Failure of Passive Immune Transfer in Neonatal Beef Calves: A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Screening Processes
2.4. Data Extraction
3. Results
3.1. Descriptive Summaries
3.2. Prevalence Estimates of FTPI in Beef Calves
3.3. Association Between FTPI and Calf Health Outcomes
3.4. Factors Related to Colostrum Management
3.4.1. Colostrum Quantity or Volume
3.4.2. Colostrum Quality (IgG Concentration or Source)
3.4.3. Timing of Colostrum Feeding
3.4.4. Method of Colostrum Feeding
3.4.5. Microbial Content of Colostrum
3.5. Factors Related to Calves
3.5.1. Calf Sex or Twin Status
3.5.2. Calf Vigor at Birth
3.5.3. Month of Birth, Reproductive Technologies Used at Breeding, Calf Cortisol and Epinephrine Concentrations, and Nonsteroidal Anti-Inflammatory Drugs After Difficult Calving
3.5.4. Calf Birthweight
3.6. Factors Related to Dams
3.6.1. Dam Body Condition Score or Udder Conformation
3.6.2. Dam Breed
3.6.3. Dam Prepartum Vaccination
3.6.4. Dam Parity
3.6.5. Dam Prepartum Nutrition
3.6.6. Calving Area, Calving Difficulty, and Non-Steroidal Anti-Inflammatory Drugs for Dystocia
3.6.7. Genetics and Heritability
3.7. Methods of FTPI Detection in Beef Calves
4. Discussion
4.1. Prevalence of FTPI and Associations with Health Outcomes
4.2. Factors Related to Colostrum Management
4.3. Calf-Related Risk Factors
4.3.1. Calf Sex, Twin Status, Birthweight
4.3.2. Calf Vigor at Birth and Nonsteroidal Anti-Inflammatory Drugs After Difficult Calving
4.3.3. Month of Birth
4.3.4. Calf Blood Cortisol and Epinephrine Concentration
4.4. Dam-Related Factors
4.4.1. Dam Breed and Body Condition
4.4.2. Calving Difficulty, Calving Area, and Non-Steroidal Anti-Inflammatory Drugs for Dystocia
4.4.3. Dam Parity
4.4.4. Dam Nutrition
4.4.5. Dam Prepartum Vaccination
4.4.6. Genetics and Heritability
4.5. Methodology to Assess FTPI in Beef Calves
5. Conclusions
6. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cortese, V.S. Neonatal Immunology. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Morrill, K.M.; Conrad, E.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Nationwide Evaluation of Quality and Composition of Colostrum on Dairy Farms in the United States. J. Dairy Sci. 2012, 95, 3997–4005. [Google Scholar] [CrossRef]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.H.; Kelly, A.L. Composition and Properties of Bovine Colostrum: A Review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar] [CrossRef]
- Foley, J.A.; Otterby, D.E. Availability, Storage, Treatment, Composition, and Feeding Value of Surplus Colostrum: A Review. J. Dairy Sci. 1978, 61, 1033–1060. [Google Scholar] [CrossRef]
- Stott, G.H.; Marx, D.B.; Menefee, B.E.; Nightengale, G.T. Colostral Immunoglobulin Transfer in Calves I. Period Absorpt. J. Dairy Sci. 1979, 62, 1632–1638. [Google Scholar] [CrossRef]
- Butler, J.E. Bovine Immunoglobulins: A Review. J. Dairy Sci. 1969, 52, 1895–1909. [Google Scholar] [CrossRef]
- Clawson, M.L.; Heaton, M.P.; Chitko-McKown, C.G.; Fox, J.M.; Smith, T.P.L.; Snelling, W.M.; Keele, J.W.; Laegreid, W.W. Beta-2-Microglobulin Haplotypes in U.S. Beef Cattle and Association with Failure of Passive Transfer in Newborn Calves. Mamm Genome 2004, 15, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Dewell, R.D.; Hungerford, L.L.; Keen, J.E.; Laegreid, W.W.; Griffin, D.D.; Rupp, G.P.; Grotelueschen, D.M. Association of Neonatal Serum Immunoglobulin G1 Concentration with Health and Performance in Beef Calves. J. Am. Vet. Med. Assoc. 2006, 228, 914–921. [Google Scholar] [CrossRef]
- Bragg, R.; Macrae, A.; Lycett, S.; Burrough, E.; Russell, G.; Corbishley, A. Prevalence and Risk Factors Associated with Failure of Transfer of Passive Immunity in Spring Born Beef Suckler Calves in Great Britain. Prev. Vet. Med. 2020, 181, 105059. [Google Scholar] [CrossRef]
- Robison, J.D.; Stott, G.H.; DeNise, S.K. Effects of Passive Immunity on Growth and Survival in the Dairy Heifer. J. Dairy Sci. 1988, 71, 1283–1287. [Google Scholar] [CrossRef]
- Raboisson, D.; Trillat, P.; Cahuzac, C. Failure of Passive Immune Transfer in Calves: A Meta-Analysis on the Consequences and Assessment of the Economic Impact. PLoS ONE 2016, 11, e0150452. [Google Scholar] [CrossRef] [PubMed]
- Uyama, T.; Kelton, D.F.; Winder, C.B.; Dunn, J.; Goetz, H.M.; LeBlanc, S.J.; McClure, J.T.; Renaud, D.L. Colostrum Management Practices That Improve the Transfer of Passive Immunity in Neonatal Dairy Calves: A Scoping Review. PLoS ONE 2022, 17, e0269824. [Google Scholar] [CrossRef]
- Forbes, C.; Greenwood, H.; Carter, M.; Clark, J. Automation of duplicate record detection for systematic reviews: Deduplicator. Syst. Rev. 2024, 13, 206. [Google Scholar] [CrossRef]
- Filteau, V.; Bouchard, E.; Fecteau, G.; Dutil, L.; DuTremblay, D. Health Status and Risk Factors Associated with Failure of Passive Transfer of Immunity in Newborn Beef Calves in Québec. Can. Vet. J. 2003, 44, 907–913. [Google Scholar]
- Waldner, C.L.; Rosengren, L.B. Factors Associated with Serum Immunoglobulin Levels in Beef Calves from Alberta and Saskatchewan and Association between Passive Transfer and Health Outcomes. Can. Vet. J. 2009, 50, 275–281. [Google Scholar]
- O’Shaughnessy, J.; Earley, B.; Barrett, D.; Doherty, M.L.; Crosson, P.; de Waal, T.; Mee, J.F. Disease Screening Profiles and Colostrum Management Practices on 16 Irish Suckler Beef Farms. Ir. Vet. J. 2015, 68, 1. [Google Scholar] [CrossRef] [PubMed]
- Sustronck, B.; Hoflack, G.; Lebrun, M.; Vertenten, G. Bayesian Latent Class Analysis of the Characteristics of Diagnostic Tests to Assess the Passive Immunity Transfer Status in Neonatal Belgian Blue Beef Calves. Prev. Vet. Med. 2022, 207, 105729. [Google Scholar] [CrossRef] [PubMed]
- Perrot, F.; Joulié, A.; Herry, V.; Masset, N.; Lemaire, G.; Barral, A.; Raboisson, D.; Roy, C.; Herman, N. Failure of Passive Immunity Transfer Is Not a Risk Factor for Omphalitis in Beef Calves. Vet. Sci. 2023, 10, 544. [Google Scholar] [CrossRef]
- Bragg, R.; Corbishley, A.; Lycett, S.; Burrough, E.; Russell, G.; Macrae, A. Effect of Neonatal Immunoglobulin Status on the Outcomes of Spring-Born Suckler Calves. Vet. Rec. 2023, 192, e2587. [Google Scholar] [CrossRef]
- Gamsjäger, L.; Haines, D.M.; Lévy, M.; Pajor, E.A.; Campbell, J.R.; Windeyer, M.C. Total and Pathogen-Specific Serum Immunoglobulin G Concentrations in Neonatal Beef Calves, Part 2: Associations with Health and Growth. Prev. Vet. Med. 2023, 220, 105993. [Google Scholar] [CrossRef]
- Martin, P.; Vinet, A.; Denis, C.; Grohs, C.; Chanteloup, L.; Dozias, D.; Maupetit, D.; Sapa, J.; Renand, G.; Blanc, F. Determination of Immunoglobulin Concentrations and Genetic Parameters for Colostrum and Calf Serum in Charolais Animals. J. Dairy Sci. 2021, 104, 3240–3249. [Google Scholar] [CrossRef] [PubMed]
- Todd, C.G.; McGee, M.; Tiernan, K.; Crosson, P.; O’Riordan, E.; McClure, J.; Lorenz, I.; Earley, B. An Observational Study on Passive Immunity in Irish Suckler Beef and Dairy Calves: Tests for Failure of Passive Transfer of Immunity and Associations with Health and Performance. Prev. Vet. Med. 2018, 159, 182–195. [Google Scholar] [CrossRef]
- Gamsjäger, L.; Haines, D.M.; Pajor, E.A.; Lévy, M.; Windeyer, M.C. Impact of Volume, Immunoglobulin G Concentration, and Feeding Method of Colostrum Product on Neonatal Nursing Behavior and Transfer of Passive Immunity in Beef Calves. Animal 2021, 15, 100345. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, M.F.; Saucedo, M.; Gamsjaeger, L.; Reppert, E.J.; Miesner, M.; Passler, T. Colostrum Replacement and Serum IgG Concentrations in Beef Calves Delivered by Elective Cesarean Section. Vet. Sci. 2024, 11, 258. [Google Scholar] [CrossRef]
- Ahmadi, F.; Kim, S.; Hwangbo, D.; Oh, Y.; Yu, J.; Bae, J.; Kim, N.Y. Performance of Hanwoo Calves Fed a Commercial Colostrum Replacer versus Natural Bovine Colostrum. J. Anim. Sci. Technol. 2021, 63, 1114–1125. [Google Scholar] [CrossRef]
- Homerosky, E.R.; Timsit, E.; Pajor, E.A.; Kastelic, J.P.; Windeyer, M.C. Predictors and Impacts of Colostrum Consumption by 4h after Birth in Newborn Beef Calves. Vet. J. 2017, 228, 1–6. [Google Scholar] [CrossRef]
- Van Hese, I.; Goossens, K.; Ampe, B.; Haegeman, A.; Opsomer, G. Exploring the Microbial Composition of Holstein Friesian and Belgian Blue Colostrum in Relation to the Transfer of Passive Immunity. J. Dairy Sci. 2022, 105, 7623–7641. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.M.; Pajor, E.; Campbell, J.; Levy, M.; Caulkett, N.; Windeyer, M.C. A Randomised Controlled Trial Investigating the Effects of Administering a Non-steroidal Anti-inflammatory Drug to Beef Calves Assisted at Birth and Risk Factors Associated with Passive Immunity, Health, and Growth. Vet. Rec. Open 2019, 6, e000364. [Google Scholar] [CrossRef] [PubMed]
- Pisello, L.; Sala, G.; Rueca, F.; Passamonti, F.; Pravettoni, D.; Ranciati, S.; Boccardo, A.; Bergero, D.; Forte, C. An Exploratory Cross-Sectional Study of the Impact of Farm Characteristics and Calf Management Practices on Morbidity and Passive Transfer of Immunity in 202 Chianina Beef-Suckler Calves. Ital. J. Anim. Sci. 2021, 20, 1085–1093. [Google Scholar] [CrossRef]
- McGee, M.; Drennan, M.J.; Caffrey, P.J. Effect of Age and Nutrient Restriction Pre Partum on Beef Suckler Cow Serum Immunoglobulin Concentrations, Colostrum Yield, Composition and Immunoglobulin Concentration and Immune Status of Their Progeny. Ir. J. Agric. Food Res. 2006, 45, 157–171. [Google Scholar]
- Pimenta-Oliveira, A.; Oliveira-Filho, J.P.; Dias, A.; Gonçalves, R.C. Morbidity-Mortality and Performance Evaluation of Brahman Calves from in Vitro Embryo Production. BMC Vet. Res. 2011, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Cavirani, S.; Gambetti, C.; Schiano, E.; Casaletti, E.; Spadini, C.; Mezzasalma, N.; Cabassi, C.S.; Taddei, S. Comparison of Immunoglobulin G Concentrations in Colostrum and Newborn Calf Serum from Animals of Different Breeds, Parity and Gender. Large Anim. Rev. 2024, 30, 105–111. [Google Scholar]
- Pearson, J.M.; Homerosky, E.; Caulkett, N.A.; Campbell, J.; Levy, M.; Pajor, E.A.; Windeyer, M.C. Quantifying Subclinical Trauma Associated with Calving Difficulty, Vigour, and Passive Immunity in Newborn Beef Calves. Vet. Rec. Open 2019, 16, e000325. [Google Scholar] [CrossRef]
- Burdick, N.C.; Banta, J.P.; Neuendorff, D.A.; White, J.C.; Vann, R.C.; Laurenz, J.C.; Welsh, T.H.; Randel, R.D. Interrelationships among Growth, Endocrine, Immune, and Temperament Variables in Neonatal Brahman Calves. J. Anim. Sci. 2009, 87, 3202–3210. [Google Scholar] [CrossRef]
- Pearson, J.M.; Pajor, E.A.; Campbell, J.R.; Caulkett, N.A.; Levy, M.; Dorin, C.; Windeyer, M.C. Clinical Impacts of Administering a Nonsteroidal Anti-Inflammatory Drug to Beef Calves after Assisted Calving on Pain and Inflammation, Passive Immunity, Health, and Growth. J. Anim. Sci. 2019, 97, 1996–2008. [Google Scholar] [CrossRef] [PubMed]
- Lake, S.L.; Scholljegerdes, E.J.; Small, W.T.; Belden, E.L.; Paisley, S.I.; Rule, D.C.; Hess, B.W. Immune Response and Serum Immunoglobulin G Concentrations in Beef Calves Suckling Cows of Differing Body Condition Score at Parturition and Supplemented with High-Linoleate or High-Oleate Safflower Seeds. J. Anim. Sci. 2006, 84, 997–1003. [Google Scholar] [CrossRef]
- Hickson, R.E.; Back, P.J.; Martin, N.P.; Kenyon, P.R.; Morris, S.T. The Influence of Age and Breed of Cow on Colostrum Indicators of Suckled Beef Calves. Proc. New Zealand Soc. Anim. Prod. 2016, 76, 163–168. [Google Scholar]
- Altvater-Hughes, T.E.; Hodgins, D.C.; Wagter-Lesperance; Beard, S.C.; Cartwright, S.L.; Mallard, B.A. Concentration and Heritability of Immunoglobulin G and Natural Antibody Immunoglobulin M in Dairy and Beef Colostrum along with Serum Total Protein in Their Calves. J. Anim. Sci. 2022, 100, skac006. [Google Scholar] [CrossRef]
- Brereton, N.; McGee, M.; Beltman, M.; Byrne, C.J.; Meredith, D.; Earley, B. Effect of Suckler Cow Breed Type and Parity on the Development of the Cow-Calf Bond Post-Partum and Calf Passive Immunity. Ir. Vet. J. 2024, 77, 13. [Google Scholar] [CrossRef]
- McGee, M.; Drennan, M.J.; Caffrey, P.J. Effect of Suckler Cow Genotype on Cow Serum Immunoglobulin (Ig) Levels, Colostrum Yield, Composition and Ig Concentration and Subsequent Immune Status of Their Progeny. Ir. J. Agric. Food Res. 2006, 44, 173–183. [Google Scholar]
- Murphy, B.M.; Drennan, M.J.; O’Mara, F.P.; Earley, B. Cow Serum and Colostrum Immunoglobulin (IgGj) Concentration of Five Suckler Cow Breed Types and Subsequent Immune Status of Their Calves. Ir. J. Agric. Food Res. 2005, 44, 205–213. [Google Scholar]
- Earley, B.; Tiernan, K.; Duffy, C.; Dunn, A.; Waters, S.; Morrison, S.; McGee, M. Effect of Suckler Cow Vaccination against Glycoprotein E (gE)-Negative Bovine Herpesvirus Type 1 (BoHV-1) on Passive Immunity and Physiological Response to Subsequent Bovine Respiratory Disease Vaccination of Their Progeny. Res. Vet. Sci. 2018, 118, 43–51. [Google Scholar] [CrossRef]
- Pinheiro, F.A.; Decaris, N.; Parreño, V.; Brandão, P.E.; Ayres, H.; Gomes, V. Efficacy of Prepartum Vaccination against Neonatal Calf Diarrhea in Nelore Dams as a Prevention Measure. BMC Vet. Res. 2022, 18, 323. [Google Scholar] [CrossRef]
- Reppert, E.J.; Chamorro, M.F.; Robinson, L.; Cernicchiaro, N.; Wick, J.; Weaber, R.L.; Haines, D.M. Effect of Vaccination of Pregnant Beef Heifers on the Concentrations of Serum IgG and Specific Antibodies to Bovine Herpesvirus 1, Bovine Viral Diarrhea Virus 1, and Bovine Viral Diarrhea Virus 2 in Heifers and Calves. Can. J. Vet. Res. 2019, 83, 313–316. [Google Scholar] [PubMed]
- Stegner, J.; Alaniz, G.; Meinert, T.; Gallo, G.; Cortese, V. Passive Transfer of Antibodies in Pregnant Cattle Following Vaccination with Bovi-Shield®. AABP Proc. 2010, 43, 250. [Google Scholar] [CrossRef]
- Curci, V.C.M.; Nogueira, A.H.C.; Nobrega, F.L.C.; Araujo, R.F.; Perri, S.H.V.; Cardoso, T.C.; Dutra, I.A. Neonatal Immune Response of Brazilian Beef Cattle to Vaccination with Clostridium Botulinum Toxoids Types C and D by Indirect ELISA. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 509–513. [Google Scholar] [CrossRef]
- Gamsjäger, L.; Haines, D.M.; Lévy, M.; Pajor, E.A.; Campbell, J.R.; Windeyer, M.C. Total and Pathogen-Specific Serum Immunoglobulin G Concentrations in Neonatal Beef Calves, Part 1: Risk Factors. Prev. Vet. Med. 2023, 220, 106026. [Google Scholar] [CrossRef]
- Lopreiato, V.; Minuti, A.; Trevisi, E.; Piccione, G.; Ferronato, G.; Loor, J.J.; Britti, D.; Liotta, L.; Giannetto, C.; Arfuso, F. Maternal Treatment with Pegbovigrastim Influences Growth Performance and Immune-Metabolic Status of Calves during the Pre-Weaning Period. Res. Vet. Sci. 2023, 158, 151–163. [Google Scholar] [CrossRef]
- Rocha, T.G.; Nociti, R.P.; Sampaio, A.A.M.; Fagliari, S.J. Passive Immunity Transfer and Serum Constituents of Crossbred Calves. Pesqui. Veterinária Bras. 2012, 32, 515–522. [Google Scholar] [CrossRef]
- Noya, A.; Casasús, I.; Ferrer, J.; Sanz, A. Long-Term Effects of Maternal Subnutrition in Early Pregnancy on Cow-Calf Performance, Immunological and Physiological Profiles during the Next Lactation. Animals 2019, 9, 936. [Google Scholar] [CrossRef]
- Wichman, L.G.; Redifer, C.A.; Meyer, A.M. Maternal Nutrient Restriction during Late Gestation Reduces Vigor and Alters Blood Chemistry and Hematology in Neonatal Beef Calves. J. Anim. Sci. 2023, 101, skad342. [Google Scholar] [CrossRef] [PubMed]
- Apperson, K.D.; Vorachek, W.R.; Dolan, B.P.; Bobe, G.; Pirelli, G.J.; Hall, J.A. Effects of Feeding Pregnant Beef Cows Selenium-Enriched Alfalfa Hay on Passive Transfer of Ovalbumin in Their Newborn Calves. J. Trace. Elem. Med. Biol. 2018, 50, 640–645. [Google Scholar] [CrossRef]
- Wallace, L.G.; Bobe, G.; Vorachek, W.R.; Dolan, B.P.; Estill, C.T.; Pirelli, G.J.; Hall, J.A. Effects of Feeding Pregnant Beef Cows Selenium-Enriched Alfalfa Hay on Selenium Status and Antibody Titers in Their Newborn Calves. J. Anim. Sci. 2017, 95, 2408–2420. [Google Scholar] [CrossRef] [PubMed]
- Ricks, R.E.; Cook, E.K.; Long, N.M. Effects of Supplementing Ruminal-Bypass Unsaturated Fatty Acids during Late Gestation on Beef Cow and Calf Serum and Colostrum Fatty Acids, Transfer of Passive Immunity, and Cow and Calf Performance. Appl. Anim. Sci. 2020, 36, 271–284. [Google Scholar] [CrossRef]
- Silva, L.F.P.; Muller, J.; Cavalieri, J.; Fordyce, G. Immediate Prepartum Supplementation Accelerates Progesterone Decline, Boosting Passive Immunity Transfer in Tropically Adapted Beef Cattle. Anim. Prod. Sci. 2022, 62, 983–992. [Google Scholar] [CrossRef]
- Wojtas, E.; Zachwieja, A.; Piksa, E.; Zielak-Steciwko, A.E.; Szumny, A.; Jarosz, B. Effect of Soy Lecithin Supplementation in Beef Cows before Calving on Colostrum Composition and Serum Total Protein and Immunoglobulin G Concentrations in Calves. Animals 2020, 10, 765. [Google Scholar] [CrossRef]
- Kennedy, V.C.; Gaspers, J.J.; Mordhorst, B.R.; Stokka, G.L.; Swanson, K.C.; Bauer, M.L.; Vonnahme, K.A. Late Gestation Supplementation of Corn Dried Distiller’s Grains plus Solubles to Beef Cows Fed a Low-Quality Forage: III. Effects on Mammary Gland Blood Flow, Colostrum and Milk Production, and Calf Body Weights. J. Anim. Sci. 2019, 97, 3337–3347. [Google Scholar] [CrossRef]
- Linneen, S.K.; Mourer, G.L.; Sparks, J.D.; Jennings, J.S.; Goad, C.L.; Lalman, D.L. Effects of Mannan Oligosaccharide on Beef-Cow Performance and Passive Immunity Transfer to Calves. Prof. Anim. Sci. 2014, 30, 311–317. [Google Scholar] [CrossRef]
- Horn, M.J.; Van Emon, M.L.; Gunn, P.J.; Eicher, S.D.; Lemenager, R.P.; Burgess, J.; Pyatt, N.; Lake, S.L. Effects of Maternal Natural (RRR Alpha-Tocopherol Acetate) or Synthetic (All-Rac Alpha-Tocopherol Acetate) Vitamin E Supplementation on Suckling Calf Performance, Colostrum Immunoglobulin G, and Immune Function. J. Anim. Sci. 2010, 88, 3128–3135. [Google Scholar] [CrossRef]
- Hurlbert, J.L.; Baumgaertner, F.; Bochantin-Winders, K.A.; Jurgens, I.M.; Sedivec, K.K.; Dahlen, C.R. Effects of Vitamin and Mineral Supplementation during Gestation in Beef Heifers on Immunoglobulin Concentrations in Colostrum and Immune Responses in Naturally and Artificially Reared Calves. Vet. Sci. 2024, 11, 635. [Google Scholar] [CrossRef]
- Stephenson, E.L.; Rathert-Williams, A.R.; Kenny, A.L.; Nagy, D.W.; Shoemake, B.M.; McFadden, T.B.; Tucker, H.A.; Meyer, A.M. Effects of Copper, Zinc, and Manganese Source and Inclusion during Late Gestation on Beef Cow–Calf Performance, Mineral Transfer, and Metabolism. Transl. Anim. Sci. 2023, 7, txad097. [Google Scholar] [CrossRef] [PubMed]
- Guatteo, R.; Lesort, C.; Touzot-Jourde, G. Impact of Meloxicam Administration in Cows Prior to Caesarean Section on the Efficacy of Passive Immunity Transfer in Calves. Animals 2023, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.; Mukiibi, R.; Waters, S.M.; McGee, M.; Surlis, C.; McClure, J.C.; McClure, M.C.; Todd, C.G.; Earley, B. Genome Wide Association Study of Passive Immunity and Disease Traits in Beef-Suckler and Dairy Calves on Irish Farms. Sci. Rep. 2020, 10, 18998. [Google Scholar] [CrossRef]
- Akköse, M.; Buczinski, S.; Özbeyaz, C.; Kurban, M.; Cengiz, M.; Polat, Y.; Aslan, O. Diagnostic Accuracy of Refractometry Methods for Estimating Passive Immunity Status in Neonatal Beef Calves. Vet. Clin. Pathol. 2023, 52, 53–63. [Google Scholar] [CrossRef]
- Gamsjäger, L.; Elsohaby, I.; Pearson, J.M.; Levy, M.; Pajor, E.A.; Windeyer, M.C. Evaluation of 3 Refractometers to Determine Transfer of Passive Immunity in Neonatal Beef Calves. J. Vet. Intern. Med. 2021, 35, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Pisello, L.; Boccardo, A.; Forte, C.; Pravettoni, D.; D’Avino, N.; Passamonti, F.; Rueca, F. Evaluation of Digital and Optical Refractometers for Assessing Failure of Transfer of Passive Immunity in Chianina Beef–Suckler Calves Reared in Umbria. Ital. J. Anim. Sci. 2021, 20, 315–323. [Google Scholar] [CrossRef]
- Vandeputte, S.; Detilleux, J.; Rollin, F. Comparison of Four Refractometers for the Investigation of the Passive Transfer in Beef Calves. Vet. Intern. Med. 2011, 25, 1465–1469. [Google Scholar] [CrossRef]
- de Souza, R.; Leão, J.; Campos, J.; Coelho5, S.; Campos, M.; Mello Lima, J.; Faria, B. Evaluation of the Correlation between Total Plasma Protein of Serum of F1 Crossbred Holstein x Zebu Calves Evaluated with Optical and Digital Refractometer. In Proceedings of the 52a Reunião Anual da Sociedade Brasileira de Zootecnia, Belo Horizonte, Brazil, 19–23 July 2015. [Google Scholar]
- Drikic, M.; Windeyer, C.; Olsen, S.; Fu, Y.; Doepel, L.; De Buck, J. Determining the IgG Concentrations in Bovine Colostrum and Calf Sera with a Novel Enzymatic Assay. J. Anim. Sci. Biotechnol. 2018, 9, 69. [Google Scholar] [CrossRef]
- Jenvey, C.J.; Reichel, M.P.; Lanyon, S.R.; Cockcroft, P.D. Optimizing the Measurement of Colostrum Antibody Concentrations for Identifying BVDV Persistently Infected Calves. Vet. Sci. 2015, 2, 26–31. [Google Scholar] [CrossRef]
- Delhez, P.; Meurette, E.; Knapp, E.; Theron, L.; Daube, G.; Rao, A.-S. Assessment of a Rapid Semi-Quantitative Immunochromatographic Test for the Evaluation of Transfer of Passive Immunity in Calves. Animals 2021, 11, 1641. [Google Scholar] [CrossRef]
- Dunn, A.; Duffy, C.; Gordon, A.; Morrison, S.; Arguello, A.; Welsh, M.; Earley, B. Comparison of Single Radial Immunodiffusion and ELISA for the Quantification of Immunoglobulin G in Bovine Colostrum, Milk and Calf Sera. J. Appl. Anim. Res. 2018, 46, 758–765. [Google Scholar] [CrossRef]
- Kreuder, A.J.; Breuer, R.M.; Wiley, C.; Dohlman, T.; Smith, J.S.; McKeen, L. Comparison of Turbidometric Immunoassay, Refractometry, and Gamma-Glutamyl Transferase to Radial Immunodiffusion for Assessment of Transfer of Passive Immunity in High-Risk Beef Calves. J. Vet. Intern. Med. 2023, 37, 1923–1933. [Google Scholar] [CrossRef]
- Thompson, A.C.; Wills, R.W.; Smith, D.R. Sources of Variance in the Results of a Commercial Bovine Immunoglobulin G Radial Immunodiffusion Assay. J. Vet. Diagn. Investig. 2023, 35, 34–41. [Google Scholar] [CrossRef] [PubMed]
- McGee, M.; Earley, B. Review: Passive Immunity in Beef-Suckler Calves. Animal 2019, 13, 810–825. [Google Scholar] [CrossRef]
- Besser, T.E.; Gay, C.C.; Pritchett, L. Comparison of Three Methods of Feeding Colostrum to Dairy Calves. J. Am. Vet. Med. Assoc. 1991, 198, 419–422. [Google Scholar] [CrossRef]
- Godden, S.M.; Haines, D.M.; Konkol, K.; Peterson, J. Improving Passive Transfer of Immunoglobulins in Calves. II: Interaction between Feeding Method and Volume of Colostrum Fed. J. Dairy Sci. 2009, 92, 1758–1764. [Google Scholar] [CrossRef]
- Guy, M.A.; McFadden, T.B.; Cockrell, D.C.; Besser, T.E. Regulation of Colostrum Formation in Beef and Dairy Cows. J. Dairy Sci. 1994, 77, 3002–3007. [Google Scholar] [CrossRef]
- Olson, D.; Papasian, C.; Ritter, R. The Effects of Cold Stress on Neonatal Calves II. Absorption of Colostral Immunoglobulins. Can. J. Comp Med. 1980, 44, 19–23. [Google Scholar] [PubMed]
- Shenavai, S.; Preissing, S.; Hoffmann, B.; Dilly, M.; Pfarrer, C.; Özalp, G.R.; Caliskan, C.; Seyrek-Intas, K.; Schuler, G. Investigations into the Mechanisms Controlling Parturition in Cattle. Reproduction 2012, 144, 279–292. [Google Scholar] [CrossRef]
- Hay, E.H.; Roberts, A. Genomic Analysis of Heterosis in an Angus × Hereford Cattle Population. Animals 2023, 13, 191. [Google Scholar] [CrossRef]
- Odde, K.G. Survival of the Neonatal Calf. Vet. Clin. N. Am. Food Anim. Pract. 1988, 4, 501–508. [Google Scholar] [CrossRef] [PubMed]
Topics, Risk Factors, or Interventions | Number of Studies |
---|---|
Prevalence estimates of FTPI in beef calves | 5 |
Association between FTPI and calf health outcomes | 8 |
Factors related to colostrum management | |
Colostrum quantity or volume fed | 1 |
Colostrum quality (IgG concentration or source) | 3 |
Timing of colostrum feeding | 2 |
Colostrum microbial content | 1 |
Colostrum feeding method | 8 |
Factors related to calves | |
Calf sex or twin status | 6 |
Calf vigor at birth | 3 |
Reproductive technologies used during breeding | 1 |
Calf birth weight | 3 |
Month of birth | 1 |
Calf cortisol and epinephrine concentrations | 1 |
Nonsteroidal anti-inflammatory drugs after difficult calving | 1 |
Factors related to dams | |
Dam body condition score (BCS) or udder conformation | 5 |
Dam breed | 8 |
Dam prepartum vaccination | 7 |
Dam parity | 10 |
Dam prepartum nutrition | 13 |
Calving area (type and location) | 1 |
Calving difficulty | 8 |
Genetics and heritability | 4 |
Nonsteroidal anti-inflammatory drugs prior to C-section | 1 |
Methods of FTPI detection in beef calves | 11 |
Country Where Study Was Conducted | n |
USA | 18 |
Canada | 12 |
Ireland | 9 |
Brazil | 5 |
Belgium | 4 |
France | 3 |
Italy | 4 |
Great Britain | 2 |
Australia | 1 |
Korea | 1 |
New Zealand | 1 |
Poland | 1 |
Spain | 1 |
Turkey | 1 |
Study design | n |
Randomized controlled trial | 27 |
Cohort study | 13 |
Diagnostic accuracy study | 11 |
Cross-sectional study | 11 |
Case–control study | 1 |
Breed | n |
Crossbred | 31 |
Angus | 10 |
Charolais | 8 |
Belgian Blue | 5 |
Limousin | 5 |
Simmental | 4 |
Hereford | 3 |
Brahman | 2 |
Chianina | 2 |
Nelore | 2 |
Aberdeen | 1 |
Aubrac | 1 |
Droughtmaster | 1 |
Hanwoo | 1 |
Padra de Montana | 1 |
Piemontese | 1 |
Pirenaica | 1 |
Salers | 1 |
Method | References | Cutoff | Outcome Effect Measure (95% CI) |
---|---|---|---|
Serum IgG RID | Filteau et al. [14] | <10.0 g/L | No association between FTPI and health status (p = 0.17) in calves 24 h to 7 d old |
Waldner and Rosengren [15] | <8 g/L <16 g/L | No association between FTPI and calf death or treatment (p > 0.25) | |
<24 g/L | Calf death before 3 months of age; OR 1.6 (1.1–2.3) Calf treatment for any reason; OR 1.5 (1.0–2.3) | ||
Bragg et al. [19] | Every g/L increase | Death and/or treatment for disease within 9 months OR 0.97 (0.95–0.99) | |
Dewell et al. [8] | <2400 mg/dL | Disease before weaning Likelihood ratio 1.6 (1.19–2.28) Death before weaning: Likelihood ratio 2.7 (1.34–5.36) | |
≥2700 mg/dL | 3.4 kg higher body weight at 205 days | ||
Gamsjäger et al. [20] | <10.0 g/L | Treatment for disease OR 7.9 (2.7–23.7) Mortality OR 18.5 (3.7–93.4) | |
<24.0 g/L | Mortality OR 10.1 (2.6–40.2) | ||
Martin et al. [21] | <10 g/L | Mortality Chi-squared test compared to calves with IgG levels > 20 g/L, p < 0.001 | |
STP | Perrot et al. [18] | <5.1 g/dL | No association between prevalence of omphalitis and FTPI (p = 0.63) |
Todd et al. [22] digital refractometer | <5.8 g/dL | Morbidity due to any cause (0–6 months) OR 1.6 (1.1–2.3) | |
<5.8 g/dL | BRD (0–6 months) OR 2.3 (1.2–4.3) | ||
<6.3 g/dL | Other causes of disease (0–3 months) OR 2.5 (1.2–5.3) | ||
<5.3 g/dL | Mortality (0–6 months) OR 3.9 (2.0–7.7) | ||
Todd et al. [22] clinical analyzer | <61 g/L | Morbidity due to any cause (0–3 months) OR 1.5 (1.1–2.2) | |
<56 g/L | BRD (0–1 months) OR 6.2 (1.7–22.6) | ||
<61 g/L | Other causes of disease (0–6 months) OR 2.1 (1.2–3.7) | ||
60 g/L | Mortality (0–6 months) OR 4.3 (1.8–10.1) | ||
Serum IgG ELISA | Todd et al. [22] | <8 mg/mL | Morbidity due to any cause (0–3 months) OR 2.0 (1.3–2.9) |
<8 mg/mL | BRD (0–1 months) OR 4.5 (1.4–14.5) | ||
<8 mg/mL | Other causes of disease (0–1 months) OR 1.8 (1.0–3.1) | ||
<9 mg/mL | Mortality (0–6 months) OR 2.8 (1.4–5.8) | ||
Serum total solids percentage, Brix | Perrot et al. [18] | <8.1% | No association between prevalence of omphalitis and FTPI (p = 0.86) |
Todd et al. [22] | 8.4% | Morbidity due to any cause (0–6 months) OR 1.5 (1.1–2.2) | |
8.4% | BRD (0–1 months) OR 7.2 (1.8–30.0) | ||
8.4% | Other causes of disease (0–6 months) OR 1.7 (1.1–2.9) | ||
8.4% | Mortality (0–6 months) OR 2.8 (1.4–5.6) | ||
Serum IgG globulin, clinical analyzer | Todd et al. [22] | 26 g/L | Morbidity due to any cause (0–3 months) OR 1.6 (1.1–2.4) |
32 g/L | BRD (0–1 months) OR 6.3 (1.3–29.8) | ||
40 g/L | Other causes of disease (0–1 months) OR 3.1 (1.2–8.0) | ||
32 g/L | Mortality (0–6 months) OR 3.4 (1.5–7.5) | ||
Serum IgG Zinc sulfate turbidity, units | Todd et al. [22] | 12 g/L | Morbidity due to any cause (0–3 months) OR 1.8 (1.3–2.6) |
14 g/L | BRD (0–1 months) OR 11.2 (2.1–60.4) | ||
18 g/L | Other causes of disease (0–1 months) OR 2.2 (1.1–4.3) | ||
14 g/L | Mortality (0–6 months) OR 3.4 (1.6–7.0) |
Reference | Reference Method and Cutoff | Comparative Method and Cutoff | Measures of Test Performance |
---|---|---|---|
Dunn et al. [72] | RID serum IgG concentration | Commercial serum ELISA | R2 = 0.97, p < 0.001 Fixed bias (sRID–ELISA) = 12.36 ± 6.60 mg/mL |
Zinc sulfate turbidity | R2 = 078, p < 0.001 | ||
Akköse et al. [64] | RID serum IgG concentration | Digital Brix refractometer | |
<10 mg/mL | <8.5% | Se 100% (95% CI 87.9–100), Sp 94.2% (95% CI 89.6–97.2) | |
<16 mg/mL | <8.5% | Se 92.1% (95% CI 78.6–98.2) Sp 97.6% (95% CI 93.9–99.3) | |
<24 mg/mL | <10.1% | Se 88.8% (95% CI 79.7–94.7) Sp 67.2% (95% CI 58.1–75.4) | |
Digital STP refractometer | |||
<10 mg/mL | <5.2 g/dL | Se 100% (95% CI 87.9–100), Sp 93.6% (95% CI 88.9–96.8) | |
<16 mg/mL | <5.2 g/dL | Se 92.1% (95% CI 78.6–98.2) Sp 97.0% (95% CI 93.0–99.0) | |
<24 mg/mL | <6.4 g/dL | Se 87.5% (95% CI 78.2–93.8) Sp 69.7% (95% CI 60.7–77.7) | |
Delhez et al. [71] | Bovine IgG ELISA | Immunochromatographic assay for serum IgG with EDTA blood | |
<10 mg/mL | <10 mg/mL | Se 83% Pr 94% | |
10.0–14.9 mg/mL | 10.0–14.9 mg/mL | Se 78% Pr 58% | |
15.0–19.9 mg/mL | 15.0–19.9 mg/mL | Se 50% Pr 86% | |
>20.0 mg/mL | >20.0 mg/mL | Se 100% Pr 70% | |
Immunochromatographic assay for serum IgG with heparin blood | |||
<10 mg/mL | <10 mg/mL | Se 96% Pr 81% | |
10.0–14.9 mg/mL | 10.0–14.9 mg/mL | Se 72% Pr 90% | |
15.0–19.9 mg/mL | 15.0–19.9 mg/mL | Se 50% Pr 43% | |
>20.0 mg/mL | >20.0 mg/mL | Se 74% Pr 70% | |
Drikic et al. [69] | RID serum IgG concentration | Split trehalase IgG assay | |
24 mg/mL | OD 450 nm 0.3 | Se 69.2% Sp 97.2% | |
Gamsjäger et al. [65] | RID serum IgG | Digital Brix refractometer | |
<10 g/L | ≤7.9% | Se 81.2% (95% CI 54.4–96.0) Sp 94.8% (95% CI 92.0–96.8) | |
<16 g/L | ≤8.3% | Se 88.2% (95% CI 72.5–96.7) Sp 90.9% (95% CI 87.5–93.7) | |
<24 g/L | ≤8.7% | Se 80.0% (95% CI 68.7–88.6) Sp 93.0% (95% CI 89.6–95.5) | |
Digital and optical STP refractometers | |||
<10 g/L | ≤5.1 g/dL | Digital Se 100% (95% CI 79.4–100) Sp 91.4% (95% CI 88.1–94.0) Optical Se 100% (95% CI 79.4–100) Sp 93.7% (95% CI 90.8–95.9) | |
<16 g/L | ≤5.1 g/dL | Digital: Se 94.1% (95% CI 80.3–99.3) Sp: 95.3% (95% CI 92.6–97.3) Optical: Se 85.3 (95% CI 68.9–95.0) Sp 97.0 (95% CI 94.7–98.5) | |
<24 g/L | ≤5.7 g/dL | Digital: Se 95.7 (95% CI 88.0–99.1) Sp: 93.3 (95% CI 90.0–95.7) Optical: Se 91.4 (95% CI 82.3–96.8) Sp 91.2 (95% CI 87.5–94.0) | |
Kreuder et al., 2022 [73] | RID serum IgG | Turbidimetric immunoassay | |
<18.0 g/L | 9.89 g/L | Se: 0.910 (95% CI 0.861–0.951) Sp: 0.888 (95% CI: 0.772–1) | |
<25.0 g/L | 13.76 g/L | Se: 0.813 (95% CI 0.729–0.885) SP: 0.818 (95% CI 0.712–0.909) | |
Digital STP refractometer | |||
<18.0 g/L | 5.5 g/dL | Se: 0.818 (95% CI 0.761–0.869) Sp: 0.75 (95% CI 0.55–0.9) | |
<25.0 g/L | 6.0 g/dL | Se: 0.756 (95% CI 0.677–0.827) Sp: 0.754 (95% CI 0.652–0.855) | |
Serum gamma-glutamyl transferase | |||
<18.0 g/L | 2303 IU/L | Se: 0.737 (95% CI 0.669–0.8) Sp: 0.7 (95% CI 0.5–0.9) | |
<25.0 g/L | 1831 IU/L | Se: 0.905 (95% CI 0.849–0.952) Sp: 0.406 (95% CI 0.290–0.522) | |
Pisello et al., 2021 [66] | RID serum IgG | Digital STP refractometer | |
<16 g/L | 51 g/L | Se 63% Sp 96% | |
Optical STP refractometer | |||
<16 g/L | 52 g/L | Se 69% Sp 90% | |
Digital Brix refractometer | |||
<16 g/L | 8.3% | Se 77% Sp 92% | |
Optical Brix refractometer | |||
<16 g/L | 8.3% | Se 66% Sp 92% | |
De Souza et al., 2015 [68] | STP optical refractometer | STP digital refractometer | No specific values mentioned, Pearson correlation between method results = 0.9588 |
Sustronck et al., 2022 [17] | RID serum IgG | Digital Brix refractometer | |
10 g/L | 8.4% | Se 80.9 (95% CI 67.6–91.3) Sp 89.5 (95% CI 81.9–96.5) | |
15 g/L | 8.9% | Se 77.9 (95% CI 69.0–86.0) Sp 90.2 (95% CI 78.7–97.7) | |
20 g/L | 9.4% | Se 89.6 (95% CI 84.3–94.1) Sp 88.3 (95% CI 68.5–98.4) | |
Serum protein capillary electrophoresis | |||
10 g/L | 10 g/L | Se 81.8% (95% CI 68.0–92.5) Sp 91.0% (95% CI 83.5–97.7) | |
15 g/L | 15 g/L | Se 92.4% (95% CI 85.4–97.6) Sp 80.0% (95% CI 65.6–91.5) | |
20 g/L | 20 g/L | Se 98.3% (95% CI 95.1–99.9) Sp 87.6% (95% CI 63.0–98.7) | |
Vandeputte et al., 2011 [67] | Serum IgG with biuret method | STP handheld refractometer with automatic temperature compensation (ATC), Atago conversion | |
1600 mg/dL | 58 g/L | Se 100% (95% CI 82–100) Sp 90% (95% CI 82.1–94.6) | |
STP handheld refractometer with ATC, Wolf conversion | |||
1600 mg/dL | 54 g/L | Se 100% (95% CI 82–100) Sp 93.3% (95% CI 86.2–96.9) | |
STP standard laboratory refractometer without ATC, Atago conversion | |||
1600 mg/dL | 56 g/L | Se 100% (95% CI 82–100) Sp 91.1% (95% CI 83.4–95.4) | |
STP digital ATC handheld | |||
1600 mg/dL | 56 g/L | Se 100 (95% CI 82–100) Sp 92.2 (95% CI 84.8–96.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelfattah, E.; Fausak, E.; Maier, G. Failure of Passive Immune Transfer in Neonatal Beef Calves: A Scoping Review. Animals 2025, 15, 2072. https://doi.org/10.3390/ani15142072
Abdelfattah E, Fausak E, Maier G. Failure of Passive Immune Transfer in Neonatal Beef Calves: A Scoping Review. Animals. 2025; 15(14):2072. https://doi.org/10.3390/ani15142072
Chicago/Turabian StyleAbdelfattah, Essam, Erik Fausak, and Gabriele Maier. 2025. "Failure of Passive Immune Transfer in Neonatal Beef Calves: A Scoping Review" Animals 15, no. 14: 2072. https://doi.org/10.3390/ani15142072
APA StyleAbdelfattah, E., Fausak, E., & Maier, G. (2025). Failure of Passive Immune Transfer in Neonatal Beef Calves: A Scoping Review. Animals, 15(14), 2072. https://doi.org/10.3390/ani15142072