Biological Function of Medium-Chain Fatty Acids and Their Application in Aquatic Animals: A Review
Simple Summary
Abstract
1. Biological Activities of Medium-Chain Fatty Acid Triglycerides
1.1. Antimicrobial Activity
1.2. Antiviral Effects
1.3. Nutritional Effects
1.3.1. Improvement of Lipid Metabolism
1.3.2. Improvement of Intestinal Microecology
1.3.3. Enhancing Immunity and Combating Fatigue
2. Medium-Chain Fatty Acid Triglycerides in Aquatic Animals
2.1. Enhanced Production Performance
2.2. Improved Flesh Quality
2.3. Regulated Lipid Metabolism
2.4. Boosted Immunological Activity
2.5. Modulated Intestinal Flora
MCTs Optimal Additive | Test Object | Result | Reference |
---|---|---|---|
1.0 g/kg of GML | Large yellow croaker (Larimichthys crocea) | Weight, body mass index ↑, muscle texture, color, flavor and nutritional value ↑ | [56] |
0.75 g/kg of GML | Greater amberjack (Seriola dumerili) | Height ↑, body length ↑, FAA ↑, EPA ↑, DHA ↑, cohesion ↑ 2,7-octanediene-1-ol ↓, 2-methylpentane ↓ MRFs ↑ (MyoD ↑, Myf-5 ↑, MyoG ↑) IGF-1 ↑, mTOR ↑ | [57] |
5 g/kg of SILOhealth 108Z | Gilthead sea bream (Sparus aurata) | eFCR ↓, intestinal tract pH ↓, Lactobacillus ↑, γ- proteobacteria ↓ | [58] |
0.7 g/kg of GML | White shrimp (Litopenaeus vannamei) | Weight ↑, WGR ↑, SGR ↑, lipase ↑, protease ↑, Toll ↑, Imd ↑, AMPs ↑ | [59] |
2 g/kg of GML | Chinese mitten crabs (Eriocheir sinensis) | ALF, LZM expression level ↑, caspase-3 expression level ↓, Bacillota, Shewanella abundance ↑ | [60] |
TC6 TC8 | Common carp (Cyprinus carpio L.) larvae | Survival ↑, growth ↑, liver size ↑, hepatocyte volume ↑, In TC8 group: lipids 8:0 and 10:0 levels ↑ | [61] |
2 g/kg of GML | Asian seabass (Lates calcarifer) | VSI, HSI, IPF ↓; AMY, LPL ↑; TG, TC, LDL ↓; HDL ↑ | [62] |
0.75 g/kg of GML | Blood parrot fish (Cichlasoma synspilum ♀ × Cichlasoma citrinellum ♂) | Muscle fat ↑, gut thickness ↑, water content ↑ α-diversity ↑, Cetobacterium ↑, Shewanella ↑, Vibrio ↑, Pseudonocardia ↓, Carnobacterium ↓, Staphylococcus ↓ | [66] |
2 g/kg of GML | Asian seabass (Lateolabrax maculatus) | Abdominal value ratio, FAS and ACC activity ↓, LPL activity ↑ | [72] |
1.5 g/kg of GML | Zebrafish (Danio rerio) | Lipogenesis ↓, lipolysis ↑, anti-inflammatory ↑, proinflammatory ↓, diversity ↑ | [73] |
2.14299 g/kg of GML | White shrimp (Penaeus vannamei) | Antibody ↑, phagocytosis ↑, antibacterial ↑, probiotics ↑, AMP genes ↓, TNF-α ↓, LPS ↓, TG ↓ | [75] |
1.5 g/kg of GML | Cage-farmed pompano (Trachinotus ovatus) | TG, TG, LDL ↓, HDL ↑ | [76] |
1.7 g/kg of GML | Hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) | ACP, AKP, and LZM activity ↓, TLR22 expression ↑ Firmicutes and Bacillus ↑, Sob, Chao1, and ACE index ↑ | [81] |
1.8 g/kg of GML | Juvenile grouper (Epinephelus spp.) | Oxidative stress ↓, gut flora imbalance ↓, Vibrio ↓, Bacillus ↑ | [85] |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ariadi, H.; Mohamad, F.; Mohammad, M. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. Aquac. Aquar. Conserv. Legis. 2019, 12, 2103–2116. [Google Scholar]
- Sievers, M.; Korsøen, Ø.; Warren-Myers, F.; Oppedal, F.; Macaulay, G.; Folkedal, O.; Dempster, T. Submerged cage aquaculture of marine fish: A review of the biological challenges and opportunities. Rev. Aquac. 2022, 14, 106–119. [Google Scholar]
- Turlybek, N.; Nurbekova, Z.; Mukhamejanova, A.; Baimurzina, B.; Kulatayeva, M.; Aubakirova, K.M.; Alikulov, Z. Sustainable Aquaculture Systems and Their Impact on Fish Nutritional Quality. Fishes 2025, 10, 206. [Google Scholar] [CrossRef]
- Habaki, H.; Aoki, Y.; Egashira, R.; Sato, K.; Eksangsri, T. Effects of Sterile Ulva sp. Growth Rate on Water Quality Control of Intensive Shrimp Culture Pond in Developing Countries. Chem. Biochem. Eng. Q. 2016, 30, 341–349. [Google Scholar]
- Vandeputte, M.; Kashem, M.A.; Bossier, P.; Vanrompay, D. Vibrio pathogens and their toxins in aquaculture: A comprehensive review. Rev. Aquac. 2024, 16, 1858–1878. [Google Scholar]
- Kumar, V.; Roy, S.; Behera, B.K.; Bossier, P.; Das, B.K. Acute hepatopancreatic necrosis disease (AHPND): Virulence, pathogenesis and mitigation strategies in shrimp aquaculture. Toxins 2021, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Mustafa, S.; Al-Faragi, J.K. Supplementation of feed additives on aquaculture feeds: A review. Int. J. Pharm. Res. 2021, 13, 561–567. [Google Scholar]
- Preena, P.G.; Swaminathan, T.R.; Kumar, V.J.R.K.; Singh, I.S.B. Antimicrobial resistance in aquaculture: A crisis for concern. Biologia 2020, 75, 1497–1517. [Google Scholar]
- Fletcher, S. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ. Health Prev. Med. 2015, 20, 243–252. [Google Scholar]
- Megremis, C. Medium-Chain Triglycerides: A Nonconventional Fat. Food Technol. 1991, 45, 114. [Google Scholar]
- Jadhav, H.B.; Annapure, U.S. Triglycerides of Medium-Chain Fatty Acids: A Concise Review. J. Food Sci. Technol. 2023, 60, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Kappally, S.; Shirwaikar, A.; Shirwaikar, A. Coconut oil–A review of potential applications. Hygeia J. Drugs Med. 2015, 7, 32–41. [Google Scholar]
- Zentek, J.; Buchheit-Renko, S.; Ferrara, F.; Vahjen, W.; Van Kessel, A.G.; Pieper, R. Nutritional and Physiological Role of Medium-Chain Triglycerides and Medium-Chain Fatty Acids in Piglets. Anim. Health Res. Rev. 2011, 12, 83–93. [Google Scholar] [CrossRef]
- Nimbkar, S.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Medium Chain Triglycerides (MCT): State-of-the-Art on Chemistry, Synthesis, Health Benefits and Applications in Food Industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 843–867. [Google Scholar] [CrossRef]
- Jandacek, R.J.; Whiteside, J.A.; Holcombe, B.N.; Volpenhein, R.A.; Taulbee, J.D. There, pancreatic lipase efficiently hydrolyzes them into MCFAs and glycerol without requiring bile salt emulsificatio. Am. J. Clin. Nutr. 1987, 45, 940–945. [Google Scholar] [CrossRef]
- Arunima, S.; Rajamohan, T. Virgin Coconut Oil Improves Hepatic Lipid Metabolism in Rats--Compared with Copra Oil, Olive Oil and Sunflower Oil. Indian. J. Exp. Biol. 2012, 50, 802–809. [Google Scholar]
- Yang, M.; Zhang, J.; Yan, H.; Pan, Y.; Zhong, H.; Wang, J.; Cai, H.; Feng, F.; Zhao, M. A comprehensive review of medium chain monoglycerides on metabolic pathways, nutritional and functional properties, nanotechnology formulations and applications in food system. Crit. Rev. Food Sci. Nutr. 2025, 65, 2943–2964. [Google Scholar]
- Yang, M.Y.; Yan, H.; Zhou, J.; Zhang, J.; Pan, Y.; Zhong, H.; Cai, H.Y.; Xu, Y.Q.; Wang, J.; Feng, F.Q.; et al. Physicochemical characterization, release profile, and antibacterial mechanisms of caffeic acid phenethyl ester loaded in lipid nanocapsules with lauric acid and glycerol monolaurate. Food Res. Int. 2025, 209, 116208. [Google Scholar]
- Jiang, Z.L.; Yang, M.; Du, J.; Zhang, H.; Feng, F.Q. Antimicrobial Mechanism of Glycerol Monolaurate, Influencing Factors, and Antibacterial Characteristics of Its Composite Systems. J. Chin. Inst. Food Sci. Technol. 2016, 16, 146–151. (In Chinese) [Google Scholar] [CrossRef]
- Kimsey, H.R.; Adams, D.M.; Kabara, J.J. Increased inactivation of bacterial spores at high temperatures in the presence of monoglycerides1 2. J. Food Saf. 1981, 3, 69–82. [Google Scholar]
- Feng, F.Q.; Du, J.; Wang, X.L. The properties and application in foods of glycerol monolaurate, a new antimicrobial emulsifier. China Food Addit. 2009, (Suppl. S1), 173–177. (In Chinese) [Google Scholar]
- Schlievert, P.M.; Kilgore, S.H.; Kaus, G.M.; Ho, T.D.; Ellermeier, C.D. Glycerol monolaurate (GML) and a nonaqueous five-percent GML gel kill Bacillus and Clostridium spores. mSphere 2018, 3, e00597-18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiong, J.; Lou, W.Y.; Ning, Z.X.; Zhang, D.H.; Yang, J.G. Antimicrobial Activity and Action Mechanism of Triglycerol Monolaurate on Common Foodborne Pathogens. Food Control 2019, 98, 113–119. [Google Scholar] [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar]
- Umerska, A.; Cassisa, V.; Matougui, N.; Joly-Guillou, M.; Eveillard, M.; Saulnier, P. Antibacterial action of lipid nanocapsules containing fatty acids or monoglycerides as co-surfactants. Eur. J. Pharm. Biopharm. 2016, 108, 100–110. [Google Scholar] [PubMed]
- Sawale, M.; Singh, A.; Gutierrez, V.; Bala, S.; Murguia-Peniche, T.; Ozadali, F.; Benyathiar, P.; Mishra, D. Antimicrobial effect of lactoferrin and glycerol monolaurate on selected bacteria associated with newborn infection. Food Control 2025, 168, 110882. [Google Scholar]
- Thormar, H.; Isaacs, C.; Brown, H.; Barshatzky, M.; Pessolano, T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 1987, 31, 27–31. [Google Scholar]
- Isaacs, C.E.; Litov, R.E.; Thormar, H. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J. Nutr. Biochem. 1995, 6, 362–366. [Google Scholar]
- Li, Q.S.; Estes, D.J.; Schlievert, M.P.; Duan, L.J.; Brosnahan, A.J.; Southern, P.J.; Reilly, C.S.; Peterson, M.L.; Schultz-Darken, N.; Brunner, K.G.; et al. Glycerol monolaurate prevents mucosal SIV transmission. Nature 2009, 458, 1034–1038. [Google Scholar]
- Haase, A.T.; Rakasz, E.; Schultz-Darken, N.; Nephew, K.; Weisgrau, K.L.; Reilly, C.S.; Li, Q.S.; Southern, P.J.; Rothenberger, M.; Peterson, M.L.; et al. Glycerol monolaurate microbicide protection against repeat high-dose SIV vaginal challenge. PLoS ONE 2015, 10, e0129465. [Google Scholar]
- Schlievert, P.M.; Deringer, J.R.; Kim, M.H.; Projan, S.J.; Novick, R.P. Effect of glycerol monolaurate on bacterial growth and toxin production. Antimicrob. Agents Chemother. 1992, 36, 626–631. [Google Scholar]
- Odle, J. New insights into the utilization of medium-chain triglycerides by the neonate: Observations from a piglet model. J. Nutr. 1997, 127, 1061–1067. [Google Scholar] [PubMed]
- Brown, J.L.; Johnston, J.M. The utilization of 1-and 2-monoglycerides for intestinal triglceride biosynthesis. Biochim. Biophys. Acta (BBA)-Spec. Sect. Lipids Relat. Subj. 1964, 84, 448–457. [Google Scholar]
- Steinert, R.E.; Feinle-Bisset, C.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N. Ghrelin, CCK, GLP-1, and PYY (3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 2017, 97, 411–463. [Google Scholar] [PubMed]
- Senior, J.R.; Isselbacher, K.J. Demonstration of an intestinal monoglyceride lipase: An enzyme with a possible role in the intracellular completion of fat digestion. J. Clin. Investig. 1963, 42, 187–195. [Google Scholar]
- Zhang, J.H.; Feng, F.Q.; Zhao, M.J. Glycerol monocaprylate modulates gut microbiota and increases short-chain fatty acids production without adverse effects on metabolism and inflammation. Nutrients 2021, 13, 1427. [Google Scholar] [CrossRef]
- Jiang, Z.L.; Zhao, M.J.; Zhang, H.; Li, Y.; Liu, M.Y.; Feng, F.Q. Antimicrobial emulsifier–glycerol monolaurate induces metabolic syndrome, gut microbiota dysbiosis, and systemic low-grade inflammation in low-fat diet fed mice. Mol. Nutr. Food Res. 2018, 62, 1700547. [Google Scholar]
- Zhao, M.J.; Jiang, Z.L.; Cai, H.Y.; Li, Y.; Mo, Q.F.; Deng, L.L.; Zhong, H.; Liu, T.; Zhang, H.; Feng, F.Q. Modulation of the gut microbiota during high-dose glycerol monolaurate-mediated amelioration of obesity in mice fed a high-fat diet. mBio 2020, 11, e00190-20. [Google Scholar] [CrossRef]
- Cai, H.Y.; Zhang, J.H.; Liu, C.; Le, T.N.; Lu, Y.Y.; Feng, F.Q.; Zhao, M.J. High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice. Foods 2024, 13, 699. [Google Scholar]
- Cai, H.Y.; Lin, M.H.; Chen, K.Y.; Wu, Y.F.; Le, T.N.; Zhang, J.H.; Zhao, M.J. Dose-specific amelioration of caffeic acid phenethyl ester on high-fat diet-induced obesity based on intestinal FXR signaling and bile acid regulation. Food Biosci. 2025, 68, 106628. [Google Scholar]
- Zhao, M.J.; Zhang, J.H.; Liu, T.; Wang, J.; Cai, H.Y.; Zhang, X.; Xia, D.Q.H.; Feng, F.Q.; Tang, J. Differential modulations of lauric acid and its glycerides on high fat diet-induced metabolic disorders and gut microbiota dysbiosis. Food Res. Int. 2022, 157, 111437. [Google Scholar]
- St-Onge, M.; Bosarge, A. Weight-loss diet that includes consumption of medium-chain triacylglycerol oil leads to a greater rate of weight and fat mass loss than does olive oil. Am. J. Clin. Nutr. 2008, 87, 621–626. [Google Scholar] [PubMed]
- St-Onge, M.; Ross, R.; Parsons, W.D.; Jones, P.J.H. Medium-chain triglycerides increase energy expenditure and decrease adiposity in overweight men. Obes. Res. 2003, 11, 395–402. [Google Scholar] [PubMed]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.D.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J. The Firmicutes/ Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nature Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar]
- Machate, D.J.; Figueiredo, P.S.; Marcelino, G.; Guimarães, R.C.A.; Hiane, P.A.; Bogo, D.; Pinheiro, V.A.Z.; Oliveira, L.C.S.; Pott, A. Fatty acid diets: Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. Int. J. Mol. Sci. 2020, 21, 4093. [Google Scholar]
- He, K.J.; Dong, J.H.; Ouyang, X.M.; Huo, Y.N.; Cheng, X.S.; Lin, Y.; Li, Y.; Gong, G.Y.; Liu, J.J.; Ren, J.L.; et al. Glycerol monolaurate ameliorates DSS-induced acute colitis by inhibiting infiltration of Th17, neutrophils, macrophages and altering the gut microbiota. Front. Nutr. 2022, 9, 911315. [Google Scholar]
- Djurasevic, S.; Bojic, S.; Nikolic, B.; Dimkic, I.; Todorovic, Z.; Djordjevic, J.; Mitic-Culafic, D. Beneficial effect of virgin coconut oil on alloxan-induced diabetes and microbiota composition in rats. Plant Foods Hum. Nutr. 2018, 73, 295–301. [Google Scholar]
- Wang, Z.; Kong, L.L.; Pan, X.; Song, B.C.; Song, Z.G. Effects of glycerol monocaprylate on early immune function and intestinal health in broilers. Chin. J. Anim. Nutr. 2023, 35, 5107–5116. (In Chinese) [Google Scholar]
- Ullah, S.; Zhang, J.Z.; Xu, B.Y.; Tegomo, A.F.; Sagada, G.; Zheng, L.; Wang, L.; Shao, Q.J. Effect of dietary supplementation of lauric acid on growth performance, antioxidative capacity, intestinal development and gut microbiota on black sea bream (Acanthopagrus schlegelii). PLoS ONE 2022, 17, e0262427. [Google Scholar]
- Liu, T.; Tang, J.; Feng, F.Q. Medium-chain α-monoglycerides improves productive performance and egg quality in aged hens associated with gut microbiota modulation. Poult. Sci. 2020, 99, 7122–7132. [Google Scholar]
- Jackman, J.A.; Boyd, R.D.; Elrod, C.C. Medium-chain fatty acids and monoglycerides as feed additives for pig production: Towards gut health improvement and feed pathogen mitigation. J. Anim. Sci. Biotechnol. 2020, 11, 44. [Google Scholar]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarlar, A.; McSkimming, D.I. Gut microbiota and immune system interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [PubMed]
- Keyser, K.D.; Dierick, N.; Kanto, U.; Hongsapak, T.; Buyens, G.; Kuterna, L.; Vanderbeke, E. Medium-chain glycerides affect gut morphology, immune and goblet cells in post weaning piglets: In vitro fatty acid screening with Escherichia coli and in vivo consolidation with LPS challenge. J. Anim. Physiol. Anim. Nutr. 2019, 103, 221–230. [Google Scholar]
- Zhuang, J.C.; Abdullah; Wang, Y.C.; Shen, W.; Shen, W.L.; Zheng, W.Q.; Liu, T.; Wang, J.; Feng, F.Q. Evaluating dynamic effects of dietary glycerol monolaurate on the productive performance and flesh quality of large yellow croaker (Larimichthys crocea). Food Chem. 2022, 387, 132833. [Google Scholar] [PubMed]
- Jiang, H.Q. The Effect of Glycerol Monolaurate on Rrowth, Health and Food Quality of Cultured Large Yellow Croaker. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. (In Chinese). [Google Scholar]
- Rimoldi, S.; Gliozheni, E.; Ascione, C.; Gini, E.; Terova, G. Effect of a specific composition of short-and medium-chain fatty acid 1-Monoglycerides on growth performances and gut microbiota of gilthead sea bream (Sparus aurata). PeerJ 2018, 6, e5355. [Google Scholar]
- Wang, Y.C.; Abdullah; Zhang, C.; Li, Y.; Zhang, H.; Wang, J.; Feng, F.Q. Effects of dietary glycerol monolaurate on the growth performance, digestive enzymes, body composition and non-specific immune response of white shrimp (Litopenaeus vannamei). Aquac. Rep. 2020, 18, 100535. [Google Scholar]
- Fu, C.S.; Cui, Z.C.; Shi, X.Y.; Liu, J.S.; Jiang, Y.; Zhang, R.Q. Effects of dietary glyceryl monolaurate supplementation on growth performance, non-specific immunity, antioxidant status and intestinal microflora of Chinese mitten crabs. Fish Shellfish Immunol. 2022, 125, 65–73. [Google Scholar]
- Fontagné, S.; Burtaire, L.; Corraze, G.; Bergot, P. Effects of dietary medium-chain triacylglycerols (tricaprylin and tricaproin) and phospholipid supply on survival, growth and lipid metabolism in common carp (Cyprinus carpio L.) larvae. Aquaculture 2000, 190, 289–303. [Google Scholar]
- Zhang, H.; Dong, H.B.; Sun, C.Y.; Chen, J.; Huang, C.L.; Li, Y.; Duan, Y.F.; Zhang, J.S. Effects of Dietary Glycerol Monolaurate on Lipid Metabolism and Liver Function in Asian Seabass (Lates calcarifer). Mar. Fish. 2022, 44, 736–746. (In Chinese) [Google Scholar]
- Dong, M.; Zhang, L.; Wu, P.; Feng, L.; Jiang, W.D.; Kuang, S.Y.; Li, S.W.; Mi, H.F.; Tang, L.; Zhou, X.Q. Dietary protein levels changed the hardness of muscle by acting on muscle fiber growth and the metabolism of collagen in sub-adult grass carp (Ctenopharyngodon idella). J. Anim. Sci. Biotechnol. 2022, 13, 109. [Google Scholar]
- Zhang, L.; Yin, M.Y.; Wang, X.C. Meat texture, muscle histochemistry and protein composition of Eriocheir sinensis with different size traits. Food Chem. 2021, 338, 127632. [Google Scholar]
- Wang, J.; Jiang, H.Q.; Alhamoud, Y.; Chen, Y.; Zhuang, J.C.; Liu, T.; Cai, L.Y.; Shen, W.L.; Wu, X.F.; Zheng, W.Q.; et al. Integrated metabolomic and gene expression analyses to study the effects of glycerol monolaurate on flesh quality in large yellow croaker (Larimichthys crocea). Food Chem. 2022, 367, 130749. [Google Scholar] [PubMed]
- Wang, Y.C. Effects and Mechanisms of GML on the Growth and Health of Fish. Doctoral’s Thesis, Zhejiang University, Hangzhou, China, 2021. (In Chinese). [Google Scholar]
- Leng, X.J.; Wu, X.F.; Tian, J.; Li, X.Q.; Guan, L.; Weng, D.C. Molecular cloning of fatty acid synthase from grass carp (Ctenopharyngodon idella) and the regulation of its expression by dietary fat level. Aquac. Nutr. 2012, 18, 551–558. [Google Scholar]
- Stüve, P.; Minarrieta, L.; Erdmann, H.; Arnold-Schrauf, C.; Swallow, M.; Guderian, M.; Krull, F.; Hölscher, A.; Ghorbani, P.; Behrends, J.; et al. De novo fatty acid synthesis during mycobacterial infection is a prerequisite for the function of highly proliferative T cells, but not for dendritic cells or macrophages. Front. Immunol. 2018, 9, 495. [Google Scholar]
- Davis, D.A.; Lazo, J.P.; Arnold, C.R. Response of juvenile red drum (Sciaenops ocellatus) to practical diets supplemented with medium chain triglycerides. Fish Physiol. Biochem. 1999, 21, 235–248. [Google Scholar]
- Craig, S.R.; Gatlin, D.M. Coconut oil and beef tallow, but not tricaprylin, can replace menhaden oil in the diet of red drum (Sciaenops ocellatus) without adversely affecting growth or fatty acid composition. J. Nutr. 1995, 125, 3041–3048. [Google Scholar]
- Basu, D.; Goldberg, I.J. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides. Curr. Opin. Lipidol. 2020, 31, 154–160. [Google Scholar]
- Sun, C.Y.; Dong, H.B.; Wang, W.H.; Li, Y.; Gu, Q.H.; Duan, Y.F.; Zhang, J.S.; Xu, X.D. Effects of glycerol monolaurate on lipid metabolism of Lateolabrax maculatus. South China Fish. Sci. 2021, 17, 67–75. [Google Scholar]
- Li, X.; Zhou, L.; Zheng, Y.Y.; He, T.P.; Guo, H.H.; Li, J.B.; Zhang, J.J. Establishment of a non-alcoholic fatty liver disease model by high fat diet in adult zebrafish. Anim. Models Exp. Med. 2024, 7, 904–913. [Google Scholar]
- Wang, Y.C.; Abdullah; Zhong, H.; Wang, J.; Feng, F.Q. Dietary glycerol monolaurate improved the growth, activity of digestive enzymes and gut microbiota in zebrafish (Danio rerio). Aquac. Rep. 2021, 20, 100670. [Google Scholar]
- Liu, R.Z.; Ding, Y.J.; Jing, F.; Chen, Z.F.; Su, C.; Pan, L.Q. Effects of dietary glycerol monolaurate on growth and digestive performance, lipid metabolism, immune defense and gut microbiota of shrimp (Penaeus vannamei). Fish Shellfish. Immunol. 2024, 151, 109666. [Google Scholar]
- Lin, H.X.; Tan, B.P.; Yang, Q.H.; Chi, S.S.; Wei, H.J.; Wu, Y.C.; Ray, G.W.; Yohana, M.A. Effects of dietary glycerol monolaurate on growth, antioxidant capacity and lipid metabolism in cage-farmed pompano (Trachinotus ovatus) juveniles. Front. Mar. Sci. 2022, 9, 914134. [Google Scholar]
- Matés, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [PubMed]
- Wicherska-Pawłowska, K.; Wróbel, T.; Rybka, J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. Int. J. Mol. Sci. 2021, 22, 13397. [Google Scholar]
- Kong, X.H.; Tang, H.R.; Zhu, Y.C.; Zhang, J.; Li, C.J.; Zhao, X.L.; Pei, C.; Zhou, Y.; Zeng, L.B. Molecular characterizations of TLR1 and TLR2 in Qihe crucian carp (Carassius auratus) and responses to stimulations of Aeromonas hydrophila and TLR ligands. Aquac. Int. 2023, 31, 1349–1374. [Google Scholar]
- Bhattacharjee, M.K. Antibiotics that inhibit cell wall synthesis. Chemistry of Antibiotics and Related Drugs; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 49–94. [Google Scholar]
- Li, X.H.; Ray, G.W.; Kou, S.Y.; Liang, M.G.; Yang, Q.H.; Tan, B.P.; Chi, S.Y. Glycerol monolaurate (GML), a medium-chain fatty acid derivative, ameliorate growth performance, immune function, disease resistance and intestinal microbiota in juvenile hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatus♂). Fish Shellfish Immunol. 2022, 128, 634–643. [Google Scholar]
- Wang, L.; Wang, S.Q.; Zhang, Q.; He, C.Q.; Wei, Q. The role of the gut microbiota in health and cardiovascular diseases. Mol. Biomed. 2022, 3, 30. [Google Scholar]
- Ott, S.J.; Musfeldt, M.; Wenderoth, D.F.; Hampe, J.; Fölsch, U.R.; Timmis, K.N.; Schreiber, S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004, 53, 685–693. [Google Scholar]
- Zang, L.X.; Ma, Y.; Huang, W.H.; Ling, Y.H.; Sun, L.M.; Wang, X.D.; Zeng, A.B.; Dahlgren, R.A.; Wang, C.H.; Wang, H.L. Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on zebrafish (Danio rerio) via gut microbiota modulation. Fish. Shellfish. Immunol. 2019, 84, 1157–1169. [Google Scholar]
- Li, X.H.; Zhu, D.W.J.; Mao, M.L.; Wu, J.W.; Yang, Q.H.; Tan, B.P.; Chi, S.Y. Glycerol Monolaurate alleviates oxidative stress and intestinal flora imbalance caused by salinity changes for juvenile grouper. Metabolites 2022, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
MCT Additives | Test Object | Result | Reference |
---|---|---|---|
0.4–3.6 mmol/L GML | Bacillus stearothermophilus | Concentration ↑, spores’ heat resistance ↓, GML inactivation rate ↑ | [21] |
0.1% GML microemulsion | Mooncake | Anti-mildew fresh-keeping effect ↑ | [22] |
0.035% GML compound | Sausage | Colonies number ↓, anti-corrosion effect ↑ | [10] |
5% GML gel | Bacillus anthracis/ Bacillus subtilis | Anthrax spores contamination ↓, B. subtilis eradication ↑ | [23] |
TGML | Food-borne pathogens | MIC, MBC ↓ Membrane permeability ↑ | [24] |
Monoglyceride-LNCs | Staphylococcus aureus, horse erythrocytes | Bactericidal effect, antibacterial activity ↑ | [26] |
8 mg/disc GML | Infant formula milk powder | Potent antibacterial | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhou, W.; Cai, C.; Feng, F.; Cai, H.; Yang, H. Biological Function of Medium-Chain Fatty Acids and Their Application in Aquatic Animals: A Review. Animals 2025, 15, 2294. https://doi.org/10.3390/ani15152294
Liu H, Zhou W, Cai C, Feng F, Cai H, Yang H. Biological Function of Medium-Chain Fatty Acids and Their Application in Aquatic Animals: A Review. Animals. 2025; 15(15):2294. https://doi.org/10.3390/ani15152294
Chicago/Turabian StyleLiu, Haiyan, Wenzong Zhou, Chenggang Cai, Fengqin Feng, Haiying Cai, and Hang Yang. 2025. "Biological Function of Medium-Chain Fatty Acids and Their Application in Aquatic Animals: A Review" Animals 15, no. 15: 2294. https://doi.org/10.3390/ani15152294
APA StyleLiu, H., Zhou, W., Cai, C., Feng, F., Cai, H., & Yang, H. (2025). Biological Function of Medium-Chain Fatty Acids and Their Application in Aquatic Animals: A Review. Animals, 15(15), 2294. https://doi.org/10.3390/ani15152294