Effects of Rumen-Protected Taurine Supplementation on Ruminal Fermentation, Hematological Profiles, Liver Function, and Immune Responses in Yaks
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Rumen Fluid Collection and Analysis
2.3. Serum Sample Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Ruminal Fermentation Parameters
3.2. Hematological Profiles
3.3. Serum Biochemical Parameters Related to Liver Health
3.4. Neuroendocrine and Acute-Phase Markers
3.5. Serum Immunological and Inflammatory Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnan, G.; Doley, J.; Bhattacharya, D.; Deb, S.M.; Chakravarty, P.; DAS, P.J. Establishing gene Amelogenin as sex-specific marker in yak by genomic approach. J. Genet. 2019, 98, 1–6. [Google Scholar]
- Zhang, Q.; E, G.X.; Pingcuo, Z.D.; Basang, W.D. Research Progress on Exploitation and Utilization of Yak Resources in China. Chin. J. Anim. Nutr. 2023, 35, 7492–7518. [Google Scholar]
- Xue, B.C.; Zhang, J.X.; Wang, Z.S.; Wang, L.Z.; Peng, Q.H.; Da, L.C.; Bao, S.K.; Kong, X.Y.; Xue, B. Metabolism response of grazing yak to dietary concentrate supplementation in warm season. Animal 2021, 15, 100175. [Google Scholar] [CrossRef]
- Liu, Y.X.; Ma, X.M.; Xiong, L.; Wu, X.Y.; Liang, C.N.; Bao, P.J.; Yu, Q.L.; Yan, P. Effects of intensive fattening with total mixed rations on carcass characteristics, meat quality, and meat chemical composition of yak and mechanism based on serum and transcriptomic profiles. Front. Vet. Sci. 2021, 7, 599418. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z. Male yaks adapt to heat stress with enhancement of immunomodulation, anti-oxidation, and blood oxygen delivery. J. Therm. Biol. 2024, 123, 103879. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Lu, L.; Zhang, B.; Yang, H.; Zhao, S.; Wang, Z.; Wang, L.; Peng, Q.; Xue, B. Effects of Dietary Rumen-Protected Glucose and Rumen-Protected Taurine Levels on Growth Performance, Serum Biochemical Indicators, and Liver Health in Yaks. Animals 2025, 15, 1152. [Google Scholar] [CrossRef]
- Chen, C.; Xia, S.; He, J.; Lu, G.; Xie, Z.; Han, H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sci. 2019, 231, 116584. [Google Scholar] [CrossRef]
- García-Ayuso, D.; Di Pierdomenico, J.; Martínez-Vacas, A.; Vidal-Sanz, M.; Picaud, S.; Villegas-Pérez, M.P. Taurine: A promising nutraceutic in the prevention of retinal degeneration. Neural Regen. Res. 2024, 19, 606–610. [Google Scholar] [CrossRef]
- Balamuralidhara, V. Transmissible spongiform encephalopathy and its regulations. Ind. J. Pharm. Edu. Res. 2023, 57 (Suppl. S1), s7–s12. [Google Scholar]
- Spitze, A.R.; Wong, D.L.; Rogers, Q.R.; Fascetti, A.J. Taurine concentrations in animal feed ingredients; cooking influences taurine content. J. Anim. Physiol. Anim. Nutr. 2003, 87, 251–262. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, Q.; Li, M.; Zhao, G. Ruminal degradation of taurine and its effects on rumen fermentation in vitro. Fermentation 2023, 9, 43. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, R.; Mahesh, M.S.; Thakur, S.S. Rumen-Protected Amino Acids for Ruminants. In Feed Additives and Supplements for Ruminants; Springer: Berlin/Heidelberg, Germany, 2024; pp. 143–166. [Google Scholar]
- Zhao, Z.W.; Ma, Z.Y.; Wang, H.C.; Zhang, C.F. Effects of rumen-protected methionine and lysine supplementation on milk yields and components, rumen fermentation, and the rumen microbiome in lactating yaks (Bos grunniens). Anim. Feed. Sci. Technol. 2021, 277, 114972. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, Z.; Wang, H.; Zhou, J.; Zhang, C. Effect of supplementary levels of Rumen-protected lysine and methionine on growth performance, carcass traits, and Meat Quality in Feedlot yaks (Bos grunniens). Animals 2021, 11, 3384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hu, J.; Liu, Y.; Shen, X.; Liu, C.; Cheng, L.; Li, M.; Zhao, G. Taurine drives body protein renewal and accretion in beef steers. Anim. Nutr. 2024, 19, 1–12. [Google Scholar] [CrossRef]
- NASEM. Nutrient Requirements of Beef Cattle, Eighth revised ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Zhao, S.; Zhou, J.; Guan, S.; Wang, X.; Wen, X.; Zhao, K.; Yang, H.; Lu, L.; Zhang, B.; Chen, Y.; et al. Dietary energy and protein gradients drive metabolic adaptation in growing-finishing yaks on the Qinghai-Tibet Plateau. Anim. Nutr. 2025, 21, 351–364. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, Z.; Pu, Q.; Xue, B.; Yue, S.; Guan, S.; Wang, Z.; Wang, L.; Peng, Q.; Xue, B. Rumen fermentation and microbiome responses to enzymatic hydrolysate of cottonseed protein supplementation in continuous in vitro culture. Animals 2022, 12, 2113. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Kidd, M.T. Taurine in poultry nutrition. Anim. Feed. Sci. Technol. 2020, 260, 114339. [Google Scholar] [CrossRef]
- An, J.; Shen, W.; Liu, H.; Yang, C.; Chen, K.; Yuan, Q.; Li, Z.; Xiao, D.; Wang, Z.; Lan, X.; et al. Comparison of the effects of rumen-protected and unprotected L-leucine on fermentation parameters, bacterial composition, and amino acids metabolism in in vitro rumen batch cultures. Front. Microbiol. 2023, 14, 1282767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Wang, Z.S.; Hu, R.; Peng, Q.H.; Xia, K.; Zhao, S.N.; Zhou, Y.Q. Effects of different nutritional regulations on growth and development, blood routine, and plasma antioxidant and immune indexes of yaks with growth retardation. Chin. J. Anim. Nutr. 2018, 30, 1344–1352. [Google Scholar]
- Ding, X.Z.; Liang, C.N.; Guo, X.; Wu, X.Y.; Wang, H.B.; Johnson, K.A.; Yan, P. Physiological insight into the high-altitude adaptations in domesticated yaks (Bos grunniens) along the Qinghai-Tibetan Plateau altitudinal gradient. Livest. Sci. 2014, 162, 233–239. [Google Scholar] [CrossRef]
- Liu, P. Study on the Mechanism of Metabolic Adaptation to Thermal Environment for Yaks Raised at Low Altitude. Master’s Thesis, Yunnan Agricultural University, Kunming, China, 2023. [Google Scholar]
- Zhou, Y.; Tan, F.; Li, C.; Li, W.; Liao, W.; Li, Q.; Qin, G.; Liu, W.; Zhao, X. White Peony (fermented Camellia sinensis) polyphenols help prevent alcoholic liver injury via antioxidation. Antioxidants 2019, 8, 524. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Lu, X.; Dong, L.; Tian, J.; Zhang, J.; Guo, Z.; Luo, Y.; Cui, Z.; Wen, H.; Jiang, M. Enhancing growth, liver health, and bile acid metabolism of tilapia (Oreochromis niloticus) through combined cholesterol and bile acid supplementation in plant-based diets. Anim. Nutr. 2024, 17, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-T.; Liang, Q.-F.; Wang, X.; Wang, R.-S.; Duan, T.-T.; Wang, S.-M.; Tang, D. Protective effects of Huang-Qi-Ge-Gen decoction against diabetic liver injury through regulating PI3K/AKT/Nrf2 pathway and metabolic profiling. J. Ethnopharmacol. 2024, 323, 117647. [Google Scholar] [CrossRef]
- Silva, R.C.M.C.; Travassos, L.H.; Dutra, F.F. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024, 173, 156408. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Zhang, L.; Wu, J.; Wang, Y.; Yu, H. Taurine alleviates lipopolysaccharide-induced liver injury by anti-inflammation and antioxidants in rats. Mol. Med. Rep. 2017, 16, 6512–6517. [Google Scholar] [CrossRef]
- Han, H.; Zhang, J.; Chen, Y.; Shen, M.; Yan, E.; Wei, C.; Yu, C.; Zhang, L.; Wang, T. Dietary taurine supplementation attenuates lipopolysaccharide-induced inflammatory responses and oxidative stress of broiler chickens at an early age. J. Anim. Sci. 2020, 98, skaa311. [Google Scholar] [CrossRef]
- Ouyang, G.; Wang, N.; Tong, J.; Sun, W.; Yang, J.; Wu, G. Alleviation of taurine on liver injury of type 2 diabetic rats by improving antioxidant and anti-inflammatory capacity. Heliyon 2024, 10, e28400. [Google Scholar] [CrossRef]
- Wong, D.L. Epinephrine biosynthesis: Hormonal and neural control during stress. Cell. Mol. Neurobiol. 2006, 26, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Choi, Y.; Ko, T.; Lim, J.; Hajjar, J. Use of Immunoglobulin Replacement Therapy in Clinical Practice: A Review. J. Immunother. Precis. Oncol. 2025, 8, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lai, H.; Li, Q.; Gong, S.; Wang, R. Effects of dietary taurine on growth, immunity and hyperammonemia in juvenile yellow catfish Pelteobagrus fulvidraco fed all-plant protein diets. Aquaculture 2016, 450, 349–355. [Google Scholar] [CrossRef]
- Lv, Q.; Sun, L.; Cui, Y.; Yang, J.; Yang, Q.; Yu, X.; Liu, M.; Ning, Z.; Hu, J. Effects of Replacement of Methionine in Diets with Taurine on Growth Performance and Blood Index in Broilers: Taurine 10; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
Item | Contents |
---|---|
Ingredients | |
Corn | 20.15 |
Wheat bran | 5.50 |
Soybean meal | 15.30 |
Rapeseed meal | 1.50 |
Wheat straw | 30.00 |
Corn stalk silage | 25.00 |
NaHCO3 | 1.00 |
CaCO3 | 0.60 |
Sodium chloride | 0.50 |
Premix 1 | 0.45 |
Nutrient levels 2 | |
NEm, MJ/kg | 5.36 |
NEg, MJ/kg | 3.03 |
DM | 59.45 |
CP | 11.30 |
NDF | 47.09 |
ADF | 21.62 |
Ca | 0.48 |
P | 0.25 |
Item | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | RPT20 | RPT40 | |||
pH | 7.65 | 7.64 | 7.58 | 0.0223 | 0.408 |
MCP, mg/mL | 1.86 | 1.91 | 2.11 | 0.0938 | 0.543 |
NH3-N, ug/mL | 24.4 | 25.2 | 22.7 | 1.07 | 0.651 |
TVFA, mmol/L | 63.4 | 57.3 | 60.8 | 2.85 | 0.711 |
Acetic acid, mmol/L | 44.1 | 40.4 | 42.6 | 1.96 | 0.765 |
Propionic acid, mmol/L | 13.9 | 12.6 | 13.5 | 0.713 | 0.751 |
Butyric acid, mmol/L | 3.47 | 2.77 | 2.83 | 0.379 | 0.729 |
Isobutyric acid, mmol/L | 0.806 | 0.640 | 0.826 | 0.0400 | 0.110 |
Valeric acid, mmol/L | 0.248 | 0.165 | 0.206 | 0.0201 | 0.255 |
Isovaleric acid, mmol/L | 0.868 | 0.806 | 0.847 | 0.0432 | 0.853 |
A/P | 3.16 | 3.08 | 3.20 | 0.0472 | 0.765 |
Item | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | RPT20 | RPT40 | |||
White blood cell | |||||
White blood cell, ×109/L | 9.96 | 9.16 | 8.89 | 0.460 | 0.640 |
Neutrophil count, ×109/L | 5.07 | 4.71 | 4.19 | 0.345 | 0.252 |
Lymphocyte count, ×109/L | 3.69 | 3.42 | 3.43 | 0.213 | 0.285 |
Monocyte count, ×109/L | 0.673 | 0.496 | 0.583 | 0.0403 | 0.139 |
Eosinophil count, ×109/L | 0.533 | 0.543 | 0.677 | 0.0417 | 0.284 |
Red blood cell | |||||
Red blood cell count, ×1012/L | 6.31 | 5.57 | 4.51 | 0.311 | 0.0502 |
Hematocrit, % | 34.1 | 30.5 | 26.2 | 1.54 | 0.107 |
Mean corpuscular volume, fL | 54.2 | 54.6 | 58.1 | 0.913 | 0.165 |
Mean corpuscular hemoglobin, pg | 19.9 | 19.9 | 21.2 | 0.347 | 0.234 |
Mean corpuscular hemoglobin concentration, g/L | 367 | 366 | 364 | 2.30 | 0.884 |
Hemoglobin, g/L | 125 | 113 | 95.2 | 5.89 | 0.104 |
Platelet | |||||
Platelet count, ×109/L | 312 | 297 | 295 | 26.4 | 0.963 |
Platelet distribution width | 15.7 | 15.8 | 15.9 | 0.105 | 0.847 |
Item | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | RPT20 | RPT40 | |||
ALB, g/L | 28.9 | 27.9 | 26.5 | 0.535 | 0.203 |
ALP, U/L | 103.5 | 110.5 | 82.7 | 5.29 | 0.0742 |
ALT, U/L | 84.2 | 94.3 | 77.0 | 4.67 | 0.331 |
AST, U/L | 69.5 | 66.2 | 75.2 | 4.58 | 0.744 |
TP, g/L | 75.0 | 74.6 | 73.9 | 1.04 | 0.918 |
Item | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | RPT20 | RPT40 | |||
SAA | 14.5 | 16.3 | 13.2 | 0.791 | 0.296 |
CRP | 7.18 | 6.84 | 7.03 | 0.100 | 0.396 |
EPI | 28.7 | 32.7 | 27.6 | 1.66 | 0.446 |
ACTH | 20.4 | 26.4 | 20.7 | 3.32 | 0.733 |
COR | 44.0 | 44.2 | 46.0 | 2.71 | 0.952 |
Item | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | RPT20 | RPT40 | |||
IL-1 | 38.4 | 45.5 | 38.7 | 3.35 | 0.651 |
IL-6 | 44.8 | 41.3 | 40.5 | 3.22 | 0.863 |
TNF-α | 39.9 | 38.2 | 27.2 | 3.85 | 0.470 |
IFN-γ | 72.2 | 81.2 | 69.5 | 3.74 | 0.444 |
IgA | 35.7 b | 53.9 a | 38.2 b | 3.18 | 0.0293 |
IgG | 28.0 b | 43.7 a | 33.4 ab | 2.59 | 0.0428 |
IgM | 23.8 | 28.0 | 21.9 | 2.02 | 0.476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Lu, L.; Chen, Y.; Yang, H.; Zhang, B.; Cao, M.; Chao, W.; Xue, W.; Fan, X.; Xiao, J.; et al. Effects of Rumen-Protected Taurine Supplementation on Ruminal Fermentation, Hematological Profiles, Liver Function, and Immune Responses in Yaks. Animals 2025, 15, 1929. https://doi.org/10.3390/ani15131929
Zhao S, Lu L, Chen Y, Yang H, Zhang B, Cao M, Chao W, Xue W, Fan X, Xiao J, et al. Effects of Rumen-Protected Taurine Supplementation on Ruminal Fermentation, Hematological Profiles, Liver Function, and Immune Responses in Yaks. Animals. 2025; 15(13):1929. https://doi.org/10.3390/ani15131929
Chicago/Turabian StyleZhao, Shoupei, Lianghao Lu, Yuanyuan Chen, Huaming Yang, Bao Zhang, Mingyu Cao, Wenju Chao, Wanchao Xue, Xiaorong Fan, Jianxin Xiao, and et al. 2025. "Effects of Rumen-Protected Taurine Supplementation on Ruminal Fermentation, Hematological Profiles, Liver Function, and Immune Responses in Yaks" Animals 15, no. 13: 1929. https://doi.org/10.3390/ani15131929
APA StyleZhao, S., Lu, L., Chen, Y., Yang, H., Zhang, B., Cao, M., Chao, W., Xue, W., Fan, X., Xiao, J., Hu, R., Peng, Q., Wang, L., Wang, Z., & Xue, B. (2025). Effects of Rumen-Protected Taurine Supplementation on Ruminal Fermentation, Hematological Profiles, Liver Function, and Immune Responses in Yaks. Animals, 15(13), 1929. https://doi.org/10.3390/ani15131929