Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Predicting Full-Length Coding Sequences of MOTS-c in Different Species
2.3. Phylogenetic Analysis
2.4. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction
2.5. Chicken MOTS-c Synthesis
2.6. Chicken Embryo-Derived Primary Hepatocytes Isolation and MOTS-c Treatment
2.7. RNA-Seq and Read Mapping
2.8. Gene Set Enrichment Analysis
2.9. Western Blot
2.10. Cell Counting Kit-8 Assay
2.11. Statistical Analysis
3. Results
3.1. Comparison of Gene and Protein Sequences of MOTS-c Across Various Species
3.2. Chicken MOTS-c Gene Expression Profile and Its Association with Different Energy States
3.3. Functional Role of Chicken MOTS-c Peptide in Liver Metabolism: An RNA-Seq Analysis
3.4. The Effect of Chicken MOTS-c Peptide Treatment on the AKT and AMPK Signaling Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell 2012, 148, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Evolution of mitochondria as signaling organelles. Cell Metab. 2015, 22, 204–206. [Google Scholar] [CrossRef]
- Quirós, P.M.; Mottis, A.; Auwerx, J. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 2016, 17, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Niikura, T.; Tajima, H.; Yasukawa, T.; Sudo, H.; Ito, Y.; Kita, Y.; Kawasumi, M.; Kouyama, K.; Doyu, M.; et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc. Natl. Acad. Sci. USA 2001, 98, 6336–6341. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Ito, Y.; Niikura, T.; Shao, Z.; Hata, M.; Oyama, F.; Nishimoto, I. Mechanisms of neuroprotection by a novel rescue factor Humanin from Swedish mutant amyloid precursor protein. Biochem. Biophys. Res. Commun. 2001, 283, 460–468. [Google Scholar] [CrossRef]
- Cobb, L.J.; Lee, C.; Xiao, J.; Yen, K.; Wong, R.G.; Nakamura, H.K.; Mehta, H.H.; Gao, Q.; Ashur, C.; Huffman, D.M.; et al. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging 2016, 8, 796–809. [Google Scholar] [CrossRef]
- Lee, C.; Zeng, J.; Drew, B.G.; Sallam, T.; Martin-Montalvo, A.; Wan, J.; Kim, S.; Mehta, H.; Hevener, A.L.; de Cabo, R.; et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015, 21, 443–454. [Google Scholar] [CrossRef]
- Miller, B.; Kim, S.; Kumagai, H.; Yen, K.; Cohen, P. Mitochondria-derived peptides in aging and healthspan. J. Clin. Investig. 2022, 132, e158449. [Google Scholar] [CrossRef]
- Kim, K.H.; Son, J.M.; Benayoun, B.A.; Lee, C. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 2018, 28, 516–524. [Google Scholar] [CrossRef]
- Reynolds, J.C.; Lai, R.W.; Woodhead, J.S.T.; Joly, J.H.; Mitchell, C.J.; Cameron-Smith, D.; Lu, R.; Cohen, P.; Graham, N.A.; Benayoun, B.A.; et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat. Commun. 2021, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.C.; Imun, M.; Jung, S.W.; Park, C.Y.; Kim, J.S.; Lai, R.W.; Barr, C.R.; Son, J.M.; Tor, K.; Kim, E.; et al. The human mitochondrial genome encodes for an interferon-responsive host defense peptide. bioRxiv 2024. [Google Scholar] [CrossRef]
- Lin, C.; Luo, L.; Xun, Z.; Zhu, C.; Huang, Y.; Ye, Y.; Zhang, J.; Chen, T.; Wu, S.; Zhan, F.; et al. Novel function of MOTS-c in mitochondrial remodelling contributes to its antiviral role during HBV infection. Gut 2024, 73, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, K.H.; Cohen, P. MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free. Radic. Biol. Med. 2016, 100, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, I.R.; Woodhead, J.S.T.; Chan, A.; D’Souza, R.F.; Wan, J.; Hollingsworth, K.G.; Plank, L.D.; Cohen, P.; Poppitt, S.D.; Merry, T.L. Plasma mitochondrial derived peptides MOTS-c and SHLP2 positively associate with android and liver fat in people without diabetes. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2021, 1865, 129991. [Google Scholar] [CrossRef] [PubMed]
- Fuku, N.; Pareja Galeano, H.; Zempo, H.; Alis, R.; Arai, Y.; Lucia, A.; Hirose, N. The mitochondrial-derived peptide MOTS -c: A player in exceptional longevity? Aging Cell 2015, 14, 921–923. [Google Scholar] [CrossRef]
- Zempo, H.; Kim, S.; Fuku, N.; Nishida, Y.; Higaki, Y.; Wan, J.; Yen, K.; Miller, B.; Vicinanza, R.; Miyamoto-Mikami, E.; et al. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. Aging 2021, 13, 1692–1717. [Google Scholar] [CrossRef]
- Kumagai, H.; Natsume, T.; Kim, S.; Tobina, T.; Miyamoto-Mikami, E.; Shiose, K.; Ichinoseki-Sekine, N.; Kakigi, R.; Tsuzuki, T.; Miller, B.; et al. The MOTS-c K14Q polymorphism in the mtDNA is associated with muscle fiber composition and muscular performance. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2022, 1866, 130048. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, L.; Lin, Y.; Rao, X.; Wang, X.; Hua, F.; Ying, J. Mitochondria-derived peptide MOTS-c: Effects and mechanisms related to stress, metabolism and aging. J. Transl. Med. 2023, 21, 36. [Google Scholar] [CrossRef]
- Kong, B.S.; Lee, C.; Cho, Y.M. Mitochondrial-encoded peptide MOTS-c, diabetes, and aging-related diseases. Diabetes Metab. J. 2023, 47, 315–324. [Google Scholar] [CrossRef]
- Tang, M.; Su, Q.; Duan, Y.; Fu, Y.; Liang, M.; Pan, Y.; Yuan, J.; Wang, M.; Pang, X.; Ma, J.; et al. The role of MOTS-c-mediated antioxidant defense in aerobic exercise alleviating diabetic myocardial injury. Sci. Rep. 2023, 13, 19781. [Google Scholar] [CrossRef]
- Kumagai, H.; Kim, S.; Miller, B.; Natsume, T.; Wan, J.; Kumagai, M.E.; Ramirez, R.N.; Lee, S.H.; Sato, A.; Mehta, H.H.; et al. Mitochondrial-derived microprotein MOTS-c attenuates immobilization-induced skeletal muscle atrophy by suppressing lipid infiltration. Am. J. Physiol.-Endocrinol. Metab. 2024, 326, E207–E214. [Google Scholar] [CrossRef]
- Lu, H.; Fan, L.; Zhang, W.; Chen, G.; Xiang, A.; Wang, L.; Lu, Z.; Zhai, Y. The mitochondrial genome-encoded peptide MOTS-c interacts with Bcl-2 to alleviate nonalcoholic steatohepatitis progression. Cell Rep. 2024, 43, 113587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, J.; Zhang, Y.; Jiang, F.; Li, S.; He, S.; Sun, J.; Chen, D.; Tong, Y.; Pang, Q.; et al. The mitochondrial-derived peptide MOTS-c alleviates radiation pneumonitis via an Nrf2-dependent mechanism. Antioxidants 2024, 13, 613. [Google Scholar] [CrossRef]
- Yin, Y.; Pan, Y.; He, J.; Zhong, H.; Wu, Y.; Ji, C.; Liu, L.; Cui, X. The mitochondrial-derived peptide MOTS-c relieves hyperglycemia and insulin resistance in gestational diabetes mellitus. Pharmacol. Res. 2022, 175, 105987. [Google Scholar] [CrossRef]
- Yi, X.; Hu, G.; Yang, Y.; Li, J.; Jin, J.; Chang, B. Role of MOTS-c in the regulation of bone metabolism. Front. Physiol. 2023, 14, 1149120. [Google Scholar] [CrossRef]
- Yang, L.; Tan, Z.; Wang, D.; Xue, L.; Guan, M.; Huang, T.; Li, R. Species identification through mitochondrial rRNA genetic analysis. Sci. Rep. 2014, 4, 4089. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, Z.; Zhuang, W.; Zhang, J.; He, J.; Xie, Y.; Chen, J. Chicken LEAP2 level substantially changes with feed intake and may be regulated by CDX4 in small intestine. Animals 2022, 12, 3496. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Chen, J.; Dalirsefat, S.B.; Han, D.; Dong, X.; Hua, G.; Zheng, X.; Xia, T.; Shao, T.; Deng, X.; Wu, C. An EAV-HP insertion in the 5’ flanking region of SLCO1B3 is associated with its tissue-expression profile in blue-eggshell Yimeng chickens (Gallus gallus). Poult. Sci. 2020, 99, 6371–6377. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Z.; Zhang, J.; Zhuang, W.; Zheng, X. Screening of reliable reference genes for the normalization of RT-qPCR in chicken gastrointestinal tract. Poult. Sci. 2023, 102, 103169. [Google Scholar] [CrossRef]
- Chen, Z.; Hua, G.; Shu, X.; Zhuang, W.; Zhang, J.; Zhu, R.; Zheng, X.; Chen, J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken liver tissues and LMH cells. Sci. Rep. 2024, 14, 17828. [Google Scholar] [CrossRef]
- Li, L.; Peng, M.; Ge, C.; Yu, L.; Ma, H. (−)-Hydroxycitric acid reduced lipid droplets accumulation via decreasing acetyl-coa supply and accelerating energy metabolism in cultured primary chicken hepatocytes. Cell. Physiol. Biochem. 2017, 43, 812–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, J.; Li, X.; Fang, C.; Wang, L. Identification of functional transcriptional binding sites within chicken Abcg2 gene promoter and screening its regulators. Genes 2020, 11, 186. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, X.; Shu, X.; Hua, G.; Zhu, R.; Sun, L.; Chen, J. Supplemental L-arginine promotes hepatocyte proliferation and alters liver fatty acid metabolism in the late embryonic phase: An RNA-seq analysis. Poult. Sci. 2024, 103, 104175. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]
- Brown, W.M.; George, M.J.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef]
- Tatarenkov, A.; Avise, J.C. Rapid concerted evolution in animal mitochondrial DNA. Proc. R. Soc. B Biol. Sci. 2007, 274, 1795–1798. [Google Scholar] [CrossRef]
- Stewart, J.B.; Chinnery, P.F. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat. Rev. Genet. 2015, 16, 530–542. [Google Scholar] [CrossRef]
- Wei, M.; Gan, L.; Liu, Z.; Liu, L.; Chang, J.; Yin, D.; Cao, H.; Su, X.; Smith, W.W. Mitochondrial-derived peptide MOTS-c attenuates vascular calcification and secondary myocardial remodeling via adenosine monophosphate-activated protein kinase signaling pathway. Cardiorenal Med. 2020, 10, 42–50. [Google Scholar] [CrossRef]
- Ran, Y.; Guo, Z.; Zhang, L.; Li, H.; Zhang, X.; Guan, X.; Cui, X.; Chen, H.; Cheng, M. Mitochondria-derived peptides: Promising microproteins in cardiovascular diseases (Review). Mol. Med. Rep. 2025, 31, 127. [Google Scholar] [CrossRef] [PubMed]
- Anderson, V.E.; Hammes, G.G. Distribution of reaction intermediates on chicken liver fatty acid synthase. Biochemistry 1985, 24, 2147–2154. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Chen, Z.; Shu, X.; Zhang, J.; Zhu, R.; Shen, M.; Chen, J.; Zheng, X. Establishment of a steatosis model in LMH cells, chicken embryo hepatocytes, and liver tissues based on a mixture of sodium oleate and palmitic acid. Animals 2024, 14, 2173. [Google Scholar] [CrossRef]
- Yin, Y.; Li, Y.; Ma, B.; Ren, C.; Zhao, S.; Li, J.; Gong, Y.; Yang, H.; Li, J. Mitochondrial-derived peptide MOTS-c suppresses ovarian cancer progression by attenuating USP7-mediated LARS1 deubiquitination. Adv. Sci. 2024, 11, e2405620. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wei, X.; Wei, P.; Lu, H.; Zhong, L.; Tan, J.; Liu, H.; Liu, Z. MOTS-c functionally prevents metabolic disorders. Metabolites 2023, 13, 125. [Google Scholar] [CrossRef]
- Zheng, Y.; Wei, Z.; Wang, T. MOTS-c: A promising mitochondrial-derived peptide for therapeutic exploitation. Front. Endocrinol. 2023, 14, 1120533. [Google Scholar] [CrossRef]
- Wang, M.; Wang, G.; Pang, X.; Ma, J.; Yuan, J.; Pan, Y.; Fu, Y.; Laher, I.; Li, S. MOTS-c repairs myocardial damage by inhibiting the CCN1/ERK1/2/EGR1 pathway in diabetic rats. Front. Nutr. 2023, 9, 1060684. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Kim, S.; Miller, B.; Zempo, H.; Tanisawa, K.; Natsume, T.; Lee, S.H.; Wan, J.; Leelaprachakul, N.; Kumagai, M.E.; et al. MOTS-c modulates skeletal muscle function by directly binding and activating CK2. iScience 2024, 27, 111212. [Google Scholar] [CrossRef]
- Feng, Y.; Rao, Z.; Tian, X.; Hu, Y.; Yue, L.; Meng, Y.; Zhong, Q.; Chen, W.; Xu, W.; Li, H.; et al. Endurance training enhances skeletal muscle mitochondrial respiration by promoting MOTS-c secretion. Free. Radic. Biol. Med. 2025, 227, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, J.; Namkung, J. Expression profile of mouse Gm20594, nuclear-encoded humanin-like gene. J. Lifestyle Med. 2021, 11, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Merry, T.L.; Chan, A.; Woodhead, J.S.T.; Reynolds, J.C.; Kumagai, H.; Kim, S.; Lee, C. Mitochondrial-derived peptides in energy metabolism. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E659–E666. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, L.; Zhuang, Z.; Hu, X.; Dong, D. Mitochondrial-derived peptides in diabetes and its complications. Front. Endocrinol. 2022, 12, 808120. [Google Scholar] [CrossRef]
- Mortz, M.; Dégletagne, C.; Romestaing, C.; Duchamp, C. Comparative genomic analysis identifies small open reading frames (sORFs) with peptide-encoding features in avian 16S rDNA. Genomics 2020, 112, 1120–1127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, X.; Liu, J.; Xu, B.; Wang, H.; Liu, L.; Zheng, X.; Chen, J. Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator. Animals 2025, 15, 2230. https://doi.org/10.3390/ani15152230
Shu X, Liu J, Xu B, Wang H, Liu L, Zheng X, Chen J. Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator. Animals. 2025; 15(15):2230. https://doi.org/10.3390/ani15152230
Chicago/Turabian StyleShu, Xin, Jiying Liu, Bingjie Xu, Hui Wang, Li Liu, Xiaotong Zheng, and Jianfei Chen. 2025. "Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator" Animals 15, no. 15: 2230. https://doi.org/10.3390/ani15152230
APA StyleShu, X., Liu, J., Xu, B., Wang, H., Liu, L., Zheng, X., & Chen, J. (2025). Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator. Animals, 15(15), 2230. https://doi.org/10.3390/ani15152230