Inclusion of Sub-Antarctic Macroalgae (Gigartina skosttsbergii) as Feed Ingredient for Grazing Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Grassland and Algae Preparation
2.3. Exp 1. In Vitro Trial
2.3.1. Chemical Composition
2.3.2. In Vitro Gas Production
2.3.3. Methane (CH4) Production
2.3.4. Moisture Retention Test
2.4. Exp 2. In Vivo Trial
Experimental Design and Sample Collection
2.5. Statistical Analysis
3. Results
3.1. Exp 1. In Vitro Trial
3.1.1. Chemical Composition
3.1.2. In Vitro Gas Production
3.1.3. Methane (CH4) Emission
3.1.4. Moisture Retention Test
3.2. Exp 2. In Vivo Trial
3.2.1. Animal Performance
3.2.2. Blood Parameters
4. Discussion
4.1. Exp 1. In Vitro Trial
4.1.1. Chemical Composition of Grassland and Macroalgae
4.1.2. In Vitro Gas Production
4.1.3. Methane (CH4)
4.1.4. Moisture Retention Test
4.2. Exp 2. In Vivo Trial
4.2.1. Animal Performance
4.2.2. Blood Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing carbon footprint of agriculture—Can organic farming help to mitigate climate change? Agriculture 2022, 12, 1383. [Google Scholar] [CrossRef]
- Martin, G.B. Perspective: Science and the future of livestock industries. Front. Vet. Sci. 2024, 11, 1359247. [Google Scholar] [CrossRef]
- Min, B.R.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Augyte, S. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Narvaez-Izquiedo, J.; Fonseca-De La Hoz, J.; Kannan, G.; Bohorquez-Herrera, J. Use of macroalgae as a nutritional supplement for sustainable production of ruminants: A systematic review and an insight on the Colombian Caribbean region. Algal Res. 2023, 77, 103359. [Google Scholar] [CrossRef]
- Sofyan, A.; Irawan, A.; Herdian, H.; Harahap, M.A.; Sakti, A.A.; Suryani, A.E.; Jayanegara, A. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Anim. Feed Sci. Technol. 2022, 294, 115503. [Google Scholar] [CrossRef]
- FAO. Online Query Panels for Aquaculture and Capture Production of Seaweeds. 2019. Available online: http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en (accessed on 13 August 2020).
- Rjiba-Ktita, S.; Chermiti, A.; Bodas, R.; France, J.; López, S. Aquatic plants and macroalgae as potential feed ingredients in ruminant diets. J. Appl. Phycol. 2017, 29, 449–458. [Google Scholar] [CrossRef]
- Castellaro, G.; Rodríguez, D.; y Sáez, L. Un Modelo de Simulacion de Sistemas de Produccion Ovina Para la Zona Austral de Chile. Agric. Técnica 1994, 54, 147–159. [Google Scholar]
- Costa, M.; Cardoso, C.; Afonso, C.; Bandarra, N.M.; Prates, J.A. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: A systematic review. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1075–1102. [Google Scholar] [CrossRef]
- Mansilla, A.; Ávila, M.; Ramírez, M.E.; Rodriguez, J.P.; Rosenfeld, S.; Ojeda, J.; Marambio, J. Macroalgas marinas bentónicas del submareal somero de la ecorregión subantártica de Magallanes, Chile. An. Inst. Patagon. 2013, 41, 51–64. [Google Scholar] [CrossRef]
- González-Meza, G.M.; Elizondo-Luevano, J.H.; Cuellar-Bermudez, S.P.; Sosa-Hernández, J.E.; Iqbal, H.M.; Melchor-Martínez, E.M.; Parra-Saldívar, R. New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production. Plants 2023, 12, 3609. [Google Scholar] [CrossRef]
- Kulshreshtha, G.; Hincke, M.T.; Prithiviraj, B.; Critchley, A. A review of the varied uses of macroalgae as dietary supplements in selected poultry with special reference to laying hen and broiler chickens. J. Mar. Sci. Eng. 2020, 8, 536. [Google Scholar] [CrossRef]
- El-Waziry, A.; Al-Haidary, A.; Okab, A.; Samara, E.; Abdoun, K. Effect of dietary seaweed (Ulva lactuca) supplementation on growth performance of sheep and on in vitro gas production kinetics. Turk. J. Vet. Anim. 2015, 39, 81–86. [Google Scholar] [CrossRef]
- Neville, E.W.; Fahey, A.G.; Gath, V.P.; Molloy, B.P.; Taylor, S.J.; Mulligan, F.J. The effect of calcareous marine algae, with or without marine magnesium oxide, and sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. J. Dairy Sci. 2019, 102, 8027–8039. [Google Scholar] [CrossRef] [PubMed]
- Caroprese, M.; Ciliberti, M.G.; Marino, R.; Santillo, A.; Sevi, A.; Albenzio, M. Polyunsaturated fatty acid supplementation: Effects of seaweed Ascophyllumnodosum and flaxseed on milk production and fatty acid profile of lactating ewes during summer. J. Dairy Res. 2016, 83, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Leupp, J.L.; Caton, J.S.; Soto-Navarro, S.A.; Lardy, G.P. Effects of cooked molasses blocks and fermentation extract or brown seaweed meal inclusion on intake, digestion, and microbial efficiency in steers fed low-quality hay. J. Anim. Sci. 2005, 83, 2938–2945. [Google Scholar] [CrossRef]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; Hess, M. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 2020, 7, 561. [Google Scholar] [CrossRef]
- Pandey, D.; Næss, G.; Fonseca, A.J.; Maia, M.R.; Cabrita, A.R.; Khanal, P. Differential impacts of post-harvest hydrothermal treatments on chemical composition and in vitro digestibility of two brown macroalgae (Fucales, Phaeophyceae), Ascophyllumnodosum and Fucusvesiculosus, for animal feed applications. J. Appl. Phycol. 2023, 35, 2511–2529. [Google Scholar] [CrossRef]
- Ojeda, J.; Rozzi, R.; Rosenfeld, S.; Contadora, T.; Massardo, F.; Malebrán, J.; González-Calderón, J.; Mansilla, A. Interacciones bioculturales del pueblo yagán con las macroalgas y moluscos: Una aproximación desde la filosofía ambiental de campo. Magallania 2018, 46, 155–181. [Google Scholar] [CrossRef]
- Ávila, M.; Cáceres, J.; Núñez, M.; Camus, P.; Pavez, H.; Cortés, H.; González, J.; Tapia, C.; Mejías, P.; Cornejo, S.; et al. Investigación y Manejo de Praderas de Luga Roja en la XII Región; Instituto de Fomento Pesquero (IFOP): Valparaíso, Chile, 2002. [Google Scholar]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; John Wiley: Nueva York, NY, USA, 1974; 547 p. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Official Methods of Analysis of AOAC International: Arington, VA, USA, 2015. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Peters, J.B. Wisconsin Procedures for Soil Testing, Plant Analysis and Feed & Forage Analysis; University of Wisconsin-Madison, Soil & Plant Analysis Lab: Madison, WI, USA, 2007. [Google Scholar]
- Gonzalez Ronquillo, M.; Fondevila, M.; Urdaneta, A.B.; Newman, Y. In vitro gas production from buffel grass (Cenchrus ciliaris L.) fermentation in relation to the cutting interval, the level of nitrogen fertilisation and the season of growth. Anim. Feed Sci. Technol. 1998, 72, 19–32. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Tropical browses: Contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- Blümmel, M.; Steingaβ, H.; Bec Ker, K. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef]
- Wang, J.; Jin, W.; Hou, Y.; Niu, X.; Zhang, H.; Zhang, Q. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int. J. Biol. Macromol. 2013, 57, 26–29. [Google Scholar] [CrossRef]
- Mora Castro, N.; Casas Valdez, M.; Águila Ramírez, R.N.; Sánchez Rodríguez, I.; Hernández Contreras, H.; Sanginés García, L. The kelp Macrocystis pyrifera as nutritional supplement for goats. Revista Científica. 2009, 19, 63–70. [Google Scholar]
- Marín, A.; Casas-Valdez, M.; Carrillo, S.; Hernández, H.; Monroy, A.; Sanginés, L.; Pérez-Gil, F. The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Rev. Biol. Trop. 2009, 57, 1271–1281. [Google Scholar] [CrossRef]
- Covacevich, N. El coironal y las Necesidades de los Ovinos. Manejo Sustentable de las Praderas Naturales de Magallanes; Tierra Adentro: Edición Especial; INIA: Santiago, Chile, 2006; pp. 24–27. [Google Scholar]
- Romero, O. Evaluación de la Condición Corporal y Edad de los Ovinos. Herramientas de Manejo Animal; Instituto de Investigaciones Agropecuarias (INIA): Temuco, Chile, 2015; p. 4, Informativo Nº 79. [Google Scholar]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef]
- Ortiz-Viedma, J.; Aguilera, J.M.; Flores, M.; Lemus-Mondaca, R.; Larrazabal, M.J.; Miranda, J.M.; Aubourg, S.P. Protective effect of red algae (Rhodophyta) extracts on essential dietary components of heat-treated salmon. Antioxidants 2021, 10, 1108. [Google Scholar] [CrossRef]
- Hidayah, N.; Kustantinah, K.; Noviandi, C.T.; Astuti, A.; Hanim, C.; Suwignyo, B. Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Vet. Integr. Sci. 2023, 21, 229–238. [Google Scholar] [CrossRef]
- Zitouni, H.; Arhab, R.; Boudry, C.; Bousseboua, H.; Beckers, Y. Chemical and biological evaluation of the nutritive value of Algerian green seaweed Ulva lactuca using in vitro gas production technique fior ruminant animals. J. Adv. Res. 2014, 2, 916–925. [Google Scholar]
- Burtin, P. Nutritional value of seaweeds. Elect. J. Environ Agri. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Thorsteinsson, M.; Weisbjerg, M.R.; Lund, P.; Battelli, M.; Chassé, É.; Bruhn, A.; Nielsen, M.O. Effects of seasonal and interspecies differences in macroalgae procured from temperate seas on the Northern hemisphere on in vitro methane mitigating properties and rumen degradability. Algal. Res. 2023, 73, 103139. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Hayes, M.; Gröndahl, F.; Ramin, M.; O’Hara, P.; Kenny, O. Characterization and in vitro assessment of seaweed bioactives with potential to reduce methane production. Front. Anim. Sci. 2022, 3, 1062324. [Google Scholar] [CrossRef]
- Guinguina, A.; Hayes, M.; Gröndahl, F.; Krizsan, S.J. Potential of the Red Macroalga Bonnemaisonia hamifera in Reducing Methane Emissions from Ruminants. Animals 2023, 13, 2925. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; de Nys, R.; Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 2014, 9, e85289. [Google Scholar] [CrossRef]
- Maia, M.R.; Fonseca, A.J.; Cortez, P.P.; Cabrita, A.R. In vitro evaluation of macroalgae as unconventional ingredients in ruminant animal feeds. Algal Res. 2019, 40, 101481. [Google Scholar] [CrossRef]
- Abbott, D.W.; Aasen, I.M.; Beauchemin, K.A.; Grondahl, F.; Gruninger, R.; Hayes, M.; Xing, X. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020, 10, 2432. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Stefenoni, H.A.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Melgar, A.; Hristov, A.N. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 2021, 104, 4157–4173. [Google Scholar] [CrossRef]
- Tomkins, N.W.; Colegate, S.M.; Hunter, R.A. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Anim. Prod. Sci. 2009, 49, 1053–1058. [Google Scholar] [CrossRef]
- Thauer, R.K. The Wolfe cycle comes full circle. Proc. Natl. Acad. Sci. USA 2012, 109, 15084–15085. [Google Scholar] [CrossRef] [PubMed]
- Krone, U.E.; Laufer, K.; Thauer, R.K.; Hogenkamp, H.P. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 1989, 28, 10061–10065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Guo, Q.; Xin, Y.; Liu, Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. Arab. J. Chem. 2022, 15, 104163. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Abu El-Kassim, M.A.; Abdou, S.G.; Hassan, E.H.; Abdullah, M.A.M. Effect of macroalgae and yeast culture on body performance, blood metabolites, ruminal fermentation and digestibility coefficients of Ossimi lambs. Arch. Agric. Sci. J. 2021, 4, 156–167. [Google Scholar] [CrossRef]
- Bach, S.J.; Wang, Y.; McAllister, T.A. Effect of feeding sun-dried seaweed (Ascophyllumnodosum) on fecal shedding of Escherichia coli O157: H7 by feedlot cattle and on growth performance of lambs. Anim. Feed Sci. Technol. 2008, 142, 17–32. [Google Scholar] [CrossRef]
- Antaya, N.T.; Ghelichkhan, M.; Pereira, A.B.D.; Soder, K.J.; Brito, A.F. Production, milk iodine, and nutrient utilization in Jersey cows supplemented with the brown seaweed Ascophyllumnodosum (kelp meal) during the grazing season. J. Dairy Sci. 2019, 102, 8040–8058. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsistaxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- 57 Sandvik, J. Macroalgae as an Alternative Ruminant Feed Ingredient: Impacts of Dietary Supplementation of Laminaria Hyperborea on Feed Intake, Growth, Iodine Intake and Excretion in Sheep. Master’s Thesis, Nord Universitet, Bodø, Norway, 2023. [Google Scholar]
- Ktita, S.R.; Chermiti, A.; Mahouachi, M. The use of seaweeds (Ruppia maritima and Chaetomorpha linum) for lamb fattening during drought periods. Small Rumin. Res. 2010, 91, 116–119. [Google Scholar] [CrossRef]
- Burt, A.W.A.; Bartlett, S.; Rowland, S.J. The use of seaweed meals in concentrate mixtures for dairy cows. J. Dairy Res. 1954, 21, 299–304. [Google Scholar]
- Harahap, M.A.; Widodo, S.; Handayani, U.F.; Altandjung, R.I.; Sakti, A.A.; Baihaqi, Z.A. Examining performance, milk, and meat in ruminants fed with macroalgae and microalgae: A meta-analysis perspective. Trop. Anim. Health Prod. 2024, 56, 243. [Google Scholar] [CrossRef]
- Norman, M.M.; Carlson, Z.E.; Hilscher, F.H.; Erickson, G.E.; Brodersen, B.W.; Loy, J.D.; Watson, A.K. Evaluation of the safety of an algal biomass as an ingredient for finishing cattle. Prof. Anim. Sci. 2018, 34, 618–630. [Google Scholar] [CrossRef]
- Gutierrez, B.H.; Alvarez, E.; Arrizon, A.A.; Carrasco, R.; Salinas-Chavira, J.; Zinn, R.A. Influence of high-oil algae biomass as a feed intake and growth-performance enhancer in feedlot cattle during period of high ambient temperature. J. Appl. Anim. Res. 2016, 44, 118–120. [Google Scholar]
- Fike, J.H.; Saker, K.E.; O’keefe, S.F.; Marriott, N.G.; Ward, D.L.; Fontenot, J.P.; Veit, H.P. Effects of Tasco (a seaweed extract) and heat stress on N metabolism and meat fatty acids in wether lambs fed hays containing endophyte-infected fescue. Small Rumin. Res. 2005, 60, 237–245. [Google Scholar]
- Lind, V.; Weisbjerg, M.R.; Jørgensen, G.M.; Fernandez-Yepes, J.E.; Arbesú, L.; Molina-Alcaide, E. Ruminal Fermentation, Growth Rate and Methane Production in Sheep Fed Diets Including White Clover, Soybean Meal or Porphyra sp. Animals 2020, 10, 79. Animals 2020, 10, 79. [Google Scholar]
- Anderson, M.J.; Blanton, J.R., Jr.; Gleghorn, J.; Kim, S.W.; Johnson, J.W. Ascophyllumnodosum supplementation strategies that improve overall carcass merit of implanted English crossbred cattle. Asian Australas. J. Anim. Sci. 2006, 19, 1514–1518. [Google Scholar] [CrossRef]
- Fike, J.H.; Allen, V.G.; Schmidt, R.E.; Zhang, X.; Fontenot, J.P.; Bagley, C.P.; Wester, D.B. Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. J. Anim. Sci. 2001, 79, 1011–1021. [Google Scholar]
- Church, D.; Pond, W.; Pond, K. Fundamentos de Nutrición y Alimentación de Animales. LIMUSA Mex. 2004, 423, 433. [Google Scholar]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Vahedi, V.; Hedayat-Evrigh, N.; Holman, B.W.; Ponnampalam, E.N. Supplementation of macro algae (Azolla pinnata) in a finishing ration alters feed efficiency, blood parameters, carcass traits and meat sensory properties in lambs. Small Rumin. Res. 2021, 203, 106498. [Google Scholar] [CrossRef]
- Kannan, G.; Saker, K.E.; Terrill, T.H.; Kouakou, B.; Galipalli, S.; Gelaye, S. Effect of seaweed extract supplementation in goats exposed to simulated preslaughter stress. Small Rumin. Res. 2007, 73, 221–227. [Google Scholar] [CrossRef]
- Wittwer, F. Manual de Patología Clínica Veterinaria; Ediciones Universidad Austral de Chile: Valdivia, Chile, 2021. [Google Scholar]
- Novoa-Garrido, M.; Aanensen, L.; Lind, V.; Larsen, H.J.S.; Jensen, S.K.; Govasmark, E.; Steinshamn, H. Immunological effects of feeding macroalgae and various vitamin E supplements in Norwegian white sheep-ewes and their offspring. Livest. Sci. 2014, 167, 126–136. [Google Scholar] [CrossRef]
- Galipalli, S.; Gadiyaram, K.M.; Kouakou, B.; Terrill, T.H.; Kannan, G. Physiological responses to preslaughter transportation stress in Tasco-supplemented Boer goats. S. Afr. J. Anim. 2004, 34, 198–200. [Google Scholar]
Variable | Ingredient | |
---|---|---|
Grassland | Gs | |
DM, g/kg FM | 550 | 980 |
OM, g/kg DM | 904 | 722 |
Ash, g/kg DM | 96 | 278 |
CP, g/kg DM | 80 | 86 |
NDF, g/kg DM | 488 | 239 |
ADF, g/kg DM | 289 | 94 |
EE, g/kg DM | 30 | 6 |
NFC, g/kg DM | 145 | 56 |
Ca, g/kg DM | 6 | 0.05 |
P, g/kg DM | 1 | 1 |
Mg, g/kg DM | 2 | 9 |
Cl, g/kg DM | 32 | 98 |
Na, g/kg DM | 0.50 | 23.0 |
Variable 1 | Diets 2 | SEM 3 | p-Value | |
---|---|---|---|---|
Grassland | Grassland + Gs | |||
B | 148.8 a | 131.2 b | 3.26 | 0.03 |
C | 0.03 | 0.03 | 0.00 | 0.54 |
Lag time | 2.50 a | 1.10 b | 0.25 | 0.01 |
Time (h) | ||||
3 h, mL gas/g DM | 5.80 b | 9.40 a | 0.53 | 0.02 |
6 h, mL gas/g DM | 14.5 | 18.5 | 0.92 | 0.11 |
9 h, mL gas/g DM | 25.3 | 27.7 | 2.03 | 0.45 |
12 h, mL gas/g DM | 37.5 | 37.3 | 1.79 | 0.96 |
24 h, mL gas/g DM | 74.4 | 67.1 | 1.64 | 0.08 |
36 h, mL gas/g DM | 99 a | 87.9 b | 2.47 | 0.03 |
48 h, mL gas/g DM | 115.6 a | 102.1 b | 2.48 | 0.03 |
72 h, mL gas/g DM | 132.4 a | 116.5 b | 2.77 | 0.02 |
96 h, mL gas/g DM | 140.9 a | 124.6 b | 3.37 | 0.03 |
DMD, g/100 g | 57.9 a | 62.8 b | 0.99 | 0.07 |
PF96, mL/g DMD 96 h | 243.5 a | 198.5 b | 4.72 | 0.01 |
GP24 h, mL/200 mg DM | 14.9 | 13.4 | 0.33 | 0.08 |
ME, MJ/kg DM | 11.8 | 11.4 | 0.12 | 0.15 |
MCP, mg/g DM | 546.4 b | 598.0 a | 9.58 | 0.05 |
SCFA, mL/200 mg DM | 0.30 | 0.30 | 0.00 | 0.08 |
NH3-N, mg/dL | 31.1 | 26.7 | 3.33 | 0.17 |
Variable | mL CH4/g DM | SEM 1 | p-Value | mL CH4/g DM Accumulated | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
Grassland | Grassland + Gs | Grassland | Grassland + Gs | |||||
3 h | 7.2 a | 0.4 b | 0.35 | <0.01 | 7.2 a | 0.4 b | 0.35 | <0.01 |
6 h | 4.8 a | 1.8 b | 0.51 | 0.01 | 12 a | 2.2 b | 0.33 | <0.01 |
9 h | 8.7 | 4.1 | 1.57 | 0.10 | 20.7 a | 6.3 b | 1.78 | <0.01 |
12 h | 7.8 a | 0.9 b | 1.08 | 0.01 | 28.5 a | 7.2 b | 2.78 | <0.01 |
24 h | 41.9 | 28.5 | 3.92 | 0.07 | 70.4 a | 35.7 b | 1.31 | <0.01 |
Variable | N Times Retention Water | SEM 1 | p-Value | Rh (%) Water Retention | SEM 1 | p-Value | ||
---|---|---|---|---|---|---|---|---|
Grassland | Grassland + Gs | Grassland | Grassland + Gs | |||||
Time (h) | ||||||||
0 h | 6.0 b | 7.5 a | 0.05 | <0.01 | 100 | 100 | 0.00 | >0.05 |
3 h | 5.0 b | 6.5 a | 0.06 | <0.01 | 82.3 b | 87.5 a | 0.26 | <0.01 |
6 h | 3.5 b | 5.7 a | 0.25 | <0.01 | 58.8 b | 75.7 a | 3.65 | <0.05 |
9 h | 2.5 b | 4.7 a | 0.21 | <0.01 | 41.8 b | 62.6 a | 3.20 | <0.05 |
12 h | 1.7 b | 4.0 a | 0.12 | <0.01 | 29 b | 54 a | 1.83 | <0.01 |
24 h | 0.7 b | 3.0 | 0.04 | <0.01 | 11.9 b | 39.7 a | 0.49 | <0.01 |
36 h | 0.2 b | 2.2 a | 0.02 | <0.01 | 4.0 b | 30.0 a | 0.27 | <0.01 |
48 h | −0.02 b | 1.6 a | 0.02 | <0.01 | 0.0 b | 21.8 a | 0.204 | <0.01 |
Item | Diets 1 | SEM 2 | p-Value | Effect Size | |
---|---|---|---|---|---|
Grassland | Grassland + Gs | ||||
Initial BW, kg | 46.6 | 47.4 | 1.99 | >0.05 | 0.384 |
Final BW, kg | 48.4 | 48.1 | 1.90 | >0.05 | 0.345 |
ADG, g/d | 30.3 | 25.3 | 5.29 | >0.05 | 0.332 |
MBW initial, kg0.75 | 17.1 | 18.1 | 0.53 | >0.05 | 0.384 |
MBW final, kg0.75 | 18.4 | 18.3 | 0.66 | >0.05 | 0.345 |
ADG, g/kg0.75 | 2.3 | 2.0 | 0.13 | >0.05 | 0.332 |
Initial BCS, point | 2.6 | 2.7 | 0.22 | >0.05 | 0.321 |
Final BCS, point | 3.0 a | 2.2 b | 0.1 | <0.01 | 0.324 |
Variables | Diet 1 | Time | SEM 2 | p-Values | ||||
---|---|---|---|---|---|---|---|---|
Grassland | Grassland + Gs | Initial | Final | Diet | Time | Diet × Time | ||
Glu, mg/dL | 74.9 a | 64.5 b | 71.9 | 67.5 | 2.89 | <0.05 | >0.05 | >0.05 |
TP, g/dL | 7.5 | 7.1 | 7.2 | 7.4 | 0.14 | >0.056 | >0.05 | >0.05 |
Alb, g/dL | 3.4 a | 3.2 b | 3.3 | 3.4 | 0.06 | 0.01 | >0.05 | >0.05 |
Glo, g/dL | 4.1 | 3.9 | 3.9 | 4.0 | 0.09 | >0.05 | >0.05 | >0.05 |
Ca, mg/dL | 10.3 | 10.0 | 10.4 | 9.9 | 0.35 | >0.05 | >0.05 | >0.05 |
P, mg/dL | 5.8 | 6.2 | 6.1 | 5.9 | 0.64 | >0.05 | >0.05 | >0.05 |
Na, mEq/L | 147.1 | 147.0 | 146.0 | 148.1 | 0.92 | >0.05 | >0.05 | >0.05 |
K, mEq/L | 5.6 | 5.2 | 5.1 b | 5.7 a | 0.17 | >0.05 | 0.01 | >0.05 |
Mg, mg/dL | 2.5 | 2.2 | 2.2 | 2.5 | 0.15 | >0.05 | >0.05 | >0.05 |
Cl, mEq/L | 100.9 | 101.7 | 99.5 b | 103.1 a | 0.67 | >0.05 | <0.01 | >0.05 |
Ca/P ratio | 2.0 | 1.7 | 1.9 | 1.8 | 0.21 | >0.05 | >0.05 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glucevic, C.; Ghavipanje, N.; Robles-Jimenez, L.E.; Radic-Schilling, S.; Gonzalez Ronquillo, M. Inclusion of Sub-Antarctic Macroalgae (Gigartina skosttsbergii) as Feed Ingredient for Grazing Sheep. Animals 2025, 15, 1976. https://doi.org/10.3390/ani15131976
Glucevic C, Ghavipanje N, Robles-Jimenez LE, Radic-Schilling S, Gonzalez Ronquillo M. Inclusion of Sub-Antarctic Macroalgae (Gigartina skosttsbergii) as Feed Ingredient for Grazing Sheep. Animals. 2025; 15(13):1976. https://doi.org/10.3390/ani15131976
Chicago/Turabian StyleGlucevic, Cinthya, Navid Ghavipanje, Lizbeth E. Robles-Jimenez, Sergio Radic-Schilling, and Manuel Gonzalez Ronquillo. 2025. "Inclusion of Sub-Antarctic Macroalgae (Gigartina skosttsbergii) as Feed Ingredient for Grazing Sheep" Animals 15, no. 13: 1976. https://doi.org/10.3390/ani15131976
APA StyleGlucevic, C., Ghavipanje, N., Robles-Jimenez, L. E., Radic-Schilling, S., & Gonzalez Ronquillo, M. (2025). Inclusion of Sub-Antarctic Macroalgae (Gigartina skosttsbergii) as Feed Ingredient for Grazing Sheep. Animals, 15(13), 1976. https://doi.org/10.3390/ani15131976