Bioaccumulation, Ecotoxicity, and Microbial Responses in Hoplobatrachus rugulosus Tadpoles Following Co-Exposure to Imidacloprid and Microplastics
Abstract
Highlights
- Q: How did IMI + MPs affect the tadpole LC50/TK parameters compared to their impact on growth? A: IMI + MPs negligibly affected the tadpole LC50/TK parameters compared to growth.
- Q: What was the difference in nuclear anomaly rates between tadpoles exposed to IMI alone and those exposed to IMI + MPs? A: IMI + MPs increased the nuclear anomaly rates in tadpoles compared to IMI.
- Q: How did the combination of IMI+ MPs influence the gut and skin microbiota in tadpoles? A: IMI + MPs induced a gut/skin microbiota diversity imbalance in tadpoles.
- Q: What was developed to assess the integrated effects of pollutants like IMI + MPs? A: A framework for a new multifaceted response evaluation was established to assess integrated effects.
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and the Preparation of MPs
2.3. Test Organism Acclimatization
2.4. Acute Exposure Experiments
2.5. Bioconcentration–Elimination of IMI in the Presence of MPs
2.5.1. Experimental Design for Bioconcentration–Elimination Assays
2.5.2. Uptake and Depuration Kinetics
2.6. Exposure to Chronic Toxic Effects
2.6.1. Experimental Design
2.6.2. Morphological and Biochemical Parameters
2.6.3. Intestinal and Epidermal Microbiome Analysis
2.7. Quantitation Analysis of IMI and MPs in Surface Water and Tadpoles
2.8. Statistics and Data Analyses
3. Results and Discussion
3.1. Acute Toxicity Parameters (LC50) of IMI in the Presence of MPs
3.2. Uptake and Depuration Dynamics of IMI with or Without MPs
3.3. Chronic Toxicity Effects of IMI with and Without MPs on Tadpoles
3.3.1. Growth/Development and Erythrocyte Nuclear Toxicity
3.3.2. Oxidative Stress
3.3.3. Integrated Biological Response
3.4. Associated Microbial Diversity Responses
3.4.1. Gut Microbial Diversity
3.4.2. Epidermis Microbial Diversity
3.5. Relationships Among Toxicity Response Indicators and Their Complex Toxicity Interaction Mode
3.6. Multifaceted Response Evaluation Framework
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llorens, E.; Ginebreda, A.; la Farré, M.; Insa, S.; González-Trujillo, J.D.; Munné, A.; Solà, C.; Flò, M.; Villagrasa, M.; Barceló, D.; et al. Occurrence of regulated pollutants in populated Mediterranean basins: Ecotoxicological risk and effects on biological quality. Sci. Total Environ. 2020, 747, 141224. [Google Scholar] [CrossRef] [PubMed]
- Laicher, D.; Benkendorff, K.; White, S.; Conrad, S.; Woodrow, R.L.; Butcherine, P.; Sanders, C.J. Pesticide occurrence in an agriculturally intensive and ecologically important coastal aquatic system in Australia. Mar. Pollut. Bull. 2022, 180, 113675. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, T.C.; Van Staalduinen, M.A.; Van der Sluijs, J.P. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS ONE 2013, 8, e62374. [Google Scholar] [CrossRef]
- Zhang, W.; Teng, M.; Yan, J.; Chen, L. Study effect and mechanism of levofloxacin on the neurotoxicity of Rana nigromaculata tadpoles exposed to imidacloprid based on the microbe-gut-brain axis. Sci. Total Environ. 2023, 872, 162098. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Deng, Y.; Wang, R.; Wang, F.; Cui, H.; Hu, D.; Lu, P. Toxic effects of imidacloprid and sulfoxaflor on Rana nigromaculata tadpoles: Growth, antioxidant indices and thyroid hormone-related endocrine system. Arab. J. Chem. 2023, 16, 104723. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, J.S.; Kim, H.S. Toxic effects of triclosan in aquatic organisms: A review focusing on single and combined exposure to environmental conditions and pollutants. Sci. Total Environ. 2024, 920, 170902. [Google Scholar] [CrossRef]
- Salla, R.F.; Oliveira, F.N.; Jacintho, J.C.; Cirqueira, F.; Tsukada, E.; Vieira, L.G.; Rocha, T.L. Microplastics and TiO2 nanoparticles mixture as an emerging threat to amphibians: A case study on bullfrog embryos. Environ. Pollut. 2024, 346, 123624. [Google Scholar] [CrossRef]
- Tian, H.; Zheng, C.; Huang, X.; Qi, C.; Li, B.; Du, Z.; Zhu, L.; Wang, J.; Wang, J. Effects of farmland residual mulch film-derived microplastics on the structure and function of soil and earthworm Metaphire guillelmi gut microbiota. Sci. Total Environ. 2024, 915, 170094. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; Mcgonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Idowu, G.A.; Oriji, A.Y.; Olorunfemi, K.O.; Sunday, M.O.; Sogbanmu, T.O.; Bodunwa, O.K.; Shokunbi, O.S.; Aiyesanmi, A.F. Why Nigeria should ban single-use plastics: Excessive microplastic pollution of the water, sediments and fish species in Osun River, Nigeria. J. Hazard. Mater. Adv. 2024, 13, 100409. [Google Scholar] [CrossRef]
- Da Costa Araújo, A.P.; Gomes, A.R.; Malafaia, G. Hepatotoxicity of pristine polyethylene microplastics in neotropical Physalaemus cuvieri tadpoles (Fitzinger, 1826). J. Hazard. Mater. Adv. 2020, 386, 121992. [Google Scholar] [CrossRef]
- Da Costa Araújo, A.P.; de Melo, N.F.S.; de Oliveira Junior, A.G.; Rodrigues, F.P.; Fernandes, T.; de Andrade Vieira, J.E.; Rocha, T.L.; Malafaia, G. How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. J. Hazard. Mater. Adv. 2020, 382, 121066. [Google Scholar] [CrossRef]
- Meppelink, S.M.; Kolpin, D.W.; LeFevre, G.H.; Cwiertny, D.M.; Givens, C.E.; Green, L.A.; Hubbard, L.E.; Iwanowicz, L.R.; Lane, R.F.; Mianecki, A.L.; et al. Assessing microplastics, per-and polyfluoroalkyl substances (PFAS), and other contaminants of global concern in wadable agricultural streams in Iowa. Environ. Sci. Process. Impacts 2025, 27, 1401–1422. [Google Scholar] [CrossRef]
- Casillas, A.; De la Torre, A.; Navarro, I.; Sanz, P.; de los Ángeles Martínez, M. Environmental risk assessment of neonicotinoids in surface water. Sci. Total Environ. 2022, 809, 151161. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yang, Z.; Gong, Y.; Song, D.; Chen, Y. Occurrence and emission characteristics of microplastics in agricultural surface runoff under different natural rainfall and short-term fertilizer application. J. Hazard. Mater. 2024, 477, 135254. [Google Scholar] [CrossRef] [PubMed]
- Starner, K.; Goh, K.S. Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull. Environ. Contam. Toxicol. 2012, 88, 316–321. [Google Scholar] [CrossRef]
- Peña, A.; Rodríguez-Liébana, J.A.; Delgado-Moreno, L. Interactions of microplastics with pesticides in soils and their ecotoxicological implications. Agron. J. 2023, 13, 701. [Google Scholar] [CrossRef]
- Sun, T.; Wang, S.; Ji, C.; Li, F.; Wu, H. Microplastics aggravate the bioaccumulation and toxicity of coexisting contaminants in aquatic organisms: A synergistic health hazard. J. Hazard. Mater. 2022, 424, 127533. [Google Scholar] [CrossRef]
- Sun, S.; Shi, W.; Tang, Y.; Han, Y.; Du, X.; Zhou, W.; Zhang, W.; Sun, C.; Liu, G. The toxic impacts of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) on hematic parameters in a marine bivalve species and their potential mechanisms of action. Sci. Total Environ. 2021, 783, 147003. [Google Scholar] [CrossRef]
- Luo, T.; Weng, Y.; Huang, Z.; Zhao, Y.; Jin, Y. Combined hepatotoxicity of imidacloprid and microplastics in adult zebrafish: Endpoints at gene transcription. Comp. Biochem. Physiol. Part C 2021, 246, 109043. [Google Scholar] [CrossRef]
- Wang, X.; Chang, L.; Zhao, T.; Liu, L.; Zhang, M.; Li, C.; Xie, F.; Jiang, J.; Zhu, W. Metabolic switch in energy metabolism mediates the sublethal effects induced by glyphosate-based herbicide on tadpoles of a farmland frog Microhyla fissipes. Ecotoxicol. Environ. Saf. 2019, 186, 109794. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Ye, C.; Jiang, J. Colored Atlas of Chinese Amphibians and Their Distributions; Sichuan Publishing House of Science & Technology: Chengdu, China, 2012. [Google Scholar]
- Chen, J.Y.; Hu, H.L.; Feng, L.; Ding, G.H. Ecotoxicity assessment of triphenyl phosphate (TPhP) exposure in Hoplobatrachus rugulosus tadpoles. Chemosphere 2022, 292, 133480. [Google Scholar] [CrossRef]
- Trachantong, W.; Saenphet, S.; Saenphet, K.; Chaiyapo, M. Lethal and sublethal effects of a methomyl-based insecticide in Hoplobatrachus rugulosus. J. Toxicol. Pathol. 2017, 30, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Vencato, S.; Montano, S.; Saliu, F.; Coppa, S.; Becchi, A.; Liotta, I.; Valente, T.; Cocca, M.; Matiddi, M.; Camedda, A.; et al. Phthalate levels in common sea anemone Actinia equina and Anemonia viridis: A proxy of short-term microplastic interaction? Mar. Pollut. Bull. 2024, 200, 116125. [Google Scholar] [CrossRef]
- Zhang, C.; Lei, Y.; Qian, J.; Qiao, Y.; Liu, J.; Li, S.; Dai, L.; Sun, K.; Guo, H.; Sui, G.; et al. Sorption of organochlorine pesticides on polyethylene microplastics in soil suspension. Ecotoxicol. Environ. Saf. 2021, 223, 112591. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Zhou, X.; Ming, R.; Hu, D.; Lu, P. Insight into the toxic effects, bioconcentration and oxidative stress of acetamiprid on Rana nigromaculata tadpoles. Chemosphere 2022, 305, 135380. [Google Scholar] [CrossRef]
- Boccioni, A.P.C.; Lener, G.; Peluso, J.; Peltzer, P.M.; Attademo, A.M.; Aronzon, C.; Simoniello, M.F.; Demonte, L.D.; Repetti, M.R.; Lajmanovich, R.C. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. Chemosphere 2022, 309, 136554. [Google Scholar] [CrossRef]
- Gosner, K.L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 1960, 16, 183–190. [Google Scholar]
- OECD. Section 2 Text No. 203: Fish, Acute Toxicity Test. In OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 1992; Volume 2, pp. 1–24. [Google Scholar]
- GB/T 31270.18-2014; Test Guidelines on Environmental Safety Assessment for Chemical Pesticides—Part 18: Amphibian Acute Toxicity Test. General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China: Beijing, China; Standardization Administration of China: Beijing, China, 2014.
- Lajmanovich, R.C.; Attademo, A.M.; Lener, G.; Boccioni, A.P.C.; Peltzer, P.M.; Martinuzzi, C.S.; Demonte, L.D.; Repetti, M.R. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. Sci. Total Environ. 2022, 804, 150177. [Google Scholar] [CrossRef]
- Morais, F.; Pires, V.; Almeida, M.; Martins, M.A.; Oliveira, M.; Lopes, I. Influence of polystyrene nanoplastics on the toxicity of haloperidol to amphibians: An in vivo and in vitro approach. Sci. Total Environ. 2024, 951, 175375. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y. Behavioral effects of polylactic acid microplastics on the tadpoles of Pelophylax nigromaculatus. Ecotoxicol. Environ. Saf. 2024, 285, 117146. [Google Scholar] [CrossRef] [PubMed]
- Landrum, P.F.; Lydy, M.J.; Lee, H. Toxicokinetics in aquatic systems: Model comparisons and use in hazard assessment. Environ. Toxicol. Chem. 1992, 11, 1709–1725. [Google Scholar] [CrossRef]
- Sanchez, W.; Burgeot, T.; Porcher, J.M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ. Sci. Pollut. Res. 2013, 20, 2721–2725. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, V.P.; Zhang, X.; Morono, Y.; Inagaki, F.; Wang, F. A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments. Front. Microbiol. 2016, 7, 195544. [Google Scholar] [CrossRef]
- Tan, H.; Wu, Q.; Hao, R.; Wang, C.; Zhai, J.; Li, Q.; Cui, Y.; Wu, C. Occurrence, distribution, and driving factors of current-use pesticides in commonly cultivated crops and their potential risks to non-target organisms: A case study in Hainan, China. Sci. Total Environ. 2023, 854, 158640. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Li, Q.; Zhang, H.; Wu, C.; Zhao, S.; Deng, X.; Li, Y. Pesticide residues in agricultural topsoil from the Hainan tropical riverside basin: Determination, distribution, and relationships with planting patterns and surface water. Sci. Total Environ. 2020, 722, 137856. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, B.; Wang, H. Analytical methods for microplastics in the environment: A review. Environ. Chem. Lett. 2023, 21, 383–401. [Google Scholar] [CrossRef]
- Di Fiore, C.; Ishikawa, Y.; Wright, S.L. A review on methods for extracting and quantifying microplastic in biological tissues. J. Hazard. Mater. 2024, 464, 132991. [Google Scholar] [CrossRef]
- Siregar, P.; Suryanto, M.E.; Chen, K.H.C.; Huang, J.C.; Chen, H.M.; Kurnia, K.A.; Santoso, F.; Hussain, A.; Hieu, B.T.H.; Saputra, F.; et al. Exploiting the Freshwater Shrimp Neocaridina denticulata as Aquatic Invertebrate Model to Evaluate Nontargeted Pesticide Induced Toxicity by Investigating Physiologic and Biochemical Parameters. Antioxidants 2021, 10, 391. [Google Scholar] [CrossRef]
- Šunta, U.; Prosenc, F.; Trebše, P.; Bulc, T.G.; Kralj, M.B. Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil. Chemosphere 2020, 261, 127762. [Google Scholar] [CrossRef]
- Papazi, A.; Karamanli, M.; Kotzabasis, K. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—The biodegradation strategy of microalgae. J. Biotechnol. 2019, 296, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yu, D.; Ge, C.; Luo, X.; Du, L.; Zhang, X.; Hui, C. Combined effects of microplastics and chlortetracycline on the intestinal barrier, gut microbiota, and antibiotic resistome of Muscovy ducks (Cairina moschata). Sci. Total Environ. 2023, 887, 164050. [Google Scholar] [CrossRef]
- Hamed, M.; Osman, A.G.M.; Badrey, A.E.A.; Soliman, H.A.M.; Sayed, A.E.D.H. Microplastics-induced eryptosis and poikilocytosis in early-Juvenile Nile Tilapia (Oreochromis niloticus). Front. Physiol. 2021, 12, 742922. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Liu, J.; Huang, D. The role of reactive oxygen species in the herbicide acetochlor-induced DNA damage on Bufo raddei tadpole liver. Aquat. Toxicol. 2006, 78, 21–26. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The plastic brain: Neurotoxicity of micro-and nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Z.; Wu, D.; Chen, M.; Lv, W.; Zhao, Y. Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat. Toxicol. 2018, 200, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Sun, J.L.; Yao, F.C.; Jiang, T.; Jin, C.X.; Shi, L.P.; Sun, S.K.; Song, F.B.; Luo, J. Long-term hypoxia and reoxygenation induced oxidative stress lead to immunosuppression and apoptosis in golden pompano (Trachinotus blochii). Front. Mar. Sci. 2023, 10, 1212571. [Google Scholar] [CrossRef]
- Oliveira, P.; Barboza, L.G.A.; Branco, V.; Figueiredo, N.; Carvalho, C.; Guilhermino, L. Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller,1774): Filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicol. Environ. Saf. 2018, 164, 155–163. [Google Scholar] [CrossRef]
- Tao, Y.; Hua, J.; Lu, S.; Wang, Q.; Li, Y.; Jiang, B.; Dong, Y.; Qiang, J.; Xu, P. Ultrastructural, Antioxidant, and Metabolic Responses of Male Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) to Acute Hypoxia Stress. Antioxidants 2024, 13, 89. [Google Scholar] [CrossRef]
- Zhou, H.; Jiao, X.; Li, Y. Exploring the Toxicity of oxytetracycline in earthworms (Eisenia fetida) based on the integrated biomarker response method. Toxics 2024, 12, 310. [Google Scholar] [CrossRef]
- Villatoro-Castañeda, M.; Forsburg, Z.R.; Ortiz, W.; Fritts, S.R.; Gabor, C.R.; Carlos-Shanley, C. Exposure to Roundup and Antibiotics Alters Gut Microbial Communities, Growth, and Behavior in Rana berlandieri Tadpoles. Biology 2023, 12, 1171. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Xu, C.; Zou, X.; Xia, Z.; Su, L.; Qiu, N.; Cai, L.; Yu, F.; Wang, Q.; Zhao, X.; et al. Long-term exposure to microplastics induces intestinal function dysbiosis in rare minnow (Gobiocypris rarus). Ecotoxicol. Environ. Saf. 2022, 246, 114157. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Aceves, M.A.; Banaee, M.; Vazzana, I.; Betancourt-Lozano, M.; González-Mille, D.J.; Aliko, V.; Faggio, C.; Ilizaliturri-Hernández, C.A. Effect of emerging pollutants on the gut microbiota of freshwater animals: Focusing on microplastics and pesticides. Sci. Total Environ. 2024, 948, 174809. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, J.; Wang, G.; Yang, H.; Li, Z.; Zhang, K.; Shu, R.; Xie, W.; Tian, J.; Li, H.; et al. Enhanced gut damage and microbial imbalance in bullfrog tadpoles (Lithobates catesbeiana) exposed to polystyrene microplastics under high-temperature conditions. Environ. Pollut. 2025, 375, 126339. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, Y.; Liu, J.; Chang, L.; Chen, Q.; Zhu, L.; Wang, B.; Jiang, J.; Zhu, W. Size matters either way: Differently-sized microplastics affect amphibian host and symbiotic microbiota discriminately. Environ. Pollut. 2023, 328, 121634. [Google Scholar] [CrossRef]
- Gabor, C.R.; Villatoro-Castañeda, M.; Carlos-Shanley, C.; Ujhegyi, N.; Bókony, V. Gut Bacterial Communities Vary across Habitats and Their Diversity Increases with Increasing Glucocorticoids in Toad Tadpoles. Diversity 2023, 15, 23. [Google Scholar] [CrossRef]
- Bates, K.A.; Friesen, J.; Loyau, A.; Butler, H.; Vredenburg, V.T.; Laufer, J.; Chatzinotas, A.; Schmeller, D.S. Environmental and Anthropogenic Factors Shape the Skin Bacterial Communities of a Semi-Arid Amphibian Species. Microb. Ecol. 2023, 86, 1393–1404. [Google Scholar] [CrossRef]
- McGrath-Blaser, S.; Steffen, M.; Grafe, T.U.; Torres-Sánchez, M.; McLeod, D.S.; Muletz-Wolz, C.R. Early life skin microbial trajectory as a function of vertical and environmental transmission in Bornean foam-nesting frogs. Anim. Microbiome 2021, 3, 83. [Google Scholar] [CrossRef]
- Lu, K.; Qiao, R.; An, H.; Zhang, Y. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 2018, 202, 514–520. [Google Scholar] [CrossRef]
- Hong, J.K.; Oh, H.; Lee, T.K.; Kim, S.; Oh, D.; Ahn, J.; Park, S. Tracking the Evolution of Microbial Communities on Microplastics through a Wastewater Treatment Process: Insight into the “Plastisphere”. Water 2023, 15, 3746. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, R.; Li, S.; Qiu, D.; Li, G.; Wang, C.; Ni, J.; Sun, Y.; Hu, H. Oxidative stress, neurotoxicity, and intestinal microbial regulation after a chronic zinc exposure: An experimental study on adult zebrafish (Danio rerio). Water Reuse 2023, 13, 82–96. [Google Scholar]
- Chen, J.; Rao, C.; Yuan, R.; Sun, D.; Guo, S.; Li, L.; Yang, S.; Qian, D.; Lu, R.; Cao, X. Long-term exposure to polyethylene microplastics and glyphosate interferes with the behavior, intestinal microbial homeostasis, and metabolites of the common carp (Cyprinus carpio L.). Sci. Total Environ. 2022, 814, 152681. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wan, Z.; Luo, T.; Fu, Z.; Jin, Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci. Total Environ. 2018, 631, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.K.; Rakib, M.R.J.; Lin, C.; Hung, N.T.Q.; Le, V.G.; Nguyen, H.L.; Malafaia, G.; Idris, A.M. A comprehensive review on ecological effects of microplastic pollution: An interaction with pollutants in the ecosystems and future perspectives. Trends Anal. Chem. 2023, 168, 117294. [Google Scholar] [CrossRef]
Test Chemicals | MPs (10 mg L−1) | Media Lethal Concentration (LC50) Values (mg L−1) with 95% Confidence Intervals | |||||||
---|---|---|---|---|---|---|---|---|---|
24 h LC50 | R2 | 48 h LC50 | R2 | 72 h LC50 | R2 | 96 h LC50 | R2 | ||
IMI | − | 143.9 | 0.9316 | 113.6 | 0.9115 | 71.8 | 0.8762 | 44.8 | 0.8281 |
IMI | + | 112.1 | 0.9737 | 99.9 | 0.9749 | 55.3 | 0.9922 | 40.5 | 0.9791 |
IMI Concentration (mg L−1) | MPs (mg L−1) | IMI in Body | ||||
---|---|---|---|---|---|---|
Treatments | Ku (h−1) | Ke (h−1) | BCF | t1/2 (h) | ||
0 | 0 | Control | – | – | – | – |
0 | 10 | – | – | – | – | – |
0.045 | 0 | IMI0.045 | 0.0909 ± 0.0033 | 0.1504 ± 0.0309 | 0.6045 | 4.61 |
0.045 | 10 | IMI0.045 + MPs | 0.0753 ± 0.0035 | 0.1287 ± 0.0200 | 0.5852 | 5.39 |
0.45 | 0 | IMI0.45 | 0.0893 ± 0.0018 | 0.1917 ± 0.0169 | 0.4658 | 3.62 |
0.45 | 10 | IMI0.45 + MPs | 0.0812 ± 0.0025 | 0.1711 ± 0.0113 | 0.4745 | 4.05 |
4.5 | 0 | IMI4.5 | 0.3391 ± 0.0138 | 0.4260 ± 0.0281 | 0.7960 | 1.63 |
4.5 | 10 | IMI4.5 + MPs | 0.3667 ± 0.0195 | 0.4523 ± 0.0225 | 0.8108 | 1.53 |
Response Indices | Multiple Regression Model | Adjusted R2 |
---|---|---|
SOD | Y = 0.73982 + 0.01605X1 − 0.00289X2 + 0.00126X1X2 | 0.99999 |
CAT | Y = 9.18858 − 0.65982X1 + 0.59738X2 − 0.18605X1X2 | 0.95911 |
MDA | Y = 0.88662 + 0.11455X1 + 0.02216X2 + 0.00152X1X2 | 0.99947 |
AChE | Y = 3.10489 + 0.26058X1 + 0.10801X2 − 0.05683X1X2 | 0.93878 |
Body length | Y = 49.69478 − 1.46457X1 − 0.25774X2 + 0.03647X1X2 | 0.97144 |
Body weight | Y = 681.71573 − 43.73941X1 − 9.79472X2 + 0.68524X1X2 | 0.99962 |
Micronucleus rate | Y = 0.11969 + 0.0732X1 + 0.03262X2 − 0.00921X1X2 | 0.99994 |
Nuclear abnormality rate | Y = 0.57716 + 0.1524X1 + 0.08844X2 − 0.01835X1X2 | 0.99789 |
Gut bacterial Shannon index | Y = 0.82536 + 0.03047X1 + 0.006X2 − 0.00148X1X2 | 0.99949 |
Gut bacterial Simpson index | Y = 0.34895 + 0.00134X1 + 0.00989X2 − 0.00458X1X2 | 0.99965 |
Gut fungal Shannon index | Y = 1.08521 − 0.04488X1 + 0.10239X2 − 0.04302X1X2 | 0.94752 |
Gut fungal Simpson index | Y = 0.67644 − 0.00287X1 − 0.02236X2 + 0.01003X1X2 | 0.99537 |
Epidermis bacterial Shannon index | Y = 1.5094 + 0.06135X1 + 0.00408X2 + 0.00800X1X2 | 0.99523 |
Epidermis bacterial Simpson index | Y = 0.48299 − 0.01723X1 + 0.00251X2 − 0.00304X1X2 | 0.99957 |
Epidermis fungal Shannon index | Y = 0.3714 − 0.05632X1 − 0.0099X2 + 0.00217X1X2 | 0.99874 |
Epidermis fungal Simpson index | Y = 0.82536 + 0.03047X1 + 0.006X2 − 0.00148X1X2 | 0.99949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhu, S.; Chen, Y.; Zhang, L.; Tan, H.; Wu, C.; Zhang, X.; Deng, X.; Li, Y. Bioaccumulation, Ecotoxicity, and Microbial Responses in Hoplobatrachus rugulosus Tadpoles Following Co-Exposure to Imidacloprid and Microplastics. Animals 2025, 15, 1928. https://doi.org/10.3390/ani15131928
Hu X, Zhu S, Chen Y, Zhang L, Tan H, Wu C, Zhang X, Deng X, Li Y. Bioaccumulation, Ecotoxicity, and Microbial Responses in Hoplobatrachus rugulosus Tadpoles Following Co-Exposure to Imidacloprid and Microplastics. Animals. 2025; 15(13):1928. https://doi.org/10.3390/ani15131928
Chicago/Turabian StyleHu, Xinyu, Sipu Zhu, Yiru Chen, Linxia Zhang, Huadong Tan, Chunyuan Wu, Xiaoying Zhang, Xiao Deng, and Yi Li. 2025. "Bioaccumulation, Ecotoxicity, and Microbial Responses in Hoplobatrachus rugulosus Tadpoles Following Co-Exposure to Imidacloprid and Microplastics" Animals 15, no. 13: 1928. https://doi.org/10.3390/ani15131928
APA StyleHu, X., Zhu, S., Chen, Y., Zhang, L., Tan, H., Wu, C., Zhang, X., Deng, X., & Li, Y. (2025). Bioaccumulation, Ecotoxicity, and Microbial Responses in Hoplobatrachus rugulosus Tadpoles Following Co-Exposure to Imidacloprid and Microplastics. Animals, 15(13), 1928. https://doi.org/10.3390/ani15131928