Defining Multi-Trait Breeding Objectives and Selection Indexes to Develop More Efficient Breeding Programs for Superfine Wool Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Breeding and Production Management System
2.2. Estimation of Genetic Parameters
2.3. Identification of Breeding Objectives and Economic Weights
2.4. Index Construction and Evaluation
2.5. Flock Age Structure, Selection Intensity, and Impact of the Reproduction Rate on Genetic Gains
2.6. Prediction of the Selection Response and Annual Genetic Gains
- Gi refers to the genetic covariance vector for the ith objective trait.
- Subscripts m and f differentiate between male and female selection pathways.
2.7. Selection Emphasis and Parental Contributions to Genetic Improvement
- ΔGi is the annual genetic gain for the ith objective trait (from Equation (8));
- vi is the economic weight for the trait; and
- ΔH is the annual genetic gain of the aggregate genotype (from Equation (8)).
- and are selection intensities for males and females;
- and are standard deviations of selection indices; and
- and are generation intervals for each sex.
3. Results
3.1. Breeding Objective Traits and Corresponding Weights
3.2. Impacts of Index Trait Components and Their Sources of Information on the Index Selection Accuracy
3.3. Impacts of the Flock Age Structure and Ewe Reproduction Rate on the Retention Rate and Selection Intensity
3.4. Comparison of Selection Responses to Different Selection Indices
4. Discussion
4.1. Definition of the Breeding Objective
4.2. Improving Annual Genetic Gains by Adding Sources of Information for Selection
4.3. The Importance of Breeding Objective Trait Measurements to the Selection
4.4. Improve Genetic Gains by Optimizing the Utilization Years of Rams and Ewes
4.5. Importance of More Emphasis on the Selection of Rams and Improvement of the Ewe Reproduction Rate for the Overall Genetic Gain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFD | Average fiber diameter |
CFW | Clean fleece weight |
YWT | Yearling body weight |
VFC | Visual fineness counts |
GFW | Greasy fleece weight |
FDcv | Coefficient of variation of AFD |
WWT | Weaning body weight |
YSL | Yearling staple length |
YLD | Yield |
SS | Wool staple strength |
Standard deviation | |
Selection accuracy |
References
- Hill, W.G.R.T.; Woolliams, J. In Proceedings of 4th Wrold Congress on Genetics Applied to Livestock Production of the Conference. Edinburgh, UK, 1 July 1990; Available online: https://www.research.ed.ac.uk/en/publications/proceedings-of-the-4th-world-congress-on-genetics-applied-to-live (accessed on 10 July 2024).
- Atkins, K. Genetic evaluation in Merinos: The past and future opportunities. Anim. Prod. Sci. 2021, 61, 1745–1750. [Google Scholar] [CrossRef]
- Brien, F.D.; Walkom, S.F.; Swan, A.A.; Brown, D.J. Substential genetic gains in reducing breech flystrike and in improving productivity traits are achievable in Merino sheep by using index selection. Anim. Prod. Sci. 2021, 61, 345–362. [Google Scholar] [CrossRef]
- Asadi, F.M.; Van der Werf, J.H.J.; Swan, A.A. Inclusion of skin follicle traits in selection indices in breeding programs improves genetic gain in Australian fine-wool Merinos. Aust. J. Agric. Res. 2007, 58, 921–927. [Google Scholar] [CrossRef]
- Brown, D.J.; Swan, A.A. Genetic importance of fat and eye muscle depth in Merino breeding programs. Anim. Prod. Sci. 2016, 56, 690–697. [Google Scholar] [CrossRef]
- Swan, A.A.; Van der Werf, J.H.J.; Atkins, K.D. Development in breeding objectives for the Australian sheep industry. Proc. Assoc. Advmt. Anim. Breed. Genet. 2007, 17, 483–490. Available online: www.aaabg.org/livestocklibrary/2007/swan483.pdf (accessed on 19 June 2024).
- Nsoso, S.J.; Young, M.J.; Beatson, P.R. Genetic and phenotypic parameters and responses in index component traits for breeds of sheep selected for lean tissue growth. Small Rumin. Res. 2004, 51, 201–208. [Google Scholar] [CrossRef]
- Brown, D.J.; Huisman, A.E.; Swan, A.A.; Graser, H.U.; Woolaston, R.R.; Ball, A.J.; Atkins, K.D.; Banks, R.G. Genetic evaluation for the Australian sheep industry. Proc. Assoc. Advmt. Anim. Breed. Genet. 2007, 17, 187–194. Available online: https://www.researchgate.net/publication/262144598_Genetic_evaluation_for_the_Australian_sheep_industry (accessed on 8 February 2024).
- Brown, D.J.; Swan, A.A.; Boemer, V.; Gurman, P.M.; McMillan, A.J.; Van der Werf, J.H.J.; Chandler, H.R.; Tier, B.; Banks, R.G. Single-step genetic evaluations in the Australian sheep industry. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018. Available online: https://www.researchgate.net/publication/326462650_Single-Step_Genetic_Evaluations_in_the_Australian_Sheep_Industry (accessed on 8 February 2024).
- Liu, S.R.; Wang, X. Hua. Determining the Breeding Objectives and Selection Criteria for “U” Strain of Chinese Merino Sheep. Xinjiang Agric. Sci. 2001, (S1), 6–11. (In Chinese) [Google Scholar]
- Zhao, X.P.; He, X.L.; Rong, W.H. Determination of Breeding Objective Traits of Aohan Merino Sheep and Calculation of Their Marginal Benefit. Anhui Agric. Sci. 2009, 37, 5994–5996. (In Chinese) [Google Scholar]
- Wang, A.G.; Zhang, Y.; Wu, C.X. Breeding Objectives and Selection Criteria for Chinese Merino. Chin. J. Anim. Sci. 1994, 30, 6–7. (In Chinese) [Google Scholar]
- Li, W.H.; Guo, J.; Li, F.W.; Niu, C.E. Evaluation of Crossbreeding of Australian Superfine Merinos with Gansu Alpine Finewool Sheep to Improve Wool Characteristics. PLoS ONE 2016, 11, e0166374. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.J.; Wang, T.X.; Liu, J.B.; Guo, J.; Li, G.Y.; Sun, X.P.; Li, W.H.; Feng, R.L.; Niu, C.E.; Guo, T.T.; et al. A preliminary study on the characteristics of Alpine Merino sheep. Chin. J. Anim. Sci. 2014, 50, 16–18. (In Chinese) [Google Scholar]
- Li, W.H.; Su, W.J.; Bao, G.J.; Zhang, G.Q. A study on selection of high wool density strain and merit gene infusion to improve the charact eristics of Gansu Alpine fine wool sheep. Chin. J. Anim. Sci. 1997, 33, 22–24. (In Chinese) [Google Scholar]
- Li, W.H. Experiment and Study on Technology for Breeding Superfine Wool Sheep Strain in High & Cold Region. Master’s Thesis, Gansu Agriculture University, Lanzhou, China, 2006. (In Chinese). [Google Scholar]
- Li, W.H.; Bao, G.J.; Huang, D.X.; Su, W.J.; Li, G.Y. Study on breeding of high wool quality strain in Gansu Alpine Finewool sheep. Chin. J. Anim. Sci. 2008, 44, 9–13. (In Chinese) [Google Scholar]
- Li, W.H.; Li, F.W.; Wang, X.J.; Wang, L.J. Study on the status of and the relationships between subjectively assessed visual score traits and measured traits in Alpine Merino Sheep. Chin. J. Anim. Sci. 2021, 57, 68–74. (In Chinese) [Google Scholar]
- Li, W.H.; Li, G.Y.; Zhang, J.; Wang, X.J.; Zhang, A.W.; Zhao, J.T.; Wang, L.J.; Yang, J.F.; Luo, T.Z.; Shen, K.Z. Estimates of (co)variance components and phenotypic and genetic parameters of growth traits and wool traits in Alpine Merino sheep. J. Anim. Breed. Genet. 2022, 139, 351–365. [Google Scholar] [CrossRef]
- Asreml User Guide Release 3.0 2009. Available online: https://asreml.kb.vsni.co.uk/wp-content/uploads/sites/3/2018/02/ASReml-3-User-Guide.pdf (accessed on 1 March 2022).
- Li, W.H.; Han, D.W.; Li, G.Y.; Zhang, J. Estimation of heritability of wool staple strength and its phenotypic and genetic correlations with growth and other wool traits in Alpine Merino Sheep. Chin. J. Anim. Sci. 2023, 59, 239–244. (In Chinese) [Google Scholar]
- Multiple Trait/Desired Gains: MT Selection Index with Desired Gains Option (10 Traits Max). Available online: https://jvanderw.une.edu.au/software.htm (accessed on 19 July 2022).
- Gizaw, S.; Lemma, S.; Komen, J.; van Arendonk, J.A.M. Participatory definition of breeding objectives and selection indices for sheep breeding in traditional systems. Livest. Sci. 2010, 128, 67–74. [Google Scholar] [CrossRef]
- Harlow, F.D.S. Introduction to Quantitative Genetics. Third edition. Longman Scientific & Technical: John Wiley & Sons, Inc., New York, United States. Genet. Res. 1989, 54, 163–164. [Google Scholar] [CrossRef]
- Van der Werf, J.H.J. Reflections on genetic improvement. Anim. Prod. Sci. 2023, 63, 925–930. [Google Scholar] [CrossRef]
- Howarth, J.; Goddard, M.; Kinghorn, B. Breeding strategies for targeting different breeding objectives. Proc. Assoc. Advmt. Anim. Breed. Genet. 1997, 12, 99–102. Available online: https://www.aaabg.org/livestocklibrary/1997/AB97017.pdf (accessed on 12 October 2024).
- Swan, A.A.; Purvis, I.W.; Piper, L.R. Genetic parameters for yearling wool production, wool quality and body-weight traits in fine wool Merino sheep. Aust. J. Exp. Agric. 2008, 48, 1168–1176. [Google Scholar] [CrossRef]
- Farming Ahead. Available online: https://www.farmingahead.com.au/livestock-general/news/1319099/strength-in-genetics (accessed on 18 September 2024).
- Safari, E.; Fogarty, N.M.; Gilmour, A.R. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest. Prod. Sci. 2005, 92, 271–289. [Google Scholar] [CrossRef]
- Sheep Genetics. Available online: https://www.sheepgenetics.org.au (accessed on 28 April 2024).
- Fischer, T.M.; Banks, R.G. Challenges and opportunities for genetic improvement in the Merino industry. Proc. Assoc. Advmt. Anim. Breed. Genet. 2007, 17, 179–182. Available online: https://www.aaabg.org/livestocklibrary/2007/fischer179.pdf (accessed on 11 October 2024).
Trait | Unit | Genetic Correlations and Phenotypic Correlations | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AFD | CFW | YWT | VFC | GFW | FDcv | WWT | YSL | YLD | SS | ||||||
AFD | μm | 1.48 | 0.204 | 0.67 | 0.08 | 0.18 | −0.13 | 0.13 | −0.05 | 0.07 | 0.08 | −0.07 | 0.00 | ||
CFW | kg | 0.43 | 0.201 | 0.19 | −0.11 | 0.24 | −0.05 | 0.77 | 0.02 | 0.27 | 0.37 | 0.54 | 0.25 | ||
YWT | kg | 4.12 | 0.285 | 2.20 | 0.11 | 0.09 | −0.07 | 0.36 | −0.05 | 0.58 | 0.13 | −0.03 | 0.24 | ||
VFC | counts | 0.72 | 0.133 | 0.26 | −0.23 | −0.13 | −0.22 | −0.09 | −0.08 | −0.02 | −0.19 | −0.08 | 0.09 | ||
GFW | kg | 0.67 | 0.186 | 0.29 | 0.01 | 0.74 | 0.21 | −0.14 | 0.05 | 0.31 | 0.21 | −0.05 | 0.08 | ||
FDcv | % | 2.86 | 0.163 | 1.16 | −0.08 | 0.24 | 0.09 | −0.11 | 0.14 | 0.05 | −0.01 | −0.06 | −0.42 | ||
WWT | kg | 3.76 | 0.183 | 1.61 | −0.04 | 0.13 | 0.63 | −0.03 | 0.26 | −0.04 | 0.11 | −0.02 | 0.07 | ||
YSL | cm | 1.00 | 0.189 | 0.44 | −0.04 | 0.53 | 0.09 | −0.04 | 0.38 | 0.11 | 0.08 | 0.23 | 0.18 | ||
YLD | % | 5.49 | 0.352 | 3.26 | −0.10 | 0.55 | −0.12 | −0.07 | 0.00 | −0.10 | −0.09 | 0.44 | 0.27 | ||
SS | N/ktext | 13.62 | 0.415 | 8.77 | −0.74 | 0.96 | 0.69 | 0.94 | −0.05 | −0.91 | −0.36 | 0.44 | 0.33 |
Primary Parameters | Number of Ewes (Heads) | Production per Ewe (kg) | Gross Production (kg) | Price (CNY/kg) | Income (CNY) | Cost (CNY) | Net Income (CNY) |
---|---|---|---|---|---|---|---|
Greasy fleece production | 550 | 4.01 | 2205.50 | 30.00 | |||
Clean fleece sold | 550 | 2.48 | 1364.00 | 48.50 | 66,154.00 | ||
Weaners sold | 348 | 27.11 | 9420.73 | 24.00 | 22,6097.4 | ||
Culled ewes sold | 100 | 43.92 | 4392.00 | 15.94 | 70,008.48 | ||
Net income per flock | 36,2259.9 | 244,188.0 | 118,071.9 | ||||
Net income per ewe | 658.65 | 443.98 | 214.70 |
Indices | YWT | WWT | YSL | AFD | CFW | VFC | GFW | FDcv | SS |
---|---|---|---|---|---|---|---|---|---|
A | √ | √ | √ | √ | √ | √ | |||
B | √ | √ | √ | √ | √ | ||||
C | √ | √ | √ | √ | √ | √ |
Number Information Source | Own | 10 Half-Sibs | Sire | Dam | 16 Offsprings | 50 Offsprings |
---|---|---|---|---|---|---|
① | √ | |||||
② | √ | √ | ||||
③ | √ | √ | √ | |||
④ | √ | √ | √ | √ | ||
⑤ | √ | √ | √ | √ | √ | |
⑥ | √ | √ | √ | |||
⑦ | √ | √ | √ |
Objective Traits | Price Premium | Marginal Benefit | Economic Weights for the Breeding Objective |
---|---|---|---|
yearling weight | / | 2.85 | 2.85 |
weaning weight | / | 15.10 | 25.00 |
clean fleece weight | / | 48.50 | 48.50 |
average fiber diameter | 40% | 48.00 | 48.00 |
staple strength | 10% | 12.00 | 2.00 |
staple length | 10% | 12.00 | 12.00 |
Index Traits | A | B | C | A-C | A-B | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sources of Information | |||||||||||
① | 41.575 | 0.593 | 31.124 | 0.444 | 45.335 | 0.646 | −3.760 | −0.054 | 10.450 | 0.149 | |
② | 44.261 | 0.631 | 33.783 | 0.481 | 47.391 | 0.675 | −3.130 | −0.045 | 10.478 | 0.149 | |
③ | 44.919 | 0.640 | 34.444 | 0.491 | 47.928 | 0.683 | −3.009 | −0.043 | 10.475 | 0.149 | |
④ | 46.864 | 0.668 | 36.168 | 0.515 | 49.379 | 0.704 | −2.514 | −0.036 | 10.697 | 0.152 | |
⑤ | 57.440 | 0.819 | 46.004 | 0.656 | 58.185 | 0.829 | −0.745 | −0.011 | 11.437 | 0.163 | |
⑥ | 56.768 | 0.809 | 45.371 | 0.647 | 57.583 | 0.821 | −0.815 | −0.012 | 11.398 | 0.162 | |
⑦ | 63.355 | 0.903 | 51.661 | 0.736 | 63.616 | 0.907 | −0.261 | −0.004 | 11.694 | 0.167 |
Parents | Years of Use | Flock Size | Retained Number | Average Age (L) | Number of Animals of Different Ages | Reproduction Rate at 85% | Reproduction Rate at 95% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | Retention Rate (%) | Selection Intensity (i) | i/L | Retention Rate (%) | Selection Intensity (i) | i/L | |||||
sire | 2 | 120 | 61 | 2.49 | 61 | 59 | 0 | 0 | 0 | 0 | 5.22% | 2.058 | 0.827 | 4.67% | 2.083 | 0.837 |
3 | 120 | 42 | 2.97 | 42 | 40 | 38 | 0 | 0 | 0 | 3.56% | 2.218 | 0.747 | 3.19% | 2.238 | 0.754 | |
4 | 120 | 32 | 3.45 | 32 | 31 | 29 | 28 | 0 | 0 | 2.72% | 2.322 | 0.673 | 2.43% | 2.358 | 0.683 | |
5 | 120 | 26 | 3.92 | 26 | 25 | 24 | 23 | 22 | 0 | 2.22% | 2.384 | 0.608 | 1.99% | 2.402 | 0.613 | |
dam | 3 | 550 | 191 | 2.97 | 191 | 183 | 176 | 0 | 0 | 0 | 81.71% | 0.329 | 0.111 | 73.18% | 0.450 | 0.152 |
4 | 550 | 146 | 3.45 | 146 | 140 | 135 | 129 | 0 | 0 | 62.50% | 0.606 | 0.176 | 55.98% | 0.705 | 0.204 | |
5 | 550 | 119 | 3.92 | 119 | 114 | 110 | 105 | 101 | 0 | 50.99% | 0.782 | 0.199 | 45.67% | 0.868 | 0.221 | |
6 | 550 | 101 | 4.38 | 101 | 97 | 93 | 90 | 86 | 83 | 43.34% | 0.907 | 0.207 | 38.81% | 0.988 | 0.226 |
(A) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indices | A① | A② | A⑥ | ||||||||||
Weights (b) | Selection Response (R) | Weights (b) | Selection Response (R) | Weights (b) | Selection Response (R) | ||||||||
Trait | Unit | Own | Trait | Objective | Own | 10 Half-Sibs | Trait | Objective | Own | 10 Half-Sibs | 16 Offsprings | Trait | Objective |
AFD | μm | −17.88 | −0.440 | 21.141 | −16.52 | −15.53 | −0.454 | 21.792 | −8.70 | −8.48 | −46.32 | −0.534 | 25.621 |
CFW | kg | 23.99 | 0.129 | 6.278 | 22.30 | 12.18 | 0.131 | 6.344 | 10.99 | 6.87 | 44.67 | 0.146 | 7.069 |
YWT | kg | 5.09 | 1.038 | 2.957 | 4.67 | 2.72 | 1.085 | 3.093 | 2.17 | 1.13 | 9.11 | 1.327 | 3.782 |
VFC | counts | - | 0.147 | - | - | - | 0.148 | - | - | - | - | 0.161 | - |
GFW | kg | - | 0.035 | - | - | - | 0.039 | - | - | - | - | 0.054 | - |
CV/FDcv | % | −1.82 | −0.401 | - | −1.68 | −1.48 | −0.403 | - | −0.88 | −0.80 | −4.50 | −0.438 | - |
WWT | kg | 0.96 | 0.015 | 0.378 | 0.94 | 5.34 | 0.086 | 2.155 | 1.19 | 3.75 | 13.15 | 0.337 | 8.421 |
YSL | cm | 4.91 | 0.137 | 1.642 | 4.55 | 5.01 | 0.140 | 1.683 | 2.50 | 2.82 | 14.37 | 0.163 | 1.957 |
YLD | % | - | 0.385 | - | - | - | 0.386 | - | - | - | - | 0.425 | - |
SS | N/ktext | - | 4.589 | 9.179 | - | - | 4.597 | 9.193 | - | - | - | 4.959 | 9.918 |
ϭI | 41.575 | 44.261 | 56.768 | ||||||||||
(B) | |||||||||||||
Indices | B① | B② | B⑥ | ||||||||||
Weights (b) | Selection Response (R) | Weights (b) | Selection Response (R) | Weights (b) | Selection Response (R) | ||||||||
Trait | Unit | Own | Trait | Objective | Own | 10 Half-Sibs | Trait | Objective | Own | 10 Half-Sibs | 16 Off-springs | Trait | Objective |
AFD | μm | - | −0.217 | 10.404 | - | - | −0.222 | 10.667 | - | - | - | −0.260 | 12.456 |
CFW | kg | - | 0.091 | 4.405 | - | - | 0.095 | 4.606 | - | - | - | 0.117 | 5.655 |
YWT | kg | 5.50 | 1.174 | 3.347 | 5.03 | 3.92 | 1.241 | 3.538 | 2.45 | 1.85 | 12.04 | 1.564 | 4.456 |
VFC | counts | 19.79 | 0.140 | - | 18.33 | 20.53 | 0.144 | - | 10.23 | 12.23 | 59.96 | 0.170 | - |
GFW | kg | −2.74 | 0.020 | - | −2.40 | 2.54 | 0.027 | - | −0.33 | 2.71 | 5.16 | 0.052 | - |
CV/FDcv | % | - | −0.315 | - | - | - | −0.318 | - | - | - | - | −0.358 | - |
WWT | kg | 0.50 | 0.136 | 3.406 | 0.54 | 3.60 | 0.208 | 5.194 | 0.85 | 2.73 | 9.06 | 0.461 | 11.513 |
YSL | cm | 10.99 | 0.135 | 1.625 | 10.14 | 11.16 | 0.144 | 1.733 | 5.51 | 6.21 | 32.02 | 0.186 | 2.228 |
YLD | % | - | 0.123 | - | - | - | 0.125 | - | - | - | - | 0.139 | - |
SS | N/ktext | - | 3.969 | 7.938 | - | - | 4.022 | 8.045 | - | - | - | 4.532 | 9.063 |
ϭI | 31.124 | 33.783 | 45.371 |
Indices Used to Select Parents | ♂A②♀A② | ♂A②♀B② | ♂A⑥♀A② | ♂A⑥♀B② | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trait | Unit | Trait Gain | H Gain (CNY) | Selection Emphasis (%) | Trait Gain | H Gain (CNY) | Selection Emphasis (%) | Trait Gain | H Gain (CNY) | Selection Emphasis (%) | Trait Gain | H Gain (CNY) | Selection Emphasis (%) |
AFD | μm | −0.198 | 9.489 | 49.24% | −0.171 | 8.226 | 45.49% | −0.223 | 10.721 | 46.02% | −0.197 | 9.459 | 42.78% |
CFW | kg | 0.057 | 2.762 | 14.33% | 0.053 | 2.565 | 14.18% | 0.062 | 2.996 | 12.86% | 0.058 | 2.798 | 12.66% |
YWT | kg | 0.473 | 1.347 | 6.99% | 0.490 | 1.397 | 7.73% | 0.550 | 1.569 | 6.73% | 0.568 | 1.619 | 7.32% |
VFC | counts | 0.064 | - | - | 0.064 | - | - | 0.069 | - | - | 0.068 | - | - |
GFW | kg | 0.017 | - | - | 0.016 | - | - | 0.022 | - | - | 0.020 | - | - |
CV/FDcv | % | −0.175 | - | - | −0.166 | - | - | −0.187 | - | - | −0.177 | - | - |
WWT | kg | 0.038 | 0.938 | 4.87% | 0.051 | 1.283 | 7.10% | 0.118 | 2.955 | 12.69% | 0.132 | 3.300 | 14.93% |
YSL | cm | 0.061 | 0.733 | 3.80% | 0.062 | 0.739 | 4.08% | 0.068 | 0.821 | 3.52% | 0.069 | 0.827 | 3.74% |
YLD | % | 0.168 | - | - | 0.139 | - | - | 0.181 | - | - | 0.151 | - | - |
SS | N/ktext | 2.001 | 4.003 | 20.77% | 1.936 | 3.873 | 21.42% | 2.118 | 4.236 | 18.18% | 2.053 | 4.106 | 18.57% |
H gain/year | CNY | 19.272 | 100.00% | 18.083 | 100.00% | 23.298 | 100.00% | 22.109 | 100.00% | ||||
gain from sire | CNY | 14.248 | 73.93% | 14.248 | 78.80% | 18.2747 | 78.44% | 18.2747 | 82.66% | ||||
gain from dam | CNY | 5.024 | 26.07% | 3.834 | 21.20% | 5.024 | 21.56% | 3.834 | 17.34% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.; Li, W.; Yuan, C.; Wang, X.; Liu, J.; Liang, B. Defining Multi-Trait Breeding Objectives and Selection Indexes to Develop More Efficient Breeding Programs for Superfine Wool Sheep. Animals 2025, 15, 1873. https://doi.org/10.3390/ani15131873
Guo T, Li W, Yuan C, Wang X, Liu J, Liang B. Defining Multi-Trait Breeding Objectives and Selection Indexes to Develop More Efficient Breeding Programs for Superfine Wool Sheep. Animals. 2025; 15(13):1873. https://doi.org/10.3390/ani15131873
Chicago/Turabian StyleGuo, Tingting, Wenhui Li, Chao Yuan, Xijun Wang, Jianbin Liu, and Bin Liang. 2025. "Defining Multi-Trait Breeding Objectives and Selection Indexes to Develop More Efficient Breeding Programs for Superfine Wool Sheep" Animals 15, no. 13: 1873. https://doi.org/10.3390/ani15131873
APA StyleGuo, T., Li, W., Yuan, C., Wang, X., Liu, J., & Liang, B. (2025). Defining Multi-Trait Breeding Objectives and Selection Indexes to Develop More Efficient Breeding Programs for Superfine Wool Sheep. Animals, 15(13), 1873. https://doi.org/10.3390/ani15131873