Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions
Simple Summary
Abstract
1. Background
2. Aetio-Pathogenesis of Shiga Toxin 2e and Lesions
Tissue/Organ | Specific Associated Lesions | Symptoms Associated with Loss of Functionality |
---|---|---|
Blood vessels, arterioles and capillaries. Large vessels are exempt. | Microangiopathy. Loss of continuity of lining. Necrosis of the tunica muscularis smooth muscle cells. | Oedema in surrounding tissues. Haemorrhages in surrounding tissues. Microthrombi. Ischaemia. |
Central nervous system:
| Angiopathy in vessels in meninges. Oedema in leptomeninges and perivascular space producing compression of the nearby structures, such as cerebrum and cerebellum, causing loss of functionality. | Seizures. Sudden death. Behavioural changes (Figure 2):
|
Infarction of vessels producing ischaemia of tissues and malacia in chronic cases. | Postural changes, asymmetric stance leading to change in muscle conformation. Twisted head position. | |
Skin | Subcutaneous oedema. | Pruritus and swollen areas (oedema) that are visible in certain areas such as eyelids, forehead and chin (Figure 2 and Figure 3). |
Ears | Microangiopathy. Reduced irrigation and necrosis. | Secondary bacterial infection. Large areas of necrosis on the auricular pinna (Figure 4). Loss of auricular tissue. |
Lungs | Oedema. Patchy sub-lobular congestion. | Difficulty breathing due to lung oedema and reduced alveolar capacity. |
Larynx | Oedema. | Altered phonation mechanism, changing pitch and vibration of normal squeak. |
Stomach | Oedema in fundic and cardiac submucosa. Gastric haemorrhages. Ulceration. | Interrupted digestion: fresh dry feed is usually found at post-mortem. Presence of blood (from stomach) in intestinal contents. |
Intestines and nearby tissues | Microangiopathy. Intestinal wall oedema Mesentery oedema; gelatinous mesocolon oedema, colonic submucosal oedema (Figure 5). | Altered functionality, intestinal permeability and nutrient absorption capacity. Small intestines are generally empty at post-mortem. Constipation is frequent, although diarrhoea can be observed during the clinical phase of the disease. |
Intestinal haemorrhages in most severe cases. | Blood contained in the faeces in cases where there are gastric or enteric haemorrhages. Pigs with these severe lesions die in most cases. | |
Pancreas | Oedema. | No specific signs reported. |
Gallbladder | Oedema. | No specific signs reported. |
Kidney | No damage reported. | No evidence of malfunction, contrary to other mammals. |
Heart | Petechiae in epicardium and endocardium. Haemorrhages in myocardium. Liquid accumulation in pericardial sac with strands of fibre. | |
Thoracic and abdominal cavities | Accumulation of liquids with strands of fibre. | Distended abdomen. |
Eye (retina) | Oedema. | Impaired vision. |
3. Toxicodynamics, Toxicokinetics and Immune Response Against Stx2e
4. STEC Infection Dynamics and Prevalence
5. Common Disease Presentations Associated with STEC
5.1. Peracute Presentation
5.2. Acute Stx2e Presentation
5.3. Subclinical Presentation
5.4. Chronic Stx2e Presentation
6. Concurrent Diseases and Misdiagnosis
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDEC | Edema disease Escherichia coli |
Gb3 | Globotriaosyleramide |
Gb4 | Globotetraosylceramide |
LGS | Leaky gut syndrome |
MAMPs | Microbe-associated molecular patterns |
SINS | Swine inflammation and necrosis syndrome |
STEC | Shiga toxigenic Escherichia coli |
Stx2e | Shiga toxin 2e |
VT2e | Verotoxin 2e |
VTEC | Verotoxigenic E. coli |
Vtx2e | Verotoxin 2e |
References
- Fairbrother, J.M.; Nadeau, É. Colibacillosis. In Diseases of Swine, 11th ed.; Zimmerman, J., Karriker, L., Ramirez, A., Schwartz, K., Stevenson, G., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 807–834. [Google Scholar] [CrossRef]
- Wang, X.; Yu, D.; Chui, L.; Zhou, T.; Feng, Y.; Cao, Y.; Zhi, S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024, 12, 687. [Google Scholar] [CrossRef]
- Eriksen, E.Ø.; Pedersen, K.S.; Larsen, I.; Nielsen, J.P. Evidence-Based Recommendations for Herd Health Management of Porcine Post-Weaning Diarrhea. Animals 2022, 12, 1737. [Google Scholar] [CrossRef] [PubMed]
- Canibe, N.; Højberg, O.; Kongsted, H.; Vodolazska, D.; Lauridsen, C.; Nielsen, T.S.; Schönherz, A.A. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals 2022, 12, 2585. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Dai, Y.; Liu, B.; Wang, L.; Wang, J.; Zhang, J. Diversity analysis of intestinal microflora between healthy and diarrheal neonatal piglets from the same litter in different regions. Anaerobe 2019, 55, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef]
- Mallorquí, J.; Simon-Grifé, M.; Ferrer-Soler, L.; Roca, M.; March, R.; Sitjà, M. Reduced mortality and morbidity associated with verotoxin 2e-induced edema disease in pigs using a recombinant verotoxin 2e vaccine. J. Swine Health Prod. 2018, 26, 253–261. [Google Scholar] [CrossRef]
- Lee, S.I.; Ntakiyisumba, E.; Won, G. Systematic review and network meta-analysis to compare vaccine effectiveness against porcine edema disease caused by Shiga toxin-producing Escherichia coli. Sci. Rep. 2022, 12, 6460. [Google Scholar] [CrossRef]
- Perozo, E.; Mallorquí, J.; Puig, A.; Sabaté, D.; Ferrer-Soler, L.; March, R. A Multicenter, Randomized Field Trial on the Efficacy and Safety of VEPURED®, A New Vaccine Against Edema Disease in Pigs. Anim. Vet. Sci. 2018, 6, 95–101. [Google Scholar] [CrossRef]
- Jorda, R.; Van Poucke, S.; Puigredon, A.; Moreno, B.; Nodar, L.; Simon-Grifre, M.; Bernal, N.; Ballara, I. Improvement in growth performance and the occurrence of ear necrosis in Vepured(R) vaccinated animals compared to an optimized diet against oedema disease. In Proceedings of the 56th Annual Meeting of the American Association of Swine Veterinarian, San Francisco, CA, USA, 1–4 March 2025; pp. 188–191. [Google Scholar] [CrossRef]
- Thorpe, C.M.; Ritchie, J.M.; Acheson, D.W.K. CHAPTER 4—Enterohemorrhagic and Other Shiga Toxin–Producing Escherichia coli. In Escherichia coli; Donnenberg, M.S., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 119–154. [Google Scholar] [CrossRef]
- Souza da Silva, A.; Valadares, G.F.; Penatti, M.P.A.; Brito, B.G.; da Silva Leite, D. Escherichia coli strains from edema disease: O serogroups, and genes for Shiga toxin, enterotoxins, and F18 fimbriae. Vet. Microbiol. 2001, 80, 227–233. [Google Scholar] [CrossRef]
- Baldo, V.; Salogni, C.; Giovannini, S.; D’Incau, M.; Boniotti, M.B.; Birbes, L.; Pitozzi, A.; Formenti, N.; Grassi, A.; Pasquali, P.; et al. Pathogenicity of Shiga Toxin Type 2e Escherichia coli in Pig Colibacillosis. Front. Vet. Sci. 2020, 7, 545818. [Google Scholar] [CrossRef] [PubMed]
- Perrat, A.; Branchu, P.; Decors, A.; Turci, S.; Bayon-Auboyer, M.H.; Petit, G.; Grosbois, V.; Brugère, H.; Auvray, F.; Oswald, E. Wild Boars as Reservoir of Highly Virulent Clone of Hybrid Shiga Toxigenic and Enterotoxigenic Escherichia coli Responsible for Edema Disease, France. Emerg. Infect. Dis. 2022, 28, 382. [Google Scholar] [CrossRef] [PubMed]
- Jorda, R.; Garcia, G.; Bernal, I.; Nodar, L.; Alvarez, G. Study of the best sampling periods for the detection of the Verotoxin (VT2e) by oral fluids on swine farms worldwide. In Proceedings of the IPVS & ESPHM, Leipzig, Germany, 4–7 June 2024; p. 603. [Google Scholar]
- Bertschinger, H.; Pohlenz, J. Bacterial colonization and morphology of the intestine in porcine Escherichia coli enterotoxemia (edema disease). Vet. Pathol. 1983, 20, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Cornick, N.; Matise, I.; Samuel, J.; Bosworth, B.; Moon, H.W. Shiga toxin-producing Escherichia coli infection: Temporal and quantitative relationships among colonization, toxin production, and systemic disease. J. Infect. Dis. 2000, 181, 242–251. [Google Scholar] [CrossRef]
- Casanova, N.A.; Redondo, L.M.; Dailoff, G.C.; Arenas, D.; Fernández Miyakawa, M.E. Overview of the role of Shiga toxins in porcine edema disease pathogenesis. Toxicon 2018, 148, 149–154. [Google Scholar] [CrossRef]
- Oanh, T.K.N.; Nguyen, V.K.; De Greve, H.; Goddeeris, B.M. Protection of piglets against edema disease by maternal immunization with Stx2e toxoid. Infect. Immun. 2012, 80, 469–473. [Google Scholar] [CrossRef]
- Kausche, F.M.; Dean, E.A.; Arp, L.H.; Samuel, J.E.; Moon, H.W. An experimental model for subclinical edema disease (Escherichia coli enterotoxemia) manifest as vascular necrosis in pigs. Am. J. Vet. Res. 1992, 53, 281–287. [Google Scholar] [CrossRef]
- Clugston, R.E.; Nielsen, N.O.; Smith, D.L.T. Experimental Edema Disease of Swine (E. coli Enterotoxemia) III. Pathology and Pathogenesis. Can. J. Comp. Med. 1974, 38, 34–43. [Google Scholar]
- Boyd, B.; Tyrrell, G.; Maloney, M.; Gyles, C.; Brunton, J.; Lingwood, C. Alteration of the Glycolipid Binding Specificity of the Pig Edema Toxin from Globotetraosyl to Globotriaosyl Ceramide Alters In Vivo Tissue Targetting and Results in a Verotoxin l-like Disease in Pigs. J. Exp. Med. 1993, 177, 1745–1753. [Google Scholar] [CrossRef]
- Sperling, D.; Stepanova, H.; Smits, H.; Diesing, A.K.; Faldyna, M. Shiga Toxin, Stx2e, Influences the Activity of Porcine Lymphocytes In Vitro. Int. J. Mol. Sci. 2023, 24, 8009. [Google Scholar] [CrossRef]
- Christopher-Hennings, J.; Willgohs, J.A.; Francis, D.H.; Raman, U.A.; Moxley, R.A.; Hurley, D.J. Immunocompromise in Gnotobiotic Pigs Induced by Verotoxin-Producing Escherichia coli (O111:NM). Infect. Immun. 1993, 61, 2304–2308. [Google Scholar] [CrossRef]
- Lee, M.-S.; Tesh, V.L. Roles of Shiga Toxins in Immunopathology. Toxins 2019, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Imberechts, H.; De Greve, H.; Lintermans, P. The pathogenesis of edema disease in pigs. A review. Vet. Microbiol. 1992, 31, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Tabaran, F.; Tabaran, A. Edema disease of swine: A review of the pathogenesis. Porc. Res. 2019, 9, 7–14. [Google Scholar]
- Dieste-Pérez, L.; Dobak, T.P.; Vilaplana Grosso, F.R.; Bergmann, W.; Tobias, T.J. Magnetic resonance imaging appearance of the brain and cervical spinal cord in an edema disease affected pig. Vet. Radiol. Ultrasound 2019, 60, E15–E19. [Google Scholar] [CrossRef]
- Berger, P.I.; Hermanns, S.; Kerner, K.; Schmelz, F.; Schüler, V.; Ewers, C.; Bauerfeind, R.; Doherr, M.G. Cross-sectional study: Prevalence of oedema disease Escherichia coli (EDEC) in weaned piglets in Germany at pen and farm levels. Porc. Health Manag. 2023, 9, 49. [Google Scholar] [CrossRef]
- Coma, L.; Torrents, D.; Garcia, G.; Ballara, I.; Moreno, B. Impact of VT2e vaccination on subclinical Oedema Disease on a Spanish swine farm. In Proceedings of the ESPHM, Bern, Switzerland, 21–23 May 2025; p. 262. [Google Scholar]
- Ramirez, A. Differential Diagnosis of Diseases. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 29–74. [Google Scholar]
- Madson, D.M.; Arruda, P.H.E.; Arruda, B.L. Nervous and Locomotor System. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 339–372. [Google Scholar]
- Gottschalk, M.; Segura, M. Streptococcosis. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 934–950. [Google Scholar]
- Leneveu, P.; Collet, J.; Sevin, J.-L.; Durand, A.; Solignac, T.; Jardin, A.; Creac’h, P.; Moalic, P.-Y.; Schüler, V. Investigation of subacute edema disease in France, sampling method and prevalence. In Proceedings of the ESPHM 2019, Utrecht, The Netherlands, 22–24 May 2019; p. 200. [Google Scholar]
- Lo, A.W.H.; Moonens, K.; De Kerpel, M.; Brys, L.; Pardon, E.; Remaut, H.; De Greve, H. The molecular mechanism of Shiga toxin Stx2e neutralization by a single-domain antibody targeting the cell receptor-binding domain. J. Biol. Chem. 2014, 289, 25374–25381. [Google Scholar] [CrossRef]
- Luz, D.; Gómez, F.D.; Ferreira, R.L.; Melo, B.S.; Guth, B.E.C.; Quintilio, W.; Moro, A.M.; Presta, A.; Sacerdoti, F.; Ibarra, C.; et al. The deleterious effects of shiga toxin type 2 are neutralized in vitro by fabf8:Stx2 recombinant monoclonal antibody. Toxins 2021, 13, 825. [Google Scholar] [CrossRef]
- Simon, M.; Cleary, T.G.; Hernandez, J.D.; Abboud, H.E. Shiga toxin 1 elicits diverse biologic responses in mesangial cells. Kidney Int. 1998, 54, 1117–1127. [Google Scholar] [CrossRef]
- Trachtman, H.; Austin, C.; Lewinski, M.; Stahl, R.A.K. Renal and neurological involvement in typical Shiga toxin-associated HUS. Nat. Rev. Nephrol. 2012, 8, 658–669. [Google Scholar] [CrossRef]
- Olawole, A.S.; Malahlela, M.N.; Fonkui, T.Y.; Marufu, M.C.; Cenci-Goga, B.T.; Grispoldi, L.; Etter, E.M.; Tagwireyi, W.M.; Karama, M. Occurrence, serotypes and virulence characteristics of Shiga toxin-producing and Enteropathogenic Escherichia coli isolates from dairy cattle in South Africa. World J. Microbiol. Biotechnol. 2024, 40, 299. [Google Scholar] [CrossRef]
- Etcheverría, A.I.; Padola, N.L. Shiga toxin-producing Escherichia coli: Factors involved in virulence and cattle colonization. Virulence 2013, 4, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Matise, I.; Sirinarumitr, T.; Bosworth, B.; Moon, H.W. Vascular ultrastructure and DNA fragmentation in swine infected with Shiga toxin-producing Escherichia coli. Vet. Pathol. 2000, 37, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.; Andresen, L.O.; Thomsen, L.K.; Busch, M.E.; Wachmann, H.; Jorsal, S.E.; Gyles, C.L. Prevention of edema disease in pigs by passive immunization. Can. J. Vet. Res. 2000, 64, 9. [Google Scholar] [PubMed]
- Kavaliauskiene, S.; Dyvelingelem, A.B.; Skotland, T.; Sandvig, K. Protection against shiga toxins. Toxins 2017, 9, 44. [Google Scholar] [CrossRef]
- Perozo, E.; Puig, A.; Mallorquí, J.; Ferrer-Soler, L.; March, R. Efficacy of Vepured against Edema Disease in pigs under field conditions. In Proceedings of the ESPHM 2017, Prague, Czech Republic, 3–5 May 2017; p. 356. [Google Scholar]
- Cybulski, P.; Fórmanowski, A.; Angelats, D.; Jordà, R.; Talaga, P.; Jabłoński, A. Analysis of production paramenters during implementation of vacciantion against Oedema Disease in a weaner farm in Poland. In Proceedings of the IPVS 2023, Thessaloniki, Greece, 31 May–2 June 2023; p. 101. [Google Scholar]
- Lillie-Jaschniski, K.; Kochling, M.; Hillen, S.; Lindner, T. Losses and amount of antimicrobial treatment due to oedema disease—Effect of vaccination with Ecoporc Shiga evaluated on 179 German farms. In Proceedings of the IPVS & ESPHM 2016, Dublin, Ireland, 6–10 June 2016; p. 211. [Google Scholar]
- Creac’h, P.; Lemey, R.; Willems, L. Economic impact of the vaccination with Ecoporc Shiga in a closed herd farm. In Proceedings of the ESPHM 2015, Nantes, France, 22–24 May 2015; p. 208. [Google Scholar]
- Creac’h, P.; Lemistre, A. Successful reduction of antimicrobials with the vaccine Ecoporc Shiga. In Proceedings of the ESPHM 2015, Nantes, France, 22–24 May 2015; p. 209. [Google Scholar]
- De Groot, M.; Cardinal, F.; Galé, I.; Rodríguez-Ballarà, I.; Nodar, L. Reduction of Oedema Disease mortality with Vepured vaccination. In Proceedings of the Banff Pork Seminar 2020, Banff, AB, Canada, 7–9 January 2020. [Google Scholar]
- Garcia Sanchez, G.; Shimada, T.; Uchiyama, Y.; Fukuzawa, S.; Shibata, M. The impact of Vepured(R) vaccination on mortality on a Stx2e-positive farm in Japan. In Proceedings of the APVS 2023, Taipei, Taiwan, 30 July–2 August 2023; p. 532. [Google Scholar]
- Simon, M.; Mallorquí, J.; Ferrer-Soler, L.; Roca, M.; March, R.; Sitjà, M. Prevention of Edema Disease in pigs by vaccination with Vepured vaccine. In Proceedings of the ESPHM 2017, Prague, Czech Republic, 3–5 May 2017; p. 359. [Google Scholar]
- Van Poucke, S.; Michiels, A.; Galé, I. Weaned pig mortality and antibiotic treatment reduction in a Belgian pig farm by vaccination with Vepured. In Proceedings of the ESPHM 2019, Utrecht, The Netherlands, 22–24 May 2019; p. 158. [Google Scholar]
- Johansen, M.; Fricke, R.; Bastert, O.; Nielsen, M.B.F.; Svensmark, B.; Haugegaard, S.; Baekbo, P.; Jorsal, S.E. Successful reduction of mortality by vaccination against oedema disease. In Proceedings of the ESPHM 2013, Edinburgh, UK, 22–23 May 2013; p. 195. [Google Scholar]
- Groentvedt, C.A.; Skrutvold, O.; Farmstad, T. Reducing Edema Disease Escherichia coli (EDEC) related disease and mortality in a Norwegian commercial pig herd by vaccination with Ecoporc(R) Shiga. In Proceedings of the ESPHM 2014, Sorrento, Italy, 7–9 May 2014; p. 72. [Google Scholar]
- Sidler, X.; Mattei, S.; Fricke, R.; Schmid, W.; Bastert, O.; Luder, O.; Becker, A. Results of a field trial for a vaccine against oedema disease. In Proceedings of the ESPHM 2013, Edinburgh, UK, 22–23 May 2013; p. 87. [Google Scholar]
- Palzer, A.; Becker, A. Vaccination against oedema disease in commercial pig farm. In Proceedings of the ESPHM 2013, Edinburgh, UK, 22–23 May 2013; p. 104. [Google Scholar]
- Bastert, O.; Fricke, R.; Lüder, O.; Florian, V.; Bauerfeind, R.; Selbitz, H.-J. Development of a subunit vaccine containing recombinant Stx2e against oedema disease of pigs and its impact in the field. In Proceedings of the ESPHM 2013, Edinburgh, UK, 22–23 May 2013; p. 80. [Google Scholar]
- Bastert, O.; Fricke, R.; Lüder, O. Investigations on a novel vaccine against edema disease in field studies. In Proceedings of the ESPHM 2012, Bruges, Belgium, 25–27 April 2012; p. 190. [Google Scholar]
- Oliver, S.; Cabetas, M.; Del Valle, A.; Espigares, D. Evaluation of a Stx2e toxoid based vaccine as a tool to control STEC losses in scenarios with or without zinc oxide. In Proceedings of the IPVS & ESPHM 2024, Leipzig, Germany, 4–7 June 2024; p. 890. [Google Scholar]
- De Souza, T.C.G.D.; Angelats, D.; Garcia, G.; Barba-Vidal, E. Field experience of ZnO removal and antibiotic reduction by using a probiotic and vaccinating against VT2e. In Proceedings of the IPVS 2022, Rio de Janeiro, Brazil, 21–24 June 2022; p. 374. [Google Scholar]
- Sperling, D.; Vinduska, J.; Smidova, E.; Vanhara, J. Effect of the vaccination against shiga toxin 2e in a piglet producing farm with history of oedema disease-retrospective analysis. In Proceedings of the ESPHM 2022, Budapest, Hungary, 11–13 May 2022; p. 273. [Google Scholar]
- Pereira, D.A.; de Souza, T.C.G.D.; Faria, G.P.; Ferrandin, D.B.; Baraldi, T.G.; Caselles, D.G.; Ribeireo, R.; Barba-Vidal, E. Field experience of antibiotic reduction while improving productive parameters with Oedema Disease vaccination. In Proceedings of the IPVS 2022, Rio de Janeiro, Brazil, 21–24 June 2022; p. 373. [Google Scholar]
- Mesonero-Escuredo, S.; Morales, J.; Mainar-Jaime, R.C.; Díaz, G.; Arnal, J.L.; Casanovas, C.; Barrabés, S.; Segalés, J. Effect of edema disease vaccination on mortality and growth parameters in nursery pigs in a shiga toxin 2e positive commercial farm. Vaccines 2021, 9, 567. [Google Scholar] [CrossRef]
- Kitchodok, R.; Ananratankul, C.; Serod, C.; Chompupun, D.; Trayarach, S.; Barba-Vidal, E. Verocheck Diagnostic kit to monitor Edema Disease in Thai Pig Farming. In Proceedings of the IPVS 2020, Rio de Janeiro, Brazil, 3–6 November 2020; p. 372. [Google Scholar]
- Lee, H.; Ham, S.; Suh, J.; Cho, H.; Chae, C. Field efficacy of a recombinant toxoid vaccine against Shiga toxin 2e during a naturally occurring edema disease infection. Can. J. Vet. Res. 2024, 88, 132–137. [Google Scholar]
- De Groot, M.; Brochu, J.; Galé, I.; Rodríguez-Ballarà, I.; Nodar, L. Comparison of two vaccines in the reduction of edema disease mortality on a Canadian farm. In Proceedings of the Banff Pork Seminar 2020, Banff, AB, Canada, 7–9 January 2020. [Google Scholar]
- Brilland, S.; Jardin, A.; Leneveau, p.; Capdevielle, N. Subacute edema disease analysis of “shigatoxin” status in suspected French farms. In Proceedings of the ESPHM 2022, Budapest, Hungary, 11–13 May 2022; p. 288. [Google Scholar]
- Calveyra, J.; Candelas, J.; Aguiar, V.; Filsner, P.; Sperling, D. Effect of the vaccination against Shiga toxin 2e E. coli in a pig production farm with history of oedema disease: Case study. In Proceedings of the IPVS & ESPHM 2024, Leipzig, Germany, 4–7 June 2024; p. 638. [Google Scholar]
- Krueger, D.; Schlegel, M.; Waehner, C. Effect of vaccination against Shiga toxin 2e in a sow farm with the history of oedema disease. In Proceedings of the IPVS & ESPHM 2024, Leipzig, Germany, 4–7 June 2024; p. 652. [Google Scholar]
- Autret, D.; Leneveu, P.; Jardin, A.; Pelleau, H.; Goues, T.; Perrot, O.; Creac’h, P.; Gottler, V. Ecoporc Shiga(R) vaccination and performance improvement. In Proceedings of the ESPHM 2018, Barcelona, Spain, 9–11 May 2018; p. 292. [Google Scholar]
- Scollo, A.; Mazzoni, C. Edema Disease vaccination in chronical weaners improves feed conversion rate. In Proceedings of the ESPHM 2017, Prague, Czech Republic, 3–5 May 2017; p. 365. [Google Scholar]
- Leneveu, P.; Collet, J.; Sevin, J.-L.; Durand, A.; Solignac, T.; Jardin, A.; Creac’h, P.; Amenna, N.; Turci, S.; Moalic, P.; et al. Investigation of subacute Edema Disease in France, impact on swine performance. In Proceedings of the ESPHM 2019, Utrecht, The Netherlands, 22–24 May 2019; p. 201. [Google Scholar]
- Mesonero-Escuredo, S.; Morales, J.; Casanovas, C.; Barrabes, S.; Segales, J. Edema Disease vaccination as a tool for reducing antibiotic use after weaning in a shigatoxin 2e positive farm. In Proceedings of the ESPHM 2019, Utrecht, The Netherlands, 22–24 May 2019; p. 32. [Google Scholar]
- Fricke, R.; Becker, A.; Kamp, J.; Brons, N.; Bastert, O. Investigation of the long-term effect on overall mortality and antimicrobial intake in weaned piglets after vaccination against edema disease in a Dutch field trial. In Proceedings of the ESPHM 2014, Sorrento, Italy, 7–9 May 2014; p. 99. [Google Scholar]
- Fricke, R.; Bastert, O.; Gotter, V.; Brons, N.; Kamp, J.; Selbitz, H.J. Implementation of a vaccine against Shigatoxin 2e in a piglet producing farm with problems of Oedema disease: Case study. Porc. Health Manag. 2015, 1, 6. [Google Scholar] [CrossRef]
- De Jong, E.; Michiels, A.; Van Poucke, S.; Vrielinck, J.; Barba-Vidal, E. Comparison of two E. coli vaccines and their effect on decreased mortality in farms with S.suis clinical diagnsotic. In Proceedings of the ESPHM 2022, Budapest, Hungary, 11–13 May 2022; p. 316. [Google Scholar]
- Koenders, K.; van Leuteren, J.; de Jongh, B.; van der Wolf, P. Observations regarding growth and uniformity of weaned piglets after vaccination with Ecoporc Shiga(R). In Proceedings of the IPVS & ESPHM 2016, Dublin, Ireland, 7–10 June 2016; p. 210. [Google Scholar]
- Park, J.W.; Moon, Y.; Moon, Y.C.; Jeong, C.M.; Ohn, J.H.; Lyoo, Y.S. Effect of a commercial vaccine containing recombinant Verotoxin 2e on growth performance in conventional pig farms with Edema disease in Korea. In Proceedings of the APVS 2019, Seoul, Republic of Korea, 25–28 August 2019; p. 125. [Google Scholar]
- Sánchez-Matamoros, A. Productive effects of Vepured(R) in a VT2e-positive farm without clinical signs nor mortality related to edema disease. In Proceedings of the ESPHM 2019, Utrecht, The Netherlands, 22–24 May 2019; p. 277. [Google Scholar]
- Michiels, A.; De Jong, E.; Claeyé, E.; Barba-Vida, E.; Garcia, G.; Boix, O.; Matthijs, W.; Van Poucke, S. Antibiotic reduction in a farm with Streptococcus suis diagnosis by vaccinating against VT2e. In Proceedings of the IPVS 2022, Rio de Janeiro, Brazil, 21–24 June 2022; p. 303. [Google Scholar]
- Garcia-Sanchez, G.; Noh, H.; An, K.; Byun, J.; Seo, S.; Barba, E.R. Recombinant Verotoxin 2e (VT2e) vaccine reduces the cost of medicine on a farm with subclinical swine Oedema Disease. In Proceedings of the APVS 2023, Taipei, Taiwan, 31 July–2 August 2023; p. 521. [Google Scholar]
- Butler, J.E.; Lager, K.M.; Splichal, I.; Francis, D.; Kacskovics, I.; Sinkora, M.; Wertz, N.; Sun, J.; Zhao, Y.; Brown, W.R.; et al. The piglet as a model for B cell and immune system development. Vet. Immunol. Immunopathol. 2009, 128, 147–170. [Google Scholar] [CrossRef]
- Johansen, M.; Andresen, L.; Jorsal, S.; Thomsen, L.; Waddell, T.; Gyles, C.L. Prevention of edema disease in pigs by vaccination with verotoxin 2e toxoid. Can. J. Vet. Res. 1997, 61, 280–285. [Google Scholar]
- Vidal, R.M.; Montero, D.A.; Bentancor, A.; Arellano, C.; Alvarez, A.; Cundon, C.; Blanco Crivelli, X.; Del Canto, F.; Salazar, J.C.; Oñate, A.A. Evaluation of the Humoral Response after Immunization with a Chimeric Subunit Vaccine against Shiga Toxin-Producing Escherichia coli in Pregnant Sows and Their Offspring. Vaccines 2024, 12, 726. [Google Scholar] [CrossRef]
- Simon, M.; Mallorqui, J.; Ferrer-Soler, L.; Roca, M.; Saun, X.; Sitja, M. Maternal antibodies do not interfere with the efficacy of Vepured. In Proceedings of the ESPHM 2017, Prague, Czech Republic, 3–5 May 2017; p. 354. [Google Scholar]
- Gaire, T.N.; Scott, H.M.; Noyes, N.R.; Ericsson, A.C.; Tokach, M.D.; William, H.; Menegat, M.B.; Vinasco, J.; Nagaraja, T.G.; Volkova, V.V. Temporal dynamics of the fecal microbiome in female pigs from early life through estrus, parturition, and weaning of the first litter of piglets. Anim. Microbiome 2024, 6, 7. [Google Scholar] [CrossRef]
- Garcia, G.; Jorda, R.; Alvarez, G.; Bernal, I.; Nodar, L. Global mass screening for the detection of the verotoxin (VT2e) on swine farms worldwide by oral fluids. In Proceedings of the IPVS & ESPHM 2024, Leipzig, Germany, 4–7 June 2024; p. 654. [Google Scholar]
- Barba-Vidal, E.; Melendez, A.; Ballara, I. Global mass screening on sub-optimal farms reveals a high risk of Oedema Disease. In Proceedings of the IPVS 2022, Rio de Janeiro, Brazil, 21–24 June 2022. [Google Scholar]
- Cha, W.; Fratamico, P.M.; Ruth, L.E.; Bowman, A.S.; Nolting, J.M.; Manning, S.D.; Funk, J.A. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: Implications on public health. Int. J. Food Microbiol. 2018, 264, 8–15. [Google Scholar] [CrossRef]
- Coddens, A.; Verdonck, F.; Tiels, P.; Rasschaert, K.; Goddeeris, B.M.; Cox, E. The age-dependent expression of the F18+ E. coli receptor on porcine gut epithelial cells is positively correlated with the presence of histo-blood group antigens. Vet. Microbiol. 2007, 122, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Mesonero-Escuredo, S.; Strutzberg-Minder, K.; Casanovas, C.; Segalés, J. Viral and bacterial investigations on the aetiology of recurrent pig neonatal diarrhoea cases in Spain. Porc. Health Manag. 2018, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Fraile, L. Lactogenic Immunity In the Sow: A Practical Approach, 1st ed.; Servet: Zaragoza, Spain, 2018; Volume 1. [Google Scholar]
- Thomson, J.; Friendship, M. Digestive System. In Diseases of Swine, 11th ed.; Zimmerman, J., Karriker, L., Ramirez, A., Schwartz, K., Stevenson, G., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 234–263. [Google Scholar]
- García-Meniño, I.; García, V.; Mora, A.; Díaz-Jiménez, D.; Flament-Simon, S.C.; Alonso, M.P.; Blanco, J.E.; Blanco, M.; Blanco, J. Swine enteric colibacillosis in Spain: Pathogenic potential of mcr-1 ST10 and ST131 E. coli Isolates. Front. Microbiol. 2018, 9, 2659. [Google Scholar] [CrossRef] [PubMed]
- Barth, S.; Tscholshiew, A.; Menge, C.; Weiss, R.; Baljer, G.; Bauerfeind, R. Virulence and fitness gene patterns of Shiga toxin-encoding Escherichia coli isolated from pigs with edema disease or diarrhea in Germany. Berl. Munch. Tierarztl. Wochenschr. 2007, 120, 307–316. [Google Scholar]
- Lee, K.-S.; Jeong, Y.-J.; Lee, M.-S. Escherichia coli Shiga Toxins and Gut Microbiota Interactions. Toxins 2021, 13, 416. [Google Scholar] [CrossRef]
- Robinson, C.M.; Sinclair, J.F.; Smith, M.J.; O’Brien, A.D. Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc. Natl. Acad. Sci. USA 2006, 103, 9667–9672. [Google Scholar] [CrossRef]
- Stewart, A.S.; Pratt-Phillips, S.; Gonzalez, L.M. Alterations in Intestinal Permeability: The Role of the “Leaky Gut” in Health and Disease. J. Equine Vet. Sci. 2017, 52, 10–22. [Google Scholar] [CrossRef]
- Swildens, B.; Stockhofe-Zurwieden, N.; Van Der Meulen, J.; Wisselink, H.J.; Nielen, M.; Niewold, T.A. Intestinal translocation of Streptococcus suis type 2 EF + in pigs. Vet. Microbiol. 2004, 103, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Roodsant, T.J.; van der Ark, K.C.H.; Schultsz, C. Translocation across a human enteroid monolayer by zoonotic Streptococcus suis correlates with the presence of Gb3-positive cells. IScience 2024, 27, 109178. [Google Scholar] [CrossRef] [PubMed]
- Torrison, J.; Cameron, R. Integumentary System. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 292–311. [Google Scholar]
- Brandl, K.; Schnabl, B. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease? Expert. Rev. Gastroenterol. Hepatol. 2015, 9, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Ravin, H.A.; Bowley, D.; Jenkins, C.; Fine, J. On the absorption of bacterial endotoxin from the gastro-intestinal tract of the normal and shocked animal. J. Exp. Med. 1960, 112, 783–792. [Google Scholar] [CrossRef]
- Reiner, G.; Kuehling, J.; Loewenstein, F.; Lechner, M.; Becker, S. Swine inflammation and necrosis syndrome (SINS). Animals 2021, 11, 1670. [Google Scholar] [CrossRef]
- Diana, A.; Boyle, L.A.; García Manzanilla, E.; Leonard, F.C.; Calderón Díaz, J.A. Ear, tail and skin lesions vary according to different production flows in a farrow-to-finish pig farm. Porc. Health Manag. 2019, 5, 19. [Google Scholar] [CrossRef]
- Nyachoti, C.M.; Omogbenigun, F.O.; Rademacher, M.; Blank, G. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets1. J. Anim. Sci. 2006, 84, 125–134. [Google Scholar] [CrossRef]
- Fang, L.H.; Jin, Y.H.; Do, S.H.; Hong, J.S.; Kim, B.O.; Han, T.H.; Kim, Y.Y. Effects of dietary energy and crude protein levels on growth performance, blood profiles, and carcass traits in growing-finishing pigs. J. Anim. Sci. Technol. 2019, 61, 204. [Google Scholar] [CrossRef]
- Le Floc’h, N.; Knudsen, C.; Gidenne, T.; Montagne, L.; Merlot, E.; Zemb, O. Impact of feed restriction on health, digestion and faecal microbiota of growing pigs housed in good or poor hygiene conditions. Animal 2014, 8, 1632–1642. [Google Scholar] [CrossRef]
Clinical Presentation | Organs or Tissues Affected | Commonly Associated Symptoms and Visible Lesions * |
---|---|---|
Peracute | (General or non-specific). | Sudden death without other signs being detected and no specific lesions. |
Central nervous system. | Detection is difficult. Prostration, lack of activity, unresponsiveness. | |
Acute | General | Mortality up to 90%. Impaired growth. |
Central nervous system | Neurological signs: altered behaviour, reduced activity, prostration, anorexia. Impaired locomotion: incoordination, disorientation, movement in circles. | |
Lungs | Breathing difficulties. | |
Skin | Subcutaneous oedema, easily visible on eyelids and forehead. | |
Stomach | Gastric wall oedema. Ulcers and haemorrhagic mucosa. Full stomach with dry contents. | |
Intestines | Range from normal to constipation or watery diarrhoea. Traces of blood sometimes. Mesocolon oedema. | |
Other | Weird squeak due to laryngeal oedema. | |
Subclinical | - | Impaired growth rate. Vascular necrosis and associated changes in tissues. Ear necrosis. |
Chronic (lasting for several weeks). | - | Impaired growth rate for several weeks. |
Nervous and muscular. | Unilateral nervous signs; movement in circles. Tilted head. Muscular weakness. Atrophy in leg muscles. |
Effect | Range of Reported Improvements * | Sources (n = 43) |
---|---|---|
Clinical signs of Oedema Disease | ||
Reduction of mortality | Up to 100% mortality reduction on affected pigs, accounting for 1.7% to 24.23% of the pigs in the trial groups. Average = 7%. | [8,10,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] |
Improvement in growth rate | Improvement in the range of 6.2 to 22.2 gr/day extra during the nursery period. Average = 17.6 gr/d. Approx. 22.68 to 93 gr/day of extra growth from wean to finish. Average = 45.7 gr/day. | [10,45,46,48,49,54,59,61,63,64,65] |
Reduction of antimicrobial use | Product saving valued at 0.19 to 2.18 EUR/grower. From 2.4 fewer doses injected per pig to 3 fewer weeks on oral medication. | [47,49,53,56,57,58,61,63,64] |
Clinical signs | Reports of clinical signs disappearing in most vaccinated pigs that were exposed to STEC challenge. | [10,45,51,52,59,60,65,66,67] |
Only Subclinical signs | ||
Reduction in mortality | Mortality reduction ranges from 0.3 to 6%. Average = 3.1%. | [10,63,65,68,69,70,71,72,73,74,75,76,77] |
Improvement in growth rate | Growth improvement of 5 to 26.5 gr/day extra during the nursery period. Average = 17.5 gr/day Improvement of 22 to 33 gr/day extra when computing the whole wean-to-finish period. Average = 26 gr/day. | [10,11,63,65,68,69,70,71,74,78,79,80,81] |
Antimicrobial reduction | Reduction of 22% of the antimicrobial cost. Savings of 0.54 to 0.71 EUR/grower. Reduction of 10.3 DDD/year (Defined daily dose per year). | [63,74,75,76,77,81,82] |
Better weight uniformity | 3% better weight dispersion. | [78] |
Better feed conversion ratio (FCR) | FCR improvement ranges from 0.9 to 0.26 in nursery and 0.12 in fattening. | [71,72,81] |
Ear necrosis prevention | Ear necrosis incidence decreased from 36% to 15%. | [11] |
Fewer problems with S. suis. | Lower clinical impact due to S. suis. and reduction in antimicrobial use. | [31,77,81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Garcia, J.; Ballarà Rodriguez, I.; Jordà Casadevall, R.; Bruguera, S.; Llopart, D.; Barba-Vidal, E. Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions. Animals 2025, 15, 2275. https://doi.org/10.3390/ani15152275
Hernandez-Garcia J, Ballarà Rodriguez I, Jordà Casadevall R, Bruguera S, Llopart D, Barba-Vidal E. Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions. Animals. 2025; 15(15):2275. https://doi.org/10.3390/ani15152275
Chicago/Turabian StyleHernandez-Garcia, Juan, Isaac Ballarà Rodriguez, Ramon Jordà Casadevall, Sergi Bruguera, David Llopart, and Emili Barba-Vidal. 2025. "Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions" Animals 15, no. 15: 2275. https://doi.org/10.3390/ani15152275
APA StyleHernandez-Garcia, J., Ballarà Rodriguez, I., Jordà Casadevall, R., Bruguera, S., Llopart, D., & Barba-Vidal, E. (2025). Practical Review on Aetio-Pathogenesis and Symptoms in Pigs Affected by Clinical and Subclinical Oedema Disease and the Use of Commercial Vaccines Under Field Conditions. Animals, 15(15), 2275. https://doi.org/10.3390/ani15152275