132, 67–74. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Gąsiorek, B.; Kostro, K.; Borzym, E.; Jakubczak, A. Breeding parameters on a mink farm infected with Aleutian mink disease virus following the use of methisoprinol. Arch. Virol. 2019, 164, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Farid, A.H.; Smith, N.J. Dietary supplementation of Ascophylum nodosum improved kidney function of mink challenged with Aleutian mink disease virus. BMC Vet. Res. 2020, 16, 465. [Google Scholar] [CrossRef]
- Ortuño-Sahagún, D.; Rawat, A.K.S.; Zänker, K. Natural Immunomodulators 2018. J. Immunol. Res. 2019, 2019, 4341698. [Google Scholar] [CrossRef] [PubMed]
- Bregoli, L.; Chiarini, F.; Gambarelli, A.; Sighinolfi, G.; Martelli, A.M.; Gatti, A.M.; Cocco, L. Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology 2009, 262, 121–129. [Google Scholar] [CrossRef]
- Service, R.F. Science policy. Report faults U.S. strategy for nanotoxicology research. Science 2008, 322, 1779. [Google Scholar] [CrossRef]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Nemmar, A.; Hoet, P.H.; Vanquickenborne, B.; Dinsdale, D.; Thomeer, M.; Hoylaerts, M.F.; Vanbilloen, H.; Mortelmans, L.; Nemery, B. Passage of inhaled particles into the blood circulation in humans. Circulation 2002, 105, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Gatti, A.M.; Rivasi, F. Biocompatibility of micro- and nanoparticles. Part I: In liver and kidney. Biomaterials 2002, 23, 2381–2387. [Google Scholar] [CrossRef]
- Gatti, A.M. Biocompatibility of micro- and nano-particles in the colon. Part II. Biomaterials 2004, 25, 385–392. [Google Scholar] [CrossRef]
- Ballestri, M.; Baraldi, A.; Gatti, A.M.; Furci, L.; Bagni, A.; Loria, P.; Rapana, R.M.; Carulli, N.; Albertazzi, A. Liver and kidney foreign bodies granulomatosis in a patient with malocclusion, bruxism, and worn dental prostheses. Gastroenterology 2001, 121, 1234–1238. [Google Scholar] [CrossRef]
- Naoumov, N.V. Cyclophilin inhibition as potential therapy for liver diseases. J. Hepatol. 2014, 61, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, S.; Gallay, P.A. The role of immunophilins in viral infection. Biochim. Biophys. Acta 2015, 1850, 2103–2110. [Google Scholar] [CrossRef]
- de Wilde, A.H.; Pham, U.; Posthuma, C.C.; Snijder, E.J. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018, 522, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Väänänen, H.K. Mesenchymal stem cells. Ann. Med. 2005, 37, 469–479. [Google Scholar] [CrossRef]
- Gonzalez-Vilchis, R.A.; Piedra-Ramirez, A.; Patiño-Morales, C.C.; Sanchez-Gomez, C.; Beltran-Vargas, N.E. Sources, characteristics, and therapeutic applications of mesenchymal cells in tissue engineering. Tissue Eng. Regen. Med. 2022, 19, 325–361. [Google Scholar] [CrossRef] [PubMed]
- Legg, K. MSCs can inhibit T-cell proliferation in vitro but not in vivo. Nat. Rev. Rheumatol. 2010, 6, 244. [Google Scholar] [CrossRef]
- Davies, L.C.; Heldring, N.; Kadri, K.; Le Blanc, K. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells 2017, 35, 766–776. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, K.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Tropel, P.; Noël, D.; Platet, N.; Legrand, P.; Benabid, A.L.; Berger, F. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 2004, 295, 395–406. [Google Scholar] [CrossRef]
- Broen, J.C.A.; van Laar, J.M. Mycophenolate mofetil, azathioprine and tacrolimus: Mechanisms in rheumatology. Nat. Rev. Rheumatol. 2020, 16, 167–178. [Google Scholar] [CrossRef]
- Cheema, A.; Henson, J.B.; Gorham, J.R. Aleutian disease of mink. Prevention of lesions by immunosuppression. Am. J. Pathol. 1972, 66, 543–556. [Google Scholar] [PubMed] [PubMed Central]
- Ngobili, T.A.; Daniele, M.A. Nanoparticles and direct immunosuppression. Exp. Biol. Med. 2016, 241, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Serio, I.; Tovoli, F. Rheumatoid arthritis: New monoclonal antibodies. Drugs Today 2018, 54, 219–230. [Google Scholar] [CrossRef]
- Yeung, M.Y.; Gabardi, S.; Sayegh, M.H. Use of polyclonal/monoclonal antibody therapies in transplantation. Expert Opin. Biol. Ther. 2017, 17, 339–352. [Google Scholar] [CrossRef]
- Meneghini, M.; Bestard, O.; Grinyo, J.M. Immunosuppressive drugs modes of action. Best Pract. Res. Clin. Gastroenterol. 2021, 54–55, 101757. [Google Scholar] [CrossRef]
- Villarroel, M.C.; Hidalgo, M.; Jimeno, A. Mycophenolate mofetil: An update. Drugs Today 2009, 45, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Stucker, F.; Ackermann, D. Immunosuppressive Drugs-How They Work, Their Side Effects and Interactions. Ther. Umsch. 2011, 68, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Qian, W.; Sun, X.; Jiang, S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J. Hematol. Oncol. 2022, 15, 143. [Google Scholar] [CrossRef]
- Cheng, K.W.; Cheng, S.C.; Chen, W.Y.; Lin, M.H.; Chuang, S.J.; Cheng, I.H.; Chiao-Yin Sun, C.Y.; Chou, C.Y. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antivir. Res. 2015, 115, 9–16. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sato, Y.; Sasaki, T. Suppression of coronavirus replication by cyclophilin inhibitors. Viruses 2013, 5, 1250–1260. [Google Scholar] [CrossRef]
- Pfefferle, S.; Schöpf, J.; Kögl, M.; Friedel, C.C.; Müller, M.A.; Carbajo-Lozoya, J.; Stellberger, T.; von Dall’Armi, E.; Herzog, P.; Kallies, S.; et al. The SARS-coronavirus-host interactome: Identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 2011, 7, e1002331. [Google Scholar] [CrossRef]
- Fujisawa, T.; Hozumi, H.; Kamiya, Y.; Kaida, T.; Akamatsu, H.; Kusagaya, Y.; Satake, Y.; Mori, K.; Mikamo, M.; Matsuda, H.; et al. Prednisolone and tacrolimus versus prednisolone and cyclosporin A to treat polymyositis/dermatomyositis-associated ILD: A randomized, open-label trial. Respirology 2021, 26, 370–377. [Google Scholar] [CrossRef]
- Samuel, D.; Kimmoun, E. Immunosuppression in hepatitis B virus and hepatitis C virus transplants: Special considerations. Clin. Liver Dis. 2003, 7, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids. Mechanisms of action in health and disease. Rheum. Dis. Clin. N. Am. 2016, 42, 15–31. [Google Scholar] [CrossRef] [PubMed]
- De Bosscher, K.; Vanden Berghe, W.; Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: Molecular mechanisms for gene repression. Endocr. Rev. 2003, 24, 488–522. [Google Scholar] [CrossRef]
- Necela, B.M.; Cidlowski, J.A. Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc. Am. Thorac. Soc. 2004, 1, 239–246. [Google Scholar] [CrossRef]
- Boldizsar, F.; Talaber, G.; Szabo, M.; Bartis, D.; Palinkas, L.; Nemeth, P.; Berki, T. Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology 2010, 215, 521–526. [Google Scholar] [CrossRef]
- Amber, T.; Tabassum, S. Cyclosporin in dermatology: A practical compendium. Dermatol. Ther. 2020, 33, e13934. [Google Scholar] [CrossRef]
- Traggiai, E.; Volpi, S.; Schena, F.; Gattorno, M.; Ferlito, F.; Moretta, L.; Martini, A. Bone marrow derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 2008, 26, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef]
- Ghannam, S.; Pène, J.; Moquet-Torcy, G.; Jorgensen, C.; Yssel, H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J. Immunol. 2010, 185, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Franquesa, M.; Mensah, F.K.; Huizinga, R.; Strini, T.; Boon, L.; Lombardo, E.; DelaRosa, O.; Laman, J.D.; Grinyó, J.M.; Weimar, W.; et al. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells 2015, 33, 880–891. [Google Scholar] [CrossRef]
- Ha, D.H.; Kim, H.K.; Lee, J.; Kwon, H.H.; Park, G.H.; Yang, S.H.; Jung, J.Y.; Choi, H.; Lee, J.H.; Sung, S.; et al. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells 2020, 9, 1157. [Google Scholar] [CrossRef]
- Beyth, S.; Borovsky, Z.; Mevorach, D.; Liebergall, M.; Gazit, Z.; Aslan, H.; Galun, E.; Rachmilewitz, J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005, 105, 2214–2219. [Google Scholar] [CrossRef]
- Gur-Wahnon, D.; Borovsky, Z.; Beyth, S.; Liebergall, M.; Rachmilewitz, J. Contact-dependent induction of regulatory antigen-presenting cells by human mesenchymal stem cells is mediated via STAT3 signaling. Exp. Hematol. 2007, 35, 426–433. [Google Scholar] [CrossRef]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef]
- Rice, J.M. Chapter 16-Immunosuppression. In Tumour Site Concordance and Mechanisms of Carcinogenesis; Baan, R.A., Stewart, B.W., Straif, K., Eds.; International Agency for Research on Cancer Scientific Publication: Lyon, France, 2019; No. 165; Available online: https://www.ncbi.nlm.nih.gov/books/NBK570319/ (accessed on 16 July 2025).
- Meier-Kriesche, H.U.; Schold, J.D.; Srinivas, T.R.; Kaplan, B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am. J. Transplant. 2004, 4, 378–383. [Google Scholar] [CrossRef]
- Wojciechowski, D.; Wiseman, A. Long-Term Immunosuppression Management: Opportunities and Uncertainties. Clin. J. Am. Soc. Nephrol. 2021, 16, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.A.; Travers, P.; Walport, M. Principles of Innate and Adaptive Immunity. In Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. Available online: https://www.ncbi.nlm.nih.gov/books/NBK27090/ (accessed on 16 July 2025).
- Subhash, V.V.; Yeo, M.S.; Tan, W.L.; Yong, W.P. Strategies and Advancements in Harnessing the Immune System for Gastric Cancer Immunotherapy. J. Immunol. Res. 2015, 2015, 308574. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol. 2010, 125, S3–S23. [Google Scholar] [CrossRef] [PubMed]
- Cronkite, D.A.; Strutt, T.M. The Regulation of Inflammation by Innate and Adaptive Lymphocytes. J. Immunol. Res. 2018, 2018, 1467538. [Google Scholar] [CrossRef]
- Smith, D.M.; Simon, J.K.; Baker, J.R. Applications of Nanotechnology for Immunology. Nat. Rev. Immunol. 2013, 13, 592–605. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Gonzalez-Fernandez, A.; Sadrieh, N.; Dobrovolskaia, M.A. Minireview: Nanoparticles and the Immune System. Endocrinology 2010, 151, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Talekar, M.; Tran, T.H.; Amiji, M. Translational Nano-Medicines: Targeted Therapeutic Delivery for Cancer and Inflammatory Diseases. AAPS J. 2015, 17, 813–827. [Google Scholar] [CrossRef] [PubMed]
- Bessone, F.; Dirchwolf, M. Management of hepatitis B reactivation in immunosuppressed patients: An update on current recommendations. World J. Hepatol. 2016, 8, 385–394. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Alavian, S.M.; Sali, S. Hepatitis B Reactivation During Immunosuppressive Therapy or Cancer Chemotherapy, Management, and Prevention: A Comprehensive Review-Screened. Hepat. Mon. 2016, 16, e35810. [Google Scholar] [CrossRef]
- Hussain, Y.; Khan, H. Immunosuppressive Drugs. Encycl. Infect. Immun. 2022, 4, 726–740. [Google Scholar] [CrossRef]
- Loren, A.W.; Desai, S.; Gorman, R.C.; Schuchter, L.M. Retransplantation of a Cardiac Allograft Inadvertently Harvested From a Donor With Metastatic Melanoma. Transplantation 2003, 76, 741–743. [Google Scholar] [CrossRef]
- Waldmann, H. The New Immunosuppression. Curr. Opin. Chem. Biol. 2003, 7, 476–480. [Google Scholar] [CrossRef]
- Buttgereit, F.; Da Silva, J.P.A.; Boers, M.; Burmester, G.R.; Cutolo, M.; Jacobs, J.; Kirwan, J.; Köhler, L.; van Riel, P.; Vischer, T.; et al. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: Current questions and tentative answers in rheumatology. Ann. Rheum. Dis. 2002, 61, 718–722. [Google Scholar] [CrossRef]
- Carbajo-Lozoya, J.; Müller, M.A.; Kallies, S.; Thiel, V.; Drosten, C.; von Brunn, A. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res. 2012, 165, 112–117. [Google Scholar] [CrossRef]
- Lai, Q.; Spoletini, G.; Bianco, G.; Graceffa, D.; Agnes, S.; Rossi, M.; Lerut, J. SARS-CoV2 and immunosuppression: A double-edged sword. Transpl. Infect. Dis. 2020, 22, e13404. [Google Scholar] [CrossRef]
- Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Yudoh, K.; Karasawa, R.; Masuko, K.; Kato, T. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int. J. Nanomed. 2009, 4, 217–225. [Google Scholar] [CrossRef]
- Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S.R.; Moussa, F. [60]Fullerene is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity. Nano Lett. 2005, 5, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- Zogovic, N.S.; Nikolic, N.S.; Vranjes-Djuric, S.D.; Harhaji, L.M.; Vucicevic, L.M.; Janjetovic, K.D.; Misirkic, M.S.; Todorovic-Markovic, B.M.; Markovic, Z.M.; Milonjic, S.K.; et al. Opposite effects of nanocrystalline fullerene (C-60) on tumour cell growth in vitro and in vivo and a possible role of immunosuppression in the cancer-promoting activity of C-60. Biomaterials 2009, 30, 6940–6946. [Google Scholar] [CrossRef] [PubMed]
- Alexandersen, S.; Storgaard, T.; Kamstrup, N.; Aasted, B.; Porter, D.D. Pathogenesis of Aleutian mink disease parvovirus infection: Effects of suppression of antibody response on viral mRNA levels and on development of acute disease. J. Virol. 1994, 68, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Mueller, X.M. Drug immunosuppression therapy for adult heart transplantation. Part 1: Immune response to allograft and mechanism of action of immunosuppressants. Ann. Thorac. Surg. 2004, 77, 354–362. [Google Scholar] [CrossRef]
- Mahmud, N.; Klipa, D.; Ahsan, N. Antibody immunosuppressive therapy in solid-organ transplant. Part I. mAbs 2010, 2, 148–156. [Google Scholar] [CrossRef]
- Markarian, N.M.; Abrahamyan, L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021, 13, 1833. [Google Scholar] [CrossRef]
- Blank, A.; Foksiński, P.; Małaczewska, J.; Blank, M.; Rzepka, A.; Siwicki, A.K.; Wójcik, R.; Kaczorek-Łukowska, E. Does Aleutian Disease Occur among Domestic Ferrets in Poland? Results of Preliminary Studies Conducted in Two Regions of Poland. Animals 2022, 12, 2673. [Google Scholar] [CrossRef] [PubMed]
- Fournier-Chambrillon, C.; Aasted, B.; Perrot, A.; Pontier, D.; Sauvage, F.; Artois, M.; Cassiède, J.M.; Chauby, X.; Dal Molin, A.; Simon, C.; et al. Antibodies to Aleutian Mink Disease Parvovirus in Free-Ranging European Mink (Mustela lutreola) and Other Small Carnivores From Southwestern France. J. Wildl. Dis. 2004, 40, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Xu, H.; Zhao, X.; Zhang, K.; Yin, D.; Ma, S.; Li, W.; Li, S.; Ren, J.; Wen, J. Multiplex one-step RT-qPCR assays for simultaneous detection of AMDV, MEV and CDV. BMC Vet. Res. 2025, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Kondracki, M.; Jakubczak, A.; Kowalczyk, M.; Mazurkiewicz, I.; Moryl, M.; Kaczmarczyk, J. Genetic differences in variants of the AMD virus at the site of a disease outbreak. Virology 2023, 587, 109851. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z.; Sun, J.; Guo, K.; Chu, X.; Wang, X.; Lu, Y. Development of an EvaGreen-based real-time PCR assay for detection of Aleutian mink disease virus. J. Virol. Methods 2020, 275, 113751. [Google Scholar] [CrossRef]
- Persson, S.; Jensen, T.H.; Blomström, A.L.; Appelberg, M.T.; Magnusson, U. Aleutian Mink Disease Virus in Free-Ranging Mink from Loren Sweden. PLoS ONE 2015, 10, e0122194. [Google Scholar] [CrossRef]
- Smith, M.C.; Sherman, D.M. Goat Medicine, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; Available online: https://rexresearch1.com/SmallFarmAnimals/GoatMedicine.pdf (accessed on 16 July 2025).
- Huff, G.R.; Zheng, Q.; Newberry, L.A.; Huff, W.E.; Balog, J.M.; Rath, N.C.; Kim, K.S.; Martin, E.M.; Goeke, S.C.; Skeeles, J.K. Viral and bacterial agents associated with experimental transmission of infectious proventriculitis of broiler chickens. Avian Dis. 2001, 45, 828–843. [Google Scholar] [CrossRef]
Substance/Preparation | Active Substance | Group | Results of Using the Drug Against AMDV * | References |
---|---|---|---|---|
Turmeric (Curcuma longa) | Curcumin | Anti-inflammatory | + | [34] |
Methisoprinol (Isoprinozin) | Inosine pranobex | Antiviral | + | [32] |
Nanoparticles (Gold, Silver, Iron oxide) | Gold, Silver, Iron oxide | Broad-spectrum immunomodulators | +/− | [35,36,37,38,39,40,41] |
Cyclophilins (CypA, CypB, CypD) Mesenchymal stem cells (MSCs) | Cyclophilin A, B, D | Immunomodulators | + | [42,43,44] |
Stem cells | + | [45,46,47,48,49,50] | ||
β-glucans Seaweed meal (Ascophyllum nodosum) | β-glucans | Immunostimulants | + | [30,31] |
Fucose, Alginates, Polyphenols | +/− | [33] | ||
Azathioprine | Azathioprine | Immunosuppressive | − | [51] |
Cyclophosphamide | Cyclophosphamide | − | [52,53] | |
Cyclosporine A (CsA) | Cyclosporine A | + | [42,43,44] | |
IL-6 inhibitors (e.g., Tocilizumab) | Tocilizumab | + | [54] | |
Janus kinase (JAK) inhibitors | Tofacitinib, Baricitinib | + | [12] | |
Monoclonal antibodies (Anti-CD25, Anti-CD52) | Basiliximab, Alemtuzumab | + | [54,55] | |
Monoclonal antibodies against CD3, CD25, CD52 | Muromonab, Basiliximab, Alemtuzumab | + | [54,55] | |
Mycophenolate mofetil (MMF) | Mycophenolate mofetil | +/− | [56,57] | |
Tacrolimus (FK506) | Tacrolimus | − | [58,59] | |
Thiopurine analogues | Thioguanine, Mercaptopurine | +/− | [60] | |
Everolimus (RAD001) | Everolimus | Immunosuppressive, mTOR inhibitors | + | [58,59] |
Inhibitors of mTOR (e.g., Everolimus, Rapamycin) | Everolimus, Rapamycin | +/− | [51,60,61,62] | |
Rapamycin (Sirolimus) | Sirolimus | + | [61,63] | |
Corticosteroids (Glucocorticoids) | Hydrocortisone, Prednisone | Steroids | + | [56,64,65,66,67,68,69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondracki, M.; Żmuda, A.; Gryzinska, M.; Mazurkiewicz, I.; Seremak, B.; Furmaga, J.; Jakubczak, A. Translating Antiviral Therapies to Veterinary Use: A Review of Immunomodulatory Agents for Potential Application in Aleutian Mink Diseases. Animals 2025, 15, 2360. https://doi.org/10.3390/ani15162360
Kondracki M, Żmuda A, Gryzinska M, Mazurkiewicz I, Seremak B, Furmaga J, Jakubczak A. Translating Antiviral Therapies to Veterinary Use: A Review of Immunomodulatory Agents for Potential Application in Aleutian Mink Diseases. Animals. 2025; 15(16):2360. https://doi.org/10.3390/ani15162360
Chicago/Turabian StyleKondracki, Marcin, Andrzej Żmuda, Magdalena Gryzinska, Ilona Mazurkiewicz, Beata Seremak, Jacek Furmaga, and Andrzej Jakubczak. 2025. "Translating Antiviral Therapies to Veterinary Use: A Review of Immunomodulatory Agents for Potential Application in Aleutian Mink Diseases" Animals 15, no. 16: 2360. https://doi.org/10.3390/ani15162360
APA StyleKondracki, M., Żmuda, A., Gryzinska, M., Mazurkiewicz, I., Seremak, B., Furmaga, J., & Jakubczak, A. (2025). Translating Antiviral Therapies to Veterinary Use: A Review of Immunomodulatory Agents for Potential Application in Aleutian Mink Diseases. Animals, 15(16), 2360. https://doi.org/10.3390/ani15162360