Review of Molecular Tools Used in Diagnosis of Babesia spp. and Anaplasma spp. Infection in Wild Boar and Their Ticks—20 Years Retrospective Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Epidemiological and Clinical Diagnosis
4.1. Diagnosis of Babesia Infection
4.2. Diagnosis of Anaplasma Infection
4.2.1. Transmission and Clinical Manifestations
4.2.2. Other Clinical Signs
4.3. Diagnosis of Tick Parasitism
5. Laboratory Diagnosis
5.1. Laboratory Diagnosis in Babesiosis
5.1.1. Microscopic Examination
5.1.2. PCR (Polymerase Chain Reaction)
5.2. Laboratory Diagnosis in Anaplasmosis
PCR (Polymerase Chain Reaction) and RT-PCR (Reverse Transcription Polymerase Chain Reaction)
5.3. Laboratory Diagnosis in Tick Parasitism
5.4. Laboratory Diagnosis in Wild Boar and Associated Ticks for Both Pathogens (Babesia spp. and Anaplasma spp.)
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Licoppe, A.; Prevot, C.; Heymans, M.; Bovy, C.; Casaer, J.; Cahill, S. Wild boar/feral pig in (peri-) urban areas. Managing wild boar in human-dominated landscapes. In Proceedings of the International Union of Game Biologists—Congress IUGB 2013, Brussels, Belgium, 28 August 2013; pp. 1–31. [Google Scholar]
- Cumming, G.S. Host distributions do not limit the species ranges of most African ticks (Acari: Ixodidae). Bull. Entomol. Res. 1999, 89, 303–327. [Google Scholar] [CrossRef]
- Stuen, S.; Schulz, A.C. Ticks and tick-borne diseases affecting humans and animals in the Nordic countries: An update. Ticks Tick Borne Dis. 2020, 11, 101337. [Google Scholar]
- Short, S.P.; Norval, R.A. Seasonal activity of Rhipicephalus appendiculatus in Zimbabwe and Rhodesia. Vet. J. Parasitol. 1981, 72, 767–769. [Google Scholar]
- Hoghoohi-Rad, N.; Ghaemi, P.; Shayan, P.; Eckert, B.; Sadr-Shirazi, N. Detection of native carrier cattle infected with T. annulata by semi-nested PCR and smear method in Golestan province of Iran. World Appl. Sci. J. 2011, 12, 317–323. [Google Scholar]
- Bustin, S.A. Why the need for qPCR publication guidelines?—The case for MIQE. Methods 2010, 50, 217–226. [Google Scholar] [CrossRef]
- Peeling, R.W.; Smith, P.G.; Bossuyt, P.M.M. A guide for diagnostic evaluations. Nat. Rev. Microbiol. 2010, 8, S2–S6. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Pusterla, N.; Decaro, N. Babesiosis in domestic animals. Vet. Clin. Exot. Anim. Pract. 2020, 23, 599–611. [Google Scholar]
- de la Fuente, J.; Villar, M.; Cabezas-Cruz, A.; Estrada-Peña, A.; Ayllón, N.; Alberdi, P. Tick-Host-Pathogen Interactions: Conflict and Cooperation. PLoS Pathog. 2016, 12, e1005488. [Google Scholar] [CrossRef]
- de Waal, D.T. Porcine babesiosis. In Infectious Diseases of Livestock; Coetzer, J.A.W., Thomson, G.E., Maclachlan, N.J., Penrith, M.L., Eds.; Anipedia: Pretoria, South Africa, 2019. [Google Scholar]
- Lawrence, D.A.; Shone, D.K. Porcine piroplasmosis. Babesia trautmanni infection in Southern Rhodesia. J. S. Afr. Vet. Assoc. 1955, 26, 89–94. [Google Scholar]
- Zobba, R.; Nuvoli, A.M.; Sotgiu, F.; Lecis, R.; Spezzigu, A.; Dore, G.M.; Masia, M.A.; Cacciotto, C.; Parpaglia, M.L.; Dessì, D.; et al. Molecular epizootiology and diagnosis of porcine babesiosis in Sardinia, Italy. Vector Borne Zoonotic Dis. 2014, 10, 716–723. [Google Scholar] [CrossRef]
- Naude, T.W. An outbreak of porcine babesiosis in the Northern Transvaal. J. S. Afr. Vet. Assoc. 1962, 33, 209–211. [Google Scholar]
- Zobba, R.; Parpaglia, M.L.P.; Spezzigu, A.; Pittau, M.; Alberti, A. First molecular identification and phylogeny of a Babesia sp. from a symptomatic sow (Sus scrofa Linnaeus 1758). J. Clin. Microbiol. 2011, 49, 2321–2324. [Google Scholar] [CrossRef]
- de Waal, D.T.; Lopez Rebollar, L.M.; Potgieter, F.T. The transovarial transmission of Babesia trautmanni by Rhipicephalus simus to domestic pigs. Onderstepoort J. Vet. Res. 1992, 59, 219–221. [Google Scholar]
- Penzhorn, B.L. Babesiosis of wild carnivores and ungulates. Vet. Parasitol. 2006, 138, 11–21. [Google Scholar] [CrossRef]
- Homer, M.J.; Aguilar-Delfin, I.; Telford, S.R.; Krause, P.J.; Persing, D.H. Babesiosis. Clin. Microbiol. Rev. 2000, 13, 451–469. [Google Scholar] [CrossRef]
- Laha, R.; Das, M.; Sen, A. Morphology, epidemiology, and phylogeny of Babesia: An overview. Trop. Parasitol. 2015, 5, 94–100. [Google Scholar] [CrossRef]
- Leschnik, M.W.; Kirtz, G.; Tichy, A.G.; Leidinger, E. Seasonal occurrence of canine babesiosis is influenced by local climate conditions. Int. J. Med. Microbiol. 2008, 298, 243–248. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. Int. J. Parasitol. Parasites Wildl. 2015, 4, 452–461. [Google Scholar] [CrossRef]
- Olwoch, J.M.; Van Jaarsveld, A.S.; Scholtz, C.H.; Horak, I.G. Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort J. Vet. Res. 2007, 74, 45–72. [Google Scholar] [CrossRef]
- Bett, B.; Lindahl, J.; Delia, G. Climate change and infectious livestock diseases: The case of rift valley fever and tick-borne diseases. In The Climate-Smart Agriculture Papers—Investigating the Business of a Productive, Resilient and Low Emission Future; Rosenstock, T.S., Nowak, A., Girvets, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 36–44. [Google Scholar]
- Bilić, P.; Kuleš, J.; Barić Rafaj, R.; Mrljak, V. Canine babesiosis: Where do we stand? Acta Vet. 2018, 68, 127–160. [Google Scholar]
- McCullough, J. RBCs as targets of infection. Hematology 2014, 2014, 404–409. [Google Scholar] [CrossRef]
- Krause, P.J.; Edoard, G.; Vannier, P. Babesiosis: Microbiology, Epidemiology and Pathogenesis. 2014. Unpublished work. Available online: https://doctorabad.com/app/uptodate/d/topic.htm?path=babesiosis-microbiology-epidemiology-and-pathogenesis#H21 (accessed on 24 July 2025).
- Johns, J.L.; Christopher, M.M. Extramedullary hematopoiesis: A new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet. Pathol. 2012, 49, 508–523. [Google Scholar] [CrossRef]
- Boes, K.M.; Durham, A.C. Bone marrow, blood cells, and the lymphoid/lymphatic system. In Pathologic Basis of Veterinary Disease Expert Consult, 6th ed.; Zachary, F., Ed.; Elsevier Inc.: St. Louis, MO, USA, 2017; p. 733. [Google Scholar]
- Breshears, M.A.; Confer, A.W. The urinary system. In Pathologic Basis of Veterinary Disease Expert Consult, 6th ed.; Zachary, J.F., Ed.; Elsevier Inc.: St. Louis, MO, USA, 2017; p. 655. [Google Scholar]
- Miller, M.A.; Zachary, J.F. Mechanisms and morphology of cellular injury, adaptation, and death. In Pathologic Basis of Veterinary Disease Expert Consult, 6th ed.; Zachary, J.F., Ed.; Elsevier Inc.: St. Louis, MO, USA, 2017; pp. 38–39. [Google Scholar]
- Jacobson, L.S.; Clark, I.A. The pathophysiology of canine babesiosis: New approaches to an old puzzle. J. S. Afr. Vet. Assoc. 1994, 65, 134–145. [Google Scholar]
- Leisewitz, A.L.; Goddard, A.; Clift, S.; Thompson, P.N.; de Gier, J.; van Engelshoven, J. A clinical and pathological description of 320 cases of naturally acquired Babesia rossi infection in dogs. Vet. Parasitol. 2019, 271, 22–30. [Google Scholar] [CrossRef]
- Horowitz, M.L.; Coletta, F.; Fein, A.M. Delayed onset adult respiratory distress syndrome in babesiosis. Chest 1994, 106, 1299–1301. [Google Scholar] [CrossRef]
- Ubah, A.S.; Abalaka, S.E.; Idoko, I.S.; Obeta, S.S.; Ejiofor, C.E.; Mshelbwala, P.P. Canine babesiosis in a male Boerboel: Hematobiochemical and anatomic pathological changes in the cardiorespiratory and reproductive organs. Vet. Anim. Sci. 2019, 7, 100049. [Google Scholar] [CrossRef]
- Dahlgren, F.S.; Mandel, E.J.; Krebs, J.W.; Massung, R.F.; McQuiston, J.H. Increasing incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007. Am. J. Trop. Med. Hyg. 2011, 85, 124–131. [Google Scholar] [CrossRef]
- Poitout, F.M.; Shinozaki, J.K.; Stockwell, P.J.; Holland, C.J.; Shukla, S.K. Genetic variants of Anaplasma phagocytophilum infecting dogs in Western Washington State. J. Clin. Microbiol. 2005, 43, 796–801. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Ni, D.; Li, Q.; Yu, Y.; Yu, X.J. Nosocomial transmission of human granulocytic anaplasmosis in China. JAMA 2008, 300, 2263–2270. [Google Scholar] [CrossRef]
- Barlough, J.E.; Madigan, J.E.; Turoff, D.R.; Clover, J.R. An Ehrlichia strain from a llama (Lama glama) and llama-associated ticks (Ixodes pacificus). J. Clin. Microbiol. 1997, 35, 1005–1007. [Google Scholar] [CrossRef]
- Schorn, S.; Pfister, K.; Reulen, H.; Mahling, M.; Manitz, J.; Thiel, C. Prevalence of Anaplasma phagocytophilum in Ixodes ricinus in Bavarian public parks, Germany. Ticks Tick Borne Dis. 2011, 2, 196–203. [Google Scholar] [CrossRef]
- Nuttall, P.A.; Labuda, M. Dynamics of infection in tick vectors and at the tick-host interface. Adv. Virus Res. 2003, 60, 233–272. [Google Scholar]
- Hulinska, D.; Langrova, K.; Pejcoch, M.; Pavlasek, I. Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. APMIS 2004, 112, 239–247. [Google Scholar] [CrossRef]
- Strasek Smrdel, K.; Tozon, N.; Duh, D.; Petrovec, M.; Avsic Zupanc, T. Diversity of groESL sequences of Anaplasma phagocytophilum among dogs in Slovenia. Clin. Microbiol. Infect. 2009, 15 (Suppl. 2), 79–80. [Google Scholar] [CrossRef]
- Michalik, J.; Stańczak, J.; Cieniuch, S.; Racewicz, M.; Sikora, B.; Dabert, M. Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum variants. Emerg. Infect. Dis. 2012, 18, 998–1001. [Google Scholar] [CrossRef]
- Torina, A.; Alongi, A.; Naranjo, V.; Scimeca, S.; Nicosia, S.; Di Marco, V.; Caracappa, S.; Kocan, K.M.; de la Fuente, J. Characterization of Anaplasma infections in Sicily, Italy. Ann. N. Y. Acad. Sci. 2008, 1149, 90–93. [Google Scholar] [CrossRef]
- Ruiz-Fons, F.; de Mera, I.G.F.; Acevedo, P.; Höfle, U.; Vicente, J.; de la Fuente, J.; Gortazar, C. Ticks (Acari: Ixodidae) parasitizing Iberian red deer (Cervus elaphus hispanicus) and European wild boar (Sus scrofa) from Spain: Geographical and temporal distribution. Vet. Parasitol. 2006, 140, 133–142. [Google Scholar] [CrossRef]
- de la Fuente, J.; Massung, R.F.; Wong, S.J.; Chu, F.K.; Lutz, H.; Meli, M.; von Loewenich, F.D.; Grzeszczuk, A.; Torina, A.; Caracappa, S.; et al. Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. J. Clin. Microbiol. 2005, 43, 1309–1317. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Acevedo, P.; Ruiz-Fons, F.; Gortázar, C.; de la Fuente, J. Evidence of the importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp. PLoS ONE 2008, 3, e2999. [Google Scholar] [CrossRef]
- Portillo, A.; Pérez-Martínez, L.; Santibáñez, S.; Santibáñez, P.; Palomar, A.M.; Oteo, J.A. Anaplasma spp. in wild mammals and Ixodes ricinus from the North of Spain. Vector Borne Zoonotic Dis. 2011, 11, 3–8. [Google Scholar] [CrossRef]
- Hodzic, E.; Fish, D.; Maretzki, C.M.; De Silva, A.M.; Feng, S.; Barthold, S.W. Acquisition and transmission of the agent of granulocytic ehrlichiosis by Ixodes scapularis ticks. J. Clin. Microbiol. 1998, 36, 3574–3578. [Google Scholar] [CrossRef]
- Fourie, J.J.; Evans, A.; Labuschagne, M.; Crafford, D.; Madder, M.; Pollmeier, M.; Schunack, B. Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes. Parasites Vectors 2019, 12, 136. [Google Scholar] [CrossRef]
- Woldehiwet, Z. The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 2010, 167, 108–122. [Google Scholar] [CrossRef]
- Ravnik, U.; Tozon, N.; Strasek Smrdel, K.; Avsic Zupanc, T. Anaplasmosis in dogs: The relation of haematological, biochemical and clinical alterations to antibody titre and PCR confirmed infection. Vet. Microbiol. 2011, 149, 172–176. [Google Scholar] [CrossRef]
- Scorpio, D.G.; Dumler, J.S.; Barat, N.C.; Cook, J.A.; Barat, C.E.; Stillman, B.A. Comparative strain analysis of Anaplasma phagocytophilum infection and clinical outcomes in a canine model of granulocytic anaplasmosis. Vector Borne Zoonotic Dis. 2011, 11, 223–229. [Google Scholar] [CrossRef]
- Greig, B.; Asanovich, K.M.; Armstrong, P.J.; Dumler, J.S. Geographic, clinical, serologic, and molecular evidence of granulocytic ehrlichiosis, a likely zoonotic disease, in Minnesota and Wisconsin dogs. J. Clin. Microbiol. 1996, 34, 44–48. [Google Scholar] [CrossRef]
- Mazepa, A.W.; Kidd, L.B.; Young, K.M.; Trepanier, L. Clinical presentation of 26 Anaplasma phagocytophilum-seropositive dogs residing in an endemic area. J. Am. Anim. Hosp. Assoc. 2010, 46, 405–412. [Google Scholar] [CrossRef]
- Chirek, A.; Silaghi, C.; Pfister, K.; Kohn, B. Granulocytic anaplasmosis in 63 dogs: Clinical signs, laboratory results, therapy and course of disease. J. Small Anim. Pract. 2018, 59, 112–120. [Google Scholar] [CrossRef]
- Eberts, M.D.; Diniz, P.P.; Beall, M.J.; Stillman, B.A.; Chandrashekar, R.; Breitschwerdt, E.B. Typical and atypical manifestations of Anaplasma phagocytophilum infection in dogs. J. Am. Anim. Hosp. Assoc. 2011, 47, 88–94. [Google Scholar] [CrossRef]
- Egenvall, A.E.; Hedhammar, A.A.; Bjoersdorff, A.I. Clinical features and serology of 14 dogs affected by granulocytic ehrlichiosis in Sweden. Vet. Rec. 1997, 140, 222–226. [Google Scholar] [CrossRef]
- Lester, S.J.; Breitschwerdt, E.B.; Collis, C.D.; Hegarty, B.C. Anaplasma phagocytophilum infection (granulocytic anaplasmosis) in a dog from Vancouver Island. Can. Vet. J. 2005, 46, 825–827. [Google Scholar]
- Egenvall, A.; Bjoersdorff, A.; Lilliehook, I.; Engvall, E.O.; Karlstam, E.; Artursson, K. Early manifestations of granulocytic ehrlichiosis in dogs inoculated experimentally with a Swedish Ehrlichia species isolate. Vet. Rec. 1998, 143, 412–417. [Google Scholar] [CrossRef]
- Granick, J.L.; Armstrong, P.J.; Bender, J.B. Anaplasma phagocytophilum infection in dogs: 34 cases (2000–2007). J. Am. Vet. Med. Assoc. 2009, 234, 1559–1565. [Google Scholar] [CrossRef]
- Nair, A.D.S.; Cheng, C.; Ganta, C.K.; Sanderson, M.W.; Alleman, A.R.; Munderloh, U.G. Comparative experimental infection study in dogs with Ehrlichia canis, E. chaffeensis, Anaplasma platys and A. phagocytophilum. PLoS ONE 2016, 11, e0148239. [Google Scholar]
- Engvall, E.O.; Pettersson, B.; Persson, M.; Artursson, K.; Johansson, K.E. A 16S rRNA-based PCR assay for detection and identification of granulocytic Ehrlichia species in dogs, horses, and cattle. J. Clin. Microbiol. 1996, 34, 2170–2174. [Google Scholar] [CrossRef]
- Jäderlund, K.H.; Egenvall, A.; Bergström, K.; Hedhammar, A. Seroprevalence of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in dogs with neurological signs. Vet. Rec. 2007, 160, 825–831. [Google Scholar] [CrossRef]
- Jäderlund, K.H.; Bergström, K.; Egenvall, A.; Hedhammar, A. Cerebrospinal fluid PCR and antibody concentrations against Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs with neurological signs. J. Vet. Intern. Med. 2009, 23, 669–672. [Google Scholar] [CrossRef]
- de la Fuente, J.; Estrada-Peña, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef]
- Jongejan, F.; Uilenberg, G. Ticks and control methods. Rev. Sci. Tech. 1994, 13, 1201–1226. [Google Scholar] [CrossRef]
- Matjila, P.T.; Leisewitz, A.L.; Jongejan, F.; Penzhorn, B.L. Molecular detection of tick-borne protozoal and ehrlichial infections in domestic dogs in South Africa. Vet. Parasitol. 2008, 155, 152–157. [Google Scholar] [CrossRef]
- Mtshali, K.; Nakao, R.; Sugimoto, C.; Thekisoe, O. Occurrence of Coxiella burnetii, Ehrlichia canis, Rickettsia species and Anaplasma phagocytophilum-like bacterium in ticks collected from dogs and cats in South Africa. J. S. Afr. Vet. Assoc. 2017, 88, a1390. [Google Scholar] [CrossRef]
- Stoltsz, H.; Byaruhanga, C.; Troskie, M.; Makgabo, M.; Oosthuizen, M.C.; Collins, N.E.; Neves, L. Improved detection of Babesia bigemina from various geographical areas in Africa using quantitative PCR and reverse line blot hybridization. Ticks Tick Borne Dis. 2020, 11, 101415. [Google Scholar] [CrossRef]
- Horak, I.G.; Jordaan, A.J.; Nel, P.J.; Van Heerden, J.; Heyne, H.; Van Dalen, E.M. Distribution of endemic and introduced tick species in Free State Province, South Africa. J. S. Afr. Vet. Assoc. 2015, 86, 1255. [Google Scholar] [CrossRef]
- Sonenshine, D.E.; Kocan, K.M.; de la Fuente, D. Tick control: Further thought on a research agenda. Trends Parasitol. 2006, 22, 550–551. [Google Scholar] [CrossRef]
- Clay, K.; Fuqua, C. The tick microbiome: Diversity, distribution and influence of the internal microbial community for a blood-feeding disease vector. In Critical Needs and Gaps in Understanding Prevention, Amelioration, and Resolution of Lyme and Other Tick-Borne Diseases: The Short-Term and Long-Term Outcomes; Workshop Report; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Wade, W. Unculturable bacteria—The uncharacterized organisms that cause oral infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar] [CrossRef]
- Hackenberg, M.; Kotsyfakis, M. Exosome-mediated pathogen transmission by arthropod vectors. Trends Parasitol. 2018, 34, 549–552. [Google Scholar] [CrossRef]
- Kilpatrick, A.M.; Dobson, A.D.M.; Levi, T.; Salkeld, D.J.; Swei, A.; Ginsberg, H.S.; Kjemtrup, A.; Padgett, K.A.; Jensen, P.; Fish, D.; et al. Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160117. [Google Scholar] [CrossRef]
- Guardone, L.; Nogarol, C.; Accorsi, A.; Vitale, N.; Listorti, V.; Scala, S.; Brusadore, S.; Miceli, I.N.; Wolfsgruber, L.; Guercio, A.; et al. Ticks and Tick-Borne Pathogens: Occurrence and Host Associations over Four Years of Wildlife Surveillance in the Liguria Region (Northwest Italy). Animals 2024, 14, 2377. [Google Scholar] [CrossRef]
- Dreghiciu, I.C.; Imre, M.; Oprescu, I.; Florea, T.; Ghilean, B.M.; Sîrbu, B.A.M.; Iorgoni, V.; Badea, C.; Giubega, S.; Mederle, N.; et al. Molecular Detection Of Anaplasma phagocytophilum In Wild Boar (Sus scrofa) From Hunedoara And Timiș Counties—Preliminary Study. Rev. Rom. Med. Vet. 2023, 33, 59–62. [Google Scholar]
- Matei, I.A.; Kalmár, Z.; Balea, A.; Mihaiu, M.; Sándor, A.D.; Cocian, A.; Crăciun, S.; Bouari, C.; Briciu, V.T.; Fiț, N. The Role of Wild Boars in the Circulation of Tick-Borne Pathogens: The First Evidence of Rickettsia monacensis Presence. Animals 2023, 13, 1743. [Google Scholar] [CrossRef]
- Hornok, S.; Szekeres, S.; Horváth, G.; Takács, N.; Bekő, K.; Kontschán, J.; Gyuranecz, M.; Tóth, B.; Sándor, A.D.; Juhász, A.; et al. Diversity of tick species and associated pathogens on peri-urban wild boars—First report of the zoonotic Babesia cf. crassa from Hungary. Ticks Tick-Borne Dis. 2022, 13, 101936. [Google Scholar] [CrossRef]
- del Cerro, A.; Oleaga, A.; Somoano, A.; Barandika, J.F.; García-Pérez, A.L.; Espí, A. Molecular identification of tick-borne pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and piroplasms) in questing and feeding hard ticks from North-Western Spain. Ticks Tick-Borne Dis. 2022, 13, 101961. [Google Scholar] [CrossRef]
- Weaver, G.V.; Anderson, N.; Garrett, K.; Thompson, A.T.; Yabsley, M.J. Ticks and tick-borne pathogens in domestic animals, wild pigs, and off-host environmental sampling in Guam, USA. Front. Vet. Sci. 2022, 8, 803424. [Google Scholar] [CrossRef]
- Castillo-Contreras, R.; Magen, L.; Birtles, R.; Varela-Castro, L.; Hall, J.L.; Conejero, C.; Aguilar, X.F.; Colom-Cadena, A.; Lavín, S.; Mentaberre, G.; et al. Ticks on wild boar in the metropolitan area of Barcelona (Spain) are infected with spotted fever group rickettsiae. Transbound. Emerg. Dis. 2022, 69, e82–e95. [Google Scholar] [CrossRef]
- Santana, M.S.; Hoppe, E.G.L.; Carraro, P.E.; Calchi, A.C.; de Oliveira, L.B.; do Amaral, R.B.; Mongruel, A.C.B.; Machado, D.M.R.; Burger, K.P.; Barros-Batestti, D.M.; et al. Molecular detection of vector-borne agents in wild boars (Sus scrofa) and associated ticks from Brazil, with evidence of putative new genotypes of Ehrlichia, Anaplasma, and haemoplasmas. Transbound. Emerg. Dis. 2022, 69, 2733–2747. [Google Scholar] [CrossRef]
- Hrazdilová, K.; Lesiczka, P.M.; Bardoň, J.; Vyroubalová, Š.; Šimek, B.; Zurek, L.; Modrý, D. Wild boar as a potential reservoir of zoonotic tick-borne pathogens. Ticks Tick-Borne Dis. 2021, 12, 101558. [Google Scholar] [CrossRef]
- Fabri, N.D.; Sprong, H.; Hofmeester, T.R.; Heesterbeek, H.; Donnars, B.F.; Widemo, F.; Ecke, F.; Cromsigt, J.P.G.M. Wild ungulate species differ in their contribution to the transmission of Ixodes ricinus-borne pathogens. Parasites Vectors 2021, 14, 360. [Google Scholar] [CrossRef]
- Michalski, M.M.; Kubiak, K.; Szczotko, M.; Dmitryjuk, M. Tick-Borne Pathogens in Ticks Collected from Wild Ungulates in North-Eastern Poland. Pathogens 2021, 10, 587. [Google Scholar] [CrossRef]
- Skotarczak, B.; Adamska, M.; Sawczuk, M.; Maciejewska, A.; Wodecka, B.; Rymaszewska, A. Coexistence of tick-borne pathogens in game animals and ticks in western Poland. Vet. Med. 2008, 53, 668–675. [Google Scholar] [CrossRef]
- Grassi, L.; Franzo, G.; Martini, M.; Mondin, A.; Cassini, R.; Drigo, M.; Pasotto, D.; Vidorin, E.; Menandro, M.L. Ecotyping of Anaplasma phagocytophilum from Wild Ungulates and Ticks Shows Circulation of Zoonotic Strains in Northeastern Italy. Animals 2021, 11, 310. [Google Scholar] [CrossRef]
- Morikawa, S.; Hayashi, K.; Andoh, M.; Tateno, M.; Endo, Y.; Asada, M.; Maeda, K.; Matsuu, A.; Yoshida, A.; Ozawa, M.; et al. Detection and molecular characterization of Babesia sp. in wild boar (Sus scrofa) from western Japan. Ticks Tick-Borne Dis. 2021, 12, 101695. [Google Scholar] [CrossRef]
- Orkun, Ö.; Emir, H. Identification of tick-borne pathogens in ticks collected from wild animals in Turkey. Parasitol. Res. 2020, 119, 3083–3091. [Google Scholar] [CrossRef]
- Pereira, A.; Parreira, R.; Nunes, M.; Casadinho, A.; Vieira, M.L.; Campino, L.; Maia, C. Molecular detection of tick-borne bacteria and protozoa in cervids and wild boars from Portugal. Parasites Vectors 2016, 9, 251. [Google Scholar] [CrossRef]
- Kazimírová, M.; Hamšíková, Z.; Špitalská, E.; Minichová, L.; Mahríková, L.; Caban, R.; Sprong, H.; Fonville, M.; Schnittger, L.; Kocianová, E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasites Vectors 2018, 11, 495. [Google Scholar] [CrossRef]
- Hornok, S.; Sugár, L.; Fernández De Mera, I.G.; De La Fuente, J.; Horváth, G.; Kovács, T.; Micsutka, A.; Gönczi, E.; Flaisz, B.; Takács, N.; et al. Tick- and fly-borne bacteria in ungulates: The prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Vet. Res. 2018, 14, 98. [Google Scholar] [CrossRef]
- Honig, V.; Carolan, H.E.; Vavruskova, Z.; Massire, C.; Mosel, M.R.; Crowder, C.D.; Rounds, M.A.; Ecker, D.J.; Ruzek, D.; Grubhoffer, L.; et al. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol. Ecol. 2017, 93, fix129. [Google Scholar] [CrossRef]
- Reiterová, K.; Špilovská, S.; Blaňarová, L.; Derdáková, M.; Čobádiová, A.; Hisira, V. Wild boar (Sus scrofa)—Reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia. Acta Parasitol. 2016, 61, 255–260. [Google Scholar] [CrossRef]
- Kiss, T.; Cadar, D.; Krupaci, F.A.; Bordeanu, A.D.; Spînu, M. Prevalence of Anaplasma phagocytophilum infection in European wild boar (Sus scrofa) populations from Transylvania, Romania. Epidemiol. Infect. 2014, 142, 246–250. [Google Scholar] [CrossRef]
- Silaghi, C.; Pfister, K.; Overzier, E. Molecular investigation for bacterial and protozoan tick-borne pathogens in wild boars (Sus scrofa) from southern Germany. Vector Borne Zoonotic Dis. 2014, 14, 371–373. [Google Scholar] [CrossRef]
- Nahayo, A.; Bardiau, M.; Volpe, R.; Pirson, J.; Paternostre, J.; Fett, T.; Linden, A. Molecular evidence of Anaplasma phagocytophilum in wild boar (Sus scrofa) in Belgium. BMC Vet. Res. 2014, 10, 80. [Google Scholar] [CrossRef]
- Avenant, A.; Park, J.Y.; Vorster, I.; Mitchell, E.P.; Arenas-Gamboa, A.M. Porcine Babesiosis Caused by Babesia sp. Suis in a Pot-Bellied Pig in South Africa. Front. Vet. Sci. 2021, 7, 620462. [Google Scholar] [CrossRef]
- Mapchart. Available online: https://www.mapchart.net (accessed on 7 June 2025).
- Masatani, T.; Hayashi, K.; Andoh, M.; Tateno, M.; Endo, Y.; Asada, M.; Kusakisako, K.; Tanaka, T.; Gokuden, M.; Hozumi, N.; et al. Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan. Ticks Tick-Borne Dis. 2017, 8, 581–587. [Google Scholar] [CrossRef]
- Hornok, S.; Mester, A.; Takács, N.; de Mera, I.G.F.; de la Fuente, J.; Farkas, R. Re-emergence of bovine piroplasmosis in Hungary: Has the etiological role of Babesia divergens been taken over by B. major and Theileria buffeli? Parasites Vectors 2014, 7, 434. [Google Scholar] [CrossRef]
- Harrus, S.; Perlman-Avrahami, A.; Mumcuoglu, K.Y.; Morick, D.; Eyal, O.; Baneth, G. Molecular detection of Ehrlichia canis, Anaplasma bovis, Anaplasma platys, Candidatus Midichloria mitochondrii and Babesia canis vogeli in ticks from Israel. Clin. Microbiol. Infect. 2011, 17, 459–463. [Google Scholar] [CrossRef]
- Courtney, J.W.; Kostelnik, L.M.; Zeidner, N.S.; Massung, R.F. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004, 42, 3164–3168. [Google Scholar] [CrossRef]
- Massung, R.F.; Slater, K.; Owens, J.H.; Nicholson, W.L.; Mather, T.N.; Solberg, V.B.; Olson, J.G. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 1998, 36, 1090–1095. [Google Scholar] [CrossRef]
- Liz, J.S.; Sumner, J.W.; Pfister, K.; Brossard, M. PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). J. Clin. Microbiol. 2002, 40, 892–897. [Google Scholar] [CrossRef]
- Barber, R.; Li, Q.; Diniz, P.P.V.P.; Porter, B.F.; Breitschwerdt, E.B.; Claiborne, M.K.; Birkenheuer, A.J.; Levine, J.M.; Levine, G.J.; Chandler, K.; et al. Evaluation of brain tissue or cerebrospinal fluid with broadly reactive polymerase chain reaction for Ehrlichia, Anaplasma, spotted fever group Rickettsia, Bartonella, and Borrelia species in canine neurological diseases (109 cases). J. Vet. Intern. Med. 2010, 24, 372–378. [Google Scholar] [CrossRef]
- Hornok, S.; Meli, M.L.; Gönczi, E.; Halász, E.; Takács, N.; Farkas, R.; Hofmann-Lehmann, R. Occurrence of ticks and prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in three types of urban biotopes: Forests, parks and cemeteries. Ticks Tick-Borne Dis. 2014, 5, 785–789. [Google Scholar] [CrossRef]
- Kawahara, M.; Rikihisa, Y.; Quan, L.; Isogai, E.; Kenji, T.; Itagaki, A.; Hiramitsu, Y.; Tomoko, T. Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl. Environ. Microbiol. 2006, 72, 1102–1109. [Google Scholar] [CrossRef]
- Crowder, C.D.; Carolan, H.E.; Rounds, M.A.; Honig, V.; Mothes, B.; Haag, H.; Nolte, O.; Luft, B.J.; Ecker, D.J. Prevalence of Borrelia miyamotoi in Ixodes ticks in Europe and the United States. Emerg. Infect. Dis. 2012, 18, 571–580. [Google Scholar]
- Blaschitz, M.; Mnarodoslavsky, G.; Gföller, M.; Kanzler, M.; Stanek, G.; Walochnik, J. Babesia Species Occurring in Austrian Ixodes ricinus Ticks. Appl. Environ. Microbiol. 2008, 74, 4841–4846. [Google Scholar] [CrossRef]
- Alberti, A.; Zobba, R.; Chessa, B.; Addis, M.F.; Sparagano, O.; Pinna Parpaglia, M.L.; Cubeddu, T.; Pintori, G.; Pittau, M. Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Appl. Environ. Microbiol. 2005, 71, 6418–6422. [Google Scholar] [CrossRef]
- Casati, S.; Sager, H.; Gern, L.; Piffaretti, J.C. Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann. Agric. Environ. Med. 2006, 13, 65–70. [Google Scholar]
- Hurtado, A.; Barandika, J.F.; Oporto, B.; Minguijón, E.; Povedano, I.; García-Pérez, A.L. Risks of suffering tick-borne diseases in sheep translocated to a tick-infested area: A laboratory approach for the investigation of an outbreak. Ticks Tick-Borne Dis. 2015, 6, 31–37. [Google Scholar] [CrossRef]
- Hornok, S.; Szőke, K.; Kováts, D.; Estók, P.; Görföl, T.; Boldogh, S.A.; Takács, N.; Kontschán, J.; Földvári, G.; Barti, L.; et al. DNA of Piroplasms of ruminants and dogs in Ixodid bat ticks. PLoS ONE 2016, 11, e0167735. [Google Scholar] [CrossRef]
- Michalski, M.M.; Kubiak, K.; Szczotko, M.; Chajęcka, M.; Dmitryjuk, M. Molecular detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in ticks collected from dogs in urban areas of North-Eastern Poland. Pathogens 2020, 9, 455. [Google Scholar] [CrossRef]
- Pancholi, P.; Kolbert, C.P.; Mitchell, P.D.; Reed, K.D.; Dumler, J.S.; Bakken, J.S.; Telford, S.R.; Persing, D.H. Ixodes dammini as a potential vector of human granulocytic ehrlichiosis. J. Infect. Dis. 1995, 172, 1007–1012. [Google Scholar] [CrossRef]
- Allender, C.J.; Easterday, W.J.; Van Ert, M.N.; Wagner, D.M.; Keim, P. High-throughput extraction of arthropod vector and pathogen DNA using bead milling. Biotechniques 2004, 37, 730–734. [Google Scholar] [CrossRef]
- Hamšíková, Z.; Kazimírová, M.; Haruštiaková, D.; Mahríková, L.; Slovák, M.; Berthová, L.; Kocianová, E.; Schnittger, L. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasites Vectors 2016, 9, 292. [Google Scholar] [CrossRef]
- Øines, Ø.; Radzijevskaja, J.; Paulauskas, A.; Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasites Vectors 2012, 5, 156. [Google Scholar] [CrossRef]
- Overzier, E.; Pfister, K.; Thiel, C.; Herb, I.; Mahling, M.; Silaghi, C. Anaplasma phagocytophilum in questing Ixodes ricinus ticks: Comparison of prevalences and partial 16S rRNA gene variants in urban, pasture, and natural habitats. Appl. Environ. Microbiol. 2013, 79, 1730–1734. [Google Scholar] [CrossRef]
- Silaghi, C.; Woll, D.; Mahling, M.; Pfister, K.; Pfeffer, M. Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus, Germany. Parasites Vectors 2012, 5, 285. [Google Scholar] [CrossRef]
- Stuen, S.; Nevland, S.; Moum, T. Fatal cases of Tick-borne fever (TBF) in sheep caused by several 16S rRNA gene variants of Anaplasma phagocytophilum. Ann. N. Y. Acad. Sci. 2003, 990, 433–434. [Google Scholar] [CrossRef]
- Richter, J.R.; Kimsey, P.J.; Madigan, R.B.; Barlough, J.E.; Dumler, J.E.; Brooks, D.L. Ixodes pacificus (Acari: Ixodidae) as a vector of Ehrlichia equi (Rickettsiales: Ehrlichieae). J. Med. Entomol. 1996, 33, 1–5. [Google Scholar] [CrossRef]
- Massung, R.F.; Slater, K.G. Comparison of PCR assays for detection of the agent of human granulocytic ehrlichiosis, Anaplasma phagocytophilum. J. Clin. Microbiol. 2003, 41, 717–722. [Google Scholar] [CrossRef]
- Lorusso, V.; Wijnveld, M.; Majekodunmi, A.O.; Dongkum, C.; Fajinmi, A.; Dogo, A.G.; Thrusfield, M.; Mugenyi, A.; Vaumourin, E.; Igweh, A.C.; et al. Tick-borne pathogens of zoonotic and veterinary importance in Nigerian cattle. Parasites Vectors 2016, 9, 217. [Google Scholar] [CrossRef]
Exclusion Criteria | Description |
---|---|
Wrong host species | Studies conducted on animals other than wild boars |
Wrong pathogen | Studies targeting pathogens other than Babesia spp. or Anaplasma spp. |
Wrong diagnostic method | Studies using only serology, microscopy, or culture without molecular confirmation |
No molecular diagnostic data | Articles describing only epidemiology or tick ecology without molecular methods |
Non-original study | Reviews, letters, or opinion papers without primary data |
Language other than English | Studies published in other languages |
No full-text available | Abstracts, theses, or papers with no full text available |
Duplicate publication | Duplicate records retrieved from multiple databases |
Insufficient methodological details | Studies lacking a clear description of diagnostic protocols, primers, or sampling |
Year | Country | Sample | Pathogen | Diagnostic Method | Primers | References |
---|---|---|---|---|---|---|
2024 | Italy | Wild boar (blood), ticks | Anaplasma spp. | Endpoint PCR | 16SANA-F (5′-CAGAGTTTGATCCTGGCTCAGAACG-3′) 16SANA-R (5′-GAGTTTGCCGGGACTTCTTCTGTA-3′) | [77] |
2023 | Romania | Wild boar (blood) | A. phagocytophilum | Conventional PCR | LA6 (5′-GAG AGA TGC TTA TGG TAA GAC-3′) LA1 (5′-CGT TCA GCC ATC ATT GTG AC-3′) | [78] |
2023 | Romania | Ticks | A. phagocytophilum | Conventional PCR | Ge3a (5′-CACATGCAAGTCGAACGGATTATTC-3′) Ge10 (5′-TTCCGTTAAGAAGGATCTAATCTCC-3′) | [79] |
Babesia spp. | BJ1 (5′-GTCTTGTAATTGGAATGATGG-3′) BN2 (5′-TAGTTTATGGTTAGGACTACG-3′) | |||||
2022 | Hungary | Ticks | Anaplasma spp. | Real-time PCR | EphplGroEL(569)F (5′-ATGGTATGCAGTTTGATCGC-3′) EphGroEL(1142)R (5′-TTGAGTACAGCAACACCACCGGAA-3′) | [80] |
Babesia spp. | Conventional PCR | BJ1 (5′-GTCTTGTAATTGGAATGATGG-3′) BN2 (5′-TAGTTTATGGTTAGGACTACG-3′) | ||||
2022 | Spain | Ticks | Anaplasma spp. | Real-time PCR | ApMSP2-FN1 (5′-AAGGCAGTGTTGGKTAYGGTATT-3′) ApMSP2-R (5′-TTGGTCTTGAAGCGCTCGTA-3′) | [81] |
Babesia spp. | Conventional PCR | BJ1 (5′-GTCTTGTAATTGGAATGATGG-3′) BN2 (5′-TAGTTTATGGTTAGGACTACG-3′) | ||||
2022 | United States of America | Wild boar (blood) | Anaplasma platys | Conventional PCR | PLATYS-F (5′-TTGATTTTTGTCGTAGCTTGCT-3′) PLATYS-R (5′-TTGATTTCTCTCATTCCCCGT-3′) | [82] |
Ticks | A. phagocytophilum | ApMSP2f (5′-ATG GAA GGT AGT GTT GGT TAT GGT ATT-3′) ApMSP2r (5′-TTG GTC TTG AAG CGC TCG TA-3′) | ||||
Wild boar (blood) | Babesia canis vogeli | BTF1 (5′-TTGGCAAGGAATTAAAACTCCTTTG-3′) BTR2 (5′-CTAAGAATTTCACCTCTGACAGT-3′) | ||||
2022 | Spain | Wild boar (spleen) Ticks | Anaplasma spp. | Conventional PCR | 16S8FE (5′-GGAATTCAGAGTTGGATC(A/C)TGG(C/T)TCAG) BGA1B-new (5′-Biotin-CGGGATCCCGAGTTTGCCGGGACTT(C/T)TTCT | [83] |
Babesia spp. | RLB-F2 (5′-GACACAGGGAGGTAGTGACAAG) RLB-R2 (5′-Biotin-CTAAGAATTTCACCTCTGACAGT | |||||
2022 | Brazil | Wild boar (blood) Ticks | Anaplasma spp. | Conventional PCR | EHR16SD (5′-GGTACCYACAGAAGAAGTCC-3′) EHR16SR (5′-TAGCACTCATCGTTTACAGC-3′) | [84] |
2021 | Czech Republic | Wild boar (blood) Ticks | Anaplasma spp. | Nested PCR | Ap-groEL-F (M13F-GAIAIIACTGAYGGTATGCAGTTTG) Ap-groEL-R (M13R-CYAIMCIYTCYYTMAGYTTTTCCTT) | [85] |
2021 | Sweden | Ticks | A. phagocytophilum | Real-time PCR | ApMSP2f (5′-ATG GAA GGT AGT GTT GGT TAT GGT ATT-3′) ApMSP2r (5′-TTG GTC TTG AAG CGC TCG TA-3′) | [86] |
2021 | Poland | Ticks | A. phagocytophilum | Conventional PCR | EHR521 (5′-TGTAGGCGGTTCGGTAAGTTAAG-3′) EHR747 (5′-GCATCCTCATCCTTTACAGCGTG-3′) | [87] |
2021 | Poland | Wild boar (spleen, blood), ticks (I. ricinus) | A. phagocytophilum | Conventional PCR | ApMSP2f (5′-ATG GAA GGT AGT GTT GGT TAT GGT ATT-3′) ApMSP2r (5′-TTG GTC TTG AAG CGC TCG TA-3′) | [88] |
Nested PCR | HS43 5′–ATWGCWAARGAAGCATAGTC–3′ HS45 5′–ACTTCACGYYTCATAGAC–3′ | |||||
2021 | Italy | Wild boar (blood) Ticks | A. phagocytophilum | Real-time PCR | ApMSP2f (5′-ATGGAAGGTAGTGTTGGTTATGGTATT-3′) ApMSP2r (5′-TTGGTCTTGAAGCGCTCGTA-3′) | [89] |
Conventional PCR | groEL643f (5′-ACTGATGGTATGCARTTTGAYCG-3′) groEL1236r (5′-TCTTTRCGTTCYTTMACYTCAACTTC-3′) | |||||
2021 | Japan | Wild boar (liver, blood) | Babesia spp | Conventional PCR | BJ1 (5′-GTCTTGTAATTGGAATGATGG-3′) BN2 (5′-TAGTTTATGGTTAGGACTACG-3′) | [90] |
2020 | Turkey | Ticks | Babesia spp. | Conventional PCR | BJ1 (5′-GTC TTG TAA TTG GAA TGA TGG-3′) BN2 (5′-TAG TTT ATG GTT AGG ACT ACG-3′) | [91] |
Anaplasma spp. | MAP4AP5 (5′-ATGAATTACA GAGAATTGCTTGTAGG-3′) MSP4AP3 (5′-TTAAT TGAAAGCAAATCTTGCTCCTATG-3′) | |||||
2018 | Portugal | Wild boar (blood) | Babesia spp. | Conventional PCR | 5′-AATACCCAATCCTGACACAGGG-3′ 5′-TTAAATACGAATGCCCCCAAC-3′ | [92] |
Anaplasma spp. | 5′-ACTGATGGTATGCARTTTGAYCG-3′ 5′-TCTTTRCGTTCYTTMACYTCAACTTC-3′ | |||||
2018 | Slovakia | Wild boar (tissue) Ticks | Babesia spp. | Conventional PCR | BJ1 (5′-GTCTTGTAATTGGAATGATGG-3′) BN2 (5′-TAGTTTATGGTTAGGACTACG-3′) | [93] |
Anaplasma spp. | Real-time PCR | ApMSP2-FN1 (5′-AAGGCAGTGTTGGKTAYGGTATT-3′) ApMSP2-R (5′-TTGGTCTTGAAGCGCTCGTA-3′) | ||||
Nested PCR | Ge3a (5′-CACATGCAAGTCGAACGGATTATTC-3′) Ge10 (5′-TTCCGTTAAGAAGGATCTAATCTCC-3′) | |||||
2018 | Hungary | Wild boar (blood) | A. phagocytophilum | Real-time PCR | ApMSP2f (5′-ATG GAA GGT AGT GTT GGT TAT GGT ATT-3′) ApMSP2r (5′-TTG GTC TTG AAG CGC TCG TA-3′) | [94] |
2017 | Czech Republic | Ticks | Anaplasma spp. | Conventional PCR | M13F-GAIAIIACTGAYGGTATGCAGTTTG M13R-CYAIMCIYTCYYTMAGYTTTTCCTT | [95] |
Babesia spp. | TGCGCAAATTACCCAATCCTGACAC TCCAGACTTGCCCTCCAATTGGTA | |||||
2016 | Slovakia | Wild boar (blood) | A. phagocytophilum | Real-time PCR | ApMSP2f (5-ATGGAAGGTAGTGTTGGTTATGGTATT-3′) ApMSP2r (5′-TTGGTCTTGAAGCGCTCGTA-3′ | [96] |
2014 | Romania | Wild boar (spleen, liver, kidney) | A. phagocytophilum | Nested PCR | ge9f (5′-AACGGATTATTCTTTATAGCTTGCT-3′) ge2 (5′-GGCAGTATTAAAAGCAGCTCCAGG-3′) | [97] |
2014 | Germany | Wild boar (blood) Ticks (I. ricinus) | A. phagocytophilum | Conventional PCR | Ge3a (5′-CACATGCAAGTCGAACGGATTATTC-3′) Ge10 (5′-TTCCGTTAAGAAGGATCTAATCTCC-3′) | [98] |
Babesia spp. | BJ1 (5′-GTCTTGTAATTGGAATGATGG-3′) BN2 (5′-TAGTTTATGGTTAGGACTACG-3′) | |||||
2011 | Belgium | Wild boar (spleen) | Anaplasma spp. | Nested PCR | EC9 (5′-TACCTTGTTACGACTT-3′) EC12A (5′-TGATCCTGGCTCAGAACGAACG-3′) | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreghiciu, I.C.; Hoffman, D.; Imre, M.; Oprescu, I.; Dumitru, S.; Florea, T.; Morariu, S.; Iorgoni, V.; Plesko, A.; Orghici, G.; et al. Review of Molecular Tools Used in Diagnosis of Babesia spp. and Anaplasma spp. Infection in Wild Boar and Their Ticks—20 Years Retrospective Review. Animals 2025, 15, 2211. https://doi.org/10.3390/ani15152211
Dreghiciu IC, Hoffman D, Imre M, Oprescu I, Dumitru S, Florea T, Morariu S, Iorgoni V, Plesko A, Orghici G, et al. Review of Molecular Tools Used in Diagnosis of Babesia spp. and Anaplasma spp. Infection in Wild Boar and Their Ticks—20 Years Retrospective Review. Animals. 2025; 15(15):2211. https://doi.org/10.3390/ani15152211
Chicago/Turabian StyleDreghiciu, Ioan Cristian, Diana Hoffman, Mirela Imre, Ion Oprescu, Simona Dumitru, Tiana Florea, Sorin Morariu, Vlad Iorgoni, Anamaria Plesko, Gabriel Orghici, and et al. 2025. "Review of Molecular Tools Used in Diagnosis of Babesia spp. and Anaplasma spp. Infection in Wild Boar and Their Ticks—20 Years Retrospective Review" Animals 15, no. 15: 2211. https://doi.org/10.3390/ani15152211
APA StyleDreghiciu, I. C., Hoffman, D., Imre, M., Oprescu, I., Dumitru, S., Florea, T., Morariu, S., Iorgoni, V., Plesko, A., Orghici, G., & Ilie, M. S. (2025). Review of Molecular Tools Used in Diagnosis of Babesia spp. and Anaplasma spp. Infection in Wild Boar and Their Ticks—20 Years Retrospective Review. Animals, 15(15), 2211. https://doi.org/10.3390/ani15152211