The Development of TIM-Barrel Based Multi-Epitope Protein for Toxoplasma gondii Serological Detection in Cats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cat Serum Preparation and ETHICAL Approval
2.2. Constructions of Chimeric Multi-Epitopes
2.3. Productions of Chimeric Multi-Epitope Proteins
2.4. Indirect ELISA Condition and Candidate Chimeric Multi-Epitopes Testing
2.5. Evaluation of Chimeric-Multi-Epitopes and Statistical Analysis
3. Results
3.1. Chimeric Multi-Epitopes
3.2. Serological Test
3.3. Evaluation of Indirect ELISA Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doskaya, M.; Liang, L.; Jain, A.; Can, H.; Iz, S.G.; Felgner, P.L.; Doskaya, A.D.; Davies, D.H.; Guruz, A.Y. Author Correction: Discovery of new Toxoplasma gondii antigenic proteins using a high throughput protein microarray approach screening sera of murine model infected orally with oocysts and tissue cysts. Parasites Vectors 2024, 17, 243. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. The history of Toxoplasma gondii—The first 100 years. J. Eukaryot. Microbiol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Liu, Q.; Singla, L.D.; Zhou, H. Vaccines against Toxoplasma gondii: Status, challenges and future directions. Hum. Vaccin. Immunother. 2012, 8, 1305–1308. [Google Scholar] [CrossRef]
- Dubey, J.P.; Lindsay, D.S.; Speer, C.A. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin. Microbiol. Rev. 1998, 11, 267–299. [Google Scholar] [CrossRef] [PubMed]
- Elsheikha, H.M.; Marra, C.M.; Zhu, X.Q. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin. Microbiol. Rev. 2021, 34, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, S.; Rostami, A.; Nourollahpour Shiadeh, M.; Behniafar, H.; Paktinat, S. An updated literature review on maternal-fetal and reproductive disorders of Toxoplasma gondii infection. J. Gynecol. Obstet. Hum. Reprod. 2018, 47, 133–140. [Google Scholar] [CrossRef]
- Molan, A.; Nosaka, K.; Hunter, M.; Wang, W. Global status of Toxoplasma gondii infection: Systematic review and prevalence snapshots. Trop. Biomed. 2019, 36, 898–925. [Google Scholar]
- Moncada, P.A.; Montoya, J.G. Toxoplasmosis in the fetus and newborn: An update on prevalence, diagnosis and treatment. Expert. Rev. Anti-Infect. Ther. 2012, 10, 815–828. [Google Scholar] [CrossRef]
- Calero-Bernal, R.; Gennari, S.M. Clinical Toxoplasmosis in Dogs and Cats: An Update. Front. Veter Sci. 2019, 6, 54. [Google Scholar] [CrossRef]
- Faculty of Veterinary Medicine, K.U. Rabies One Data. Available online: http://rabiesonedata.ku.ac.th/ (accessed on 14 July 2024).
- Terkawi, M.A.; Kameyama, K.; Rasul, N.H.; Xuan, X.; Nishikawa, Y. Development of an immunochromatographic assay based on dense granule protein 7 for serological detection of Toxoplasma gondii infection. Clin. Vaccine Immunol. 2013, 20, 596–601. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.D.; Huang, S.Y.; Zhu, X.Q. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasites Vectors 2015, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Uddin, A.; Hossain, D.; Ahsan, M.I.; Atikuzzaman, M.; Karim, M.R. Review on diagnosis and molecular characterization of Toxoplasma gondii in humans and animals. Trop. Biomed. 2021, 38, 511–539. [Google Scholar] [CrossRef] [PubMed]
- Ybanez, R.H.D.; Ybanez, A.P.; Nishikawa, Y. Review on the Current Trends of Toxoplasmosis Serodiagnosis in Humans. Front. Cell Infect. Microbiol. 2020, 10, 204. [Google Scholar] [CrossRef]
- Huertas-Lopez, A.; Cantos-Barreda, A.; Sanchez-Sanchez, R.; Martinez-Carrasco, C.; Ibanez-Lopez, F.J.; Martinez-Subiela, S.; Ceron, J.J.; Alvarez-Garcia, G. A systematic review and meta-analysis of the validation of serological methods for detecting anti-Toxoplasma gondii antibodies in humans and animals. Veter Parasitol. 2024, 328, 110173. [Google Scholar] [CrossRef]
- Liyanage, K.; Wiethoelter, A.; Hufschmid, J.; Jabbar, A. Descriptive Comparison of ELISAs for the Detection of Toxoplasma gondii Antibodies in Animals: A Systematic Review. Pathogens 2021, 10, 605. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, Z.; Li, J.; Li, N.; Wei, F.; Liu, Q. Evaluation of an indirect ELISA using recombinant granule antigen Gra7 for serodiagnosis of Toxoplasma gondii infection in cats. J. Parasitol. 2015, 101, 37–40. [Google Scholar] [CrossRef]
- Abdelbaset, A.E.; Alhasan, H.; Salman, D.; Karram, M.H.; Ellah Rushdi, M.A.; Xuenan, X.; Igarashi, M. Evaluation of recombinant antigens in combination and single formula for diagnosis of feline toxoplasmosis. Exp. Parasitol. 2017, 172, 1–4. [Google Scholar] [CrossRef]
- Suwan, E.; Chalermwong, P.; Rucksaken, R.; Sussadee, M.; Kaewmongkol, S.; Udonsom, R.; Jittapalapong, S.; Mangkit, B. Development and evaluation of indirect enzyme-linked immunosorbent assay using recombinant dense granule antigen 7 protein for the detection of Toxoplasma gondii infection in cats in Thailand. Veter World 2022, 15, 602–610. [Google Scholar] [CrossRef]
- Dai, J.; Jiang, M.; Wang, Y.; Qu, L.; Gong, R.; Si, J. Evaluation of a recombinant multiepitope peptide for serodiagnosis of Toxoplasma gondii infection. Clin. Vaccine Immunol. 2012, 19, 338–342. [Google Scholar] [CrossRef]
- Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics 2016, 32, 511–517. [Google Scholar] [CrossRef]
- Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006, 7, 153. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [Google Scholar] [CrossRef]
- Nielsen, M.; Lundegaard, C.; Lund, O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform. 2007, 8, 238. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006, 65, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Napoleao-Pego, P.; Carneiro, F.R.G.; Durans, A.M.; Gomes, L.R.; Morel, C.M.; Provance, D.W., Jr.; De-Simone, S.G. Performance assessment of a multi-epitope chimeric antigen for the serological diagnosis of acute Mayaro fever. Sci. Rep. 2021, 11, 15374. [Google Scholar] [CrossRef]
- Johnston, R.A.; Habarugira, G.; Harrison, J.J.; Isberg, S.R.; Moran, J.; Morgan, M.S.; Davis, S.S.; Melville, L.; Howard, C.B.; Henry, C.S.; et al. Application of chimeric antigens to paper-based diagnostics for detection of West Nile virus infections of Crocodylus porosus—A novel animal test case. Sens. Actuators B Chem. 2025, 422, 136611. [Google Scholar] [CrossRef]
- Freitas, N.E.M.; Campos, D.A.A.; Ferreira, R.Q.V.; Jesus, F.S.S.; Silva, A.A.O.; Mota, C.O.D.; Marchini, F.K.; Celedon, P.A.F.; Zanchin, N.I.T.; Santos, F.L.N. Comparison of Four Chimeric Antigens and Commercial Serological Assays for the Diagnosis of Trypanosoma cruzi Infection. Am. J. Trop. Med. Hyg. 2025, 112, 89–95. [Google Scholar] [CrossRef]
- Ferra, B.; Holec-Gasior, L.; Kur, J. Serodiagnosis of Toxoplasma gondii infection in farm animals (horses, swine, and sheep) by enzyme-linked immunosorbent assay using chimeric antigens. Parasitol. Int. 2015, 64, 288–294. [Google Scholar] [CrossRef]
- Ferra, B.T.; Chyb, M.; Solowinska, K.; Holec-Gasior, L.; Skwarecka, M.; Baranowicz, K.; Gatkowska, J. The Development of Toxoplasma gondii Recombinant Trivalent Chimeric Proteins as an Alternative to Toxoplasma Lysate Antigen (TLA) in Enzyme-Linked Immunosorbent Assay (ELISA) for the Detection of Immunoglobulin G (IgG) in Small Ruminants. Int. J. Mol. Sci. 2024, 25, 4384. [Google Scholar] [CrossRef]
- Holec-Gasior, L.; Ferra, B.; Grazlewska, W. Toxoplasma gondii Tetravalent Chimeric Proteins as Novel Antigens for Detection of Specific Immunoglobulin G in Sera of Small Ruminants. Animals 2019, 9, 1146. [Google Scholar] [CrossRef]
- Huertas-López, A.; Rojo, M.C.; Sukhumavasi, W.; Martínez-Subiela, S.; Álvarez-García, G.; López-Ureña, N.M.; Cerón, J.J.; Martínez-Carrasco, C. Comparative performance of five recombinant and chimeric antigens in a time-resolved fluorescence immunoassay for detection of Toxoplasma gondii infection in cats. Veter Parasitol. 2022, 304, 109703. [Google Scholar] [CrossRef]
- Li, X.W.; Zhang, N.; Li, Z.L.; Dibo, N.; Ma, Z.R.; Lu, B.; Huang, Y.H.; Chang, Y.F.; Chen, H.Z.; Wu, X. Epitope vaccine design for Toxoplasma gondii based on a genome-wide database of membrane proteins. Parasites Vectors 2022, 15, 364. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.; Hocker, B. Catalytic versatility, stability, and evolution of the (betaalpha)8-barrel enzyme fold. Chem. Rev. 2005, 105, 4038–4055. [Google Scholar] [CrossRef]
- Suwan, E.; Arthornthurasuk, S.; Kongsaeree, P.T. A metagenomic approach to discover a novel β-glucosidase from bovine rumens. Pure Appl. Chem. 2017, 89, 941–950. [Google Scholar] [CrossRef]
- Kaenying, W.; Tagami, T.; Suwan, E.; Pitsanuwong, C.; Chomngam, S.; Okuyama, M.; Kongsaeree, P.; Kimura, A.; Kongsaeree, P.T. Structural and mutational analysis of glycoside hydrolase family 1 Br2 beta-glucosidase derived from bovine rumen metagenome. Heliyon 2023, 9, e21923. [Google Scholar] [CrossRef]
- UniProt, C. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.P.; Lopez, R. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, W597–W600. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Reynoso-Palomar, A.; Moreno-Galvez, D.; Villa-Mancera, A. Prevalence of Toxoplasma gondii parasite in captive Mexican jaguars determined by recombinant surface antigens (SAG1) and dense granular antigens (GRA1 and GRA7) in ELISA-based serodiagnosis. Exp. Parasitol. 2020, 208, 107791. [Google Scholar] [CrossRef]
- Pembury Smith, M.Q.R.; Ruxton, G.D. Effective use of the McNemar test. Behav. Ecol. Sociobiol. 2020, 74, 133. [Google Scholar] [CrossRef]
- Landis, J.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Jalilibal, Z.; Amiri, A.; Castagliola, P.; Khoo, M.B.C. Monitoring the coefficient of variation: A literature review. Comput. Ind. Eng. 2021, 161, 107600. [Google Scholar] [CrossRef]
- Sun, X.M.; Ji, Y.S.; Elashram, S.A.; Lu, Z.M.; Liu, X.Y.; Suo, X.; Chen, Q.J.; Wang, H. Identification of antigenic proteins of Toxoplasma gondii RH strain recognized by human immunoglobulin G using immunoproteomics. J. Proteom. 2012, 77, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.N.; Yeo, S.J.; Park, H. Identification of novel biomarkers for anti-Toxoplasma gondii IgM detection and the potential application in rapid diagnostic fluorescent tests. Front. Microbiol. 2024, 15, 1385582. [Google Scholar] [CrossRef]
- Hebbar, B.K.; Roy, M.; Mitra, P.; Chavhan, K.; Chaudhari, S.; Shinde, S.; Deshmukh, A.S. Seroprevalence, risk factors, and serological cross-reactivity for diagnosis of Toxoplasma gondii and Neospora caninum infections in goats in India. Microb. Pathog. 2022, 173, 105780. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Urena, N.M.; Calero-Bernal, R.; Vazquez-Calvo, A.; Sanchez-Sanchez, R.; Ortega-Mora, L.M.; Alvarez-Garcia, G. A comparative study of serological tests used in the diagnosis of Toxoplasma gondii infection in small ruminants evidenced the importance of cross-reactions for harmonizing diagnostic performance. Res. Veter Sci. 2023, 165, 105052. [Google Scholar] [CrossRef]
- Rajput, R.; Denniston, A.K.; Murray, P.I. False Negative Toxoplasma Serology in an Immunocompromised Patient with PCR Positive Ocular Toxoplasmosis. Ocul. Immunol. Inflamm. 2018, 26, 1200–1202. [Google Scholar] [CrossRef]
Indirect ELISA | Sensitivity | Specificity | PPV | NPV | ||||
---|---|---|---|---|---|---|---|---|
% | 95% CI | % | 95% CI | % | 95% CI | % | 95% CI | |
S7V-V4Z-SFF | 71 | 42–92 | 72 | 51–88 | 59 | 33–82 | 82 | 60–95 |
SFF | 71 | 42–92 | 68 | 46–85 | 56 | 31–78 | 81 | 58–95 |
V4Z | 86 | 57–98 | 76 | 55–91 | 67 | 41–87 | 90 | 67–99 |
Assay | Number of Positive Sample | Number of Negative Sample | Prevalence [95% CI] | McNemar’s χ2 | p-Value |
---|---|---|---|---|---|
ELISA-S7V-V4Z-SFF compared with IFAT | |||||
ELISA-S7V-V4Z-SFF | 17 | 22 | 43.6% [29.3–59.0] | 1.17 | 0.28 |
IFAT | 14 | 25 | 35.9% [22.7–51.6] | ||
ELISA-SFF compared with IFAT | |||||
ELISA-SFF | 18 | 21 | 46.1% [31.6–61.4] | 0.84 | 0.36 |
IFAT | 14 | 25 | 35.9% [22.7–51.6] | ||
ELISA-V4Z compared with IFAT | |||||
ELISA-V4Z | 18 | 21 | 46.1% [31.6–61.4] | 0.84 | 0.36 |
IFAT | 14 | 25 | 35.9% [22.7–51.6] | ||
ELISA-S7V-V4Z-SFF compared with ELISA-SFF | |||||
ELISA-S7V-V4Z-SFF | 17 | 22 | 43.6% [29.3–59.0] | 0.23 | 0.63 |
ELISA-SFF | 18 | 21 | 46.1% [31.6–61.4] | ||
ELISA-S7V-V4Z-SFF compared with ELISA-V4Z | |||||
ELISA-S7V-V4Z-SFF | 17 | 22 | 43.6% [29.3–59.0] | 0.23 | 0.63 |
ELISA-V4Z | 18 | 21 | 46.1% [31.6–61.4] | ||
ELISA-VH5-SFF compared with ELISA-V4Z | |||||
ELISA-SFF | 18 | 21 | 46.1% [31.6–61.4] | 0.10 | 0.75 |
ELISA-V4Z | 18 | 21 | 46.1% [31.6–61.4] |
Kappa Value [95% CI] | PABAK Value * [95% CI] | Strength of Agreement | |
---|---|---|---|
ELISA-S7V-V4Z-SFF vs. IFAT | 0.41 [0.12–0.71] | 0.43 [0.10–0.70] | Moderate agreement |
ELIS-SFF vs. IFAT | 0.37 [0.07–0.67] | 0.38 [0.05–0.66] | Fair agreement |
ELIS-V4Z vs. IFAT | 0.58 [0.32–0.84] | 0.59 [0.27–0.81] | Moderate agreement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongpoo, P.; Methawiroon, J.; Mangkit, B.; Rucksaken, R.; Sussadee, M.; Rangubpit, W.; Unajak, S.; Jittapalapong, S.; Suwan, E. The Development of TIM-Barrel Based Multi-Epitope Protein for Toxoplasma gondii Serological Detection in Cats. Animals 2025, 15, 1893. https://doi.org/10.3390/ani15131893
Thongpoo P, Methawiroon J, Mangkit B, Rucksaken R, Sussadee M, Rangubpit W, Unajak S, Jittapalapong S, Suwan E. The Development of TIM-Barrel Based Multi-Epitope Protein for Toxoplasma gondii Serological Detection in Cats. Animals. 2025; 15(13):1893. https://doi.org/10.3390/ani15131893
Chicago/Turabian StyleThongpoo, Preeyanuch, Jiravich Methawiroon, Bandid Mangkit, Rucksak Rucksaken, Metita Sussadee, Warin Rangubpit, Sasimanas Unajak, Sathaporn Jittapalapong, and Eukote Suwan. 2025. "The Development of TIM-Barrel Based Multi-Epitope Protein for Toxoplasma gondii Serological Detection in Cats" Animals 15, no. 13: 1893. https://doi.org/10.3390/ani15131893
APA StyleThongpoo, P., Methawiroon, J., Mangkit, B., Rucksaken, R., Sussadee, M., Rangubpit, W., Unajak, S., Jittapalapong, S., & Suwan, E. (2025). The Development of TIM-Barrel Based Multi-Epitope Protein for Toxoplasma gondii Serological Detection in Cats. Animals, 15(13), 1893. https://doi.org/10.3390/ani15131893