Selenium-Biofortified Alfalfa Hay Supplemented to Jersey and Holstein Dairy Heifers During the Peripartum Period: Effects on Dams and Their Offspring
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Experimental Design
2.2. Animal Measurements, Sample Collection, and Handling Procedures
2.2.1. Intake, Milk, and Activity
2.2.2. Blood Samples
2.2.3. Liver Biopsy
2.3. Analytical Procedures
2.3.1. Plasma Profile
2.3.2. Leukocyte Count, Differential, and Phagocytosis
2.3.3. Plasma and Colostrum Immunoglobulins and Milk Fatty Acids
2.3.4. RNA Sequencing
2.3.5. Calculations
2.4. Statistical Analysis
3. Results
3.1. Performance, Milk Composition, and Activity of the Cows
3.2. Plasma Metabolic Profile of the Cows
3.3. Leukocyte Counts, Differential, and Phagocytosis in Cows
3.4. RNA Sequencing of the Liver of Jersey Cows
3.5. Blood Parameters in Calves
3.6. Leukocyte Count, Differential, and Phagocytosis in Calves
3.7. Immunoglobulins in Colostrum and Serum of Calves
4. Discussion
4.1. Se-Biofortified Hay Improves Milk Yield in Holstein Cows but Does Not Affect Milk Quality
4.2. The Immune System in Cows Is Not Significantly Affected by Feeding Se-Biofortified Hay
4.3. Se-Biofortified Hay Had an Unclear Effect on Inflammation and Oxidative Stress
4.4. Se-Biofortified Hay Affects Mineral Metabolism and Kidney Function in Cows
4.5. Transcriptomics Data Confirmed the Mild Effect of Feeding Se-Biofortified Hay on the Cow’s Liver
4.6. Se-Biofortified Hay Administered to Pregnant Heifers Has a Minor Effect on Newborn Calves
4.7. The Metabolism and the Response to Post-Calving Are Different in Holstein and Jersey Heifers
4.8. Holstein and Jersey Calves Are Different
4.9. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
AOPP | advanced oxidation protein products |
BCS | body condition score |
BHB | beta-hydroxybutyric acid |
DIM | day in milk |
DMI | dry matter intake |
GPx | glutathione peroxidase |
MPO | myeloperoxidase |
MUN | milk urea nitrogen |
NEFA | non-esterified fatty acids |
PUFA | polyunsaturated fatty acids |
ROS | reactive oxygen species |
SCC | somatic cell count |
SNF | solid non-fat |
TMR | total mixed ration |
References
- Drackley, J.K. ADSA foundation scholar award. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of nutraceuticals during the transition period of dairy cows: A review. J. Anim. Sci. Biotechnol. 2020, 11, 96. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, E.; Cattaneo, L.; Piccioli-Cappelli, F.; Mezzetti, M.; Minuti, A. International Symposium on Ruminant Physiology: The immunometabolism of transition dairy cows from dry-off to early lactation: Lights and shadows. J. Dairy Sci. 2025, 108, 7662–7674. [Google Scholar] [CrossRef] [PubMed]
- Mordak, R.; Anthony, S.P. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: Examples of prevention. Acta Vet. Scand. 2015, 57, 84. [Google Scholar] [CrossRef]
- Abuelo, A.; Alves-Nores, V.; Hernandez, J.; Muiño, R.; Benedito, J.L.; Castillo, C. Effect of Parenteral Antioxidant Supplementation During the Dry Period on Postpartum Glucose Tolerance in Dairy Cows. J. Vet. Intern. Med. 2016, 30, 892–898. [Google Scholar] [CrossRef]
- Knight, J.A. Review: Free radicals, antioxidants, and the immune system. Ann. Clin. Lab. Sci. 2000, 30, 145–158. [Google Scholar]
- Trevisan, M.; Browne, R.; Ram, M.; Muti, P.; Freudenheim, J.; Carosella, A.M.; Armstrong, D. Correlates of markers of oxidative status in the general population. Am. J. Epidemiol. 2001, 154, 348–356. [Google Scholar] [CrossRef]
- Trevisi, E.; Jahan, N.; Bertoni, G.; Ferrari, A.; Minuti, A. Pro-inflammatory cytokine profile in dairy cows: Consequences for new lactation. Ital. J. Anim. Sci. 2015, 14, 285–292. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. J. Dairy Sci. 2008, 91, 3300–3310. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Mavangira, V. The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows. Anim. Prod. Sci. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- O’Rourke, D. Nutrition and udder health in dairy cows: A review. Ir. Vet. J. 2009, 62, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Res. Vet. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef]
- Spears, J.W. Micronutrients and immune function in cattle. Proc. Nutr. Soc. 2000, 59, 587–594. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function and health of dairy cattle. Animal 2013, 7 (Suppl. S1), 112–122. [Google Scholar] [CrossRef]
- Cardoso, C.L.; King, A.; Chapwanya, A.; Esposito, G. Ante-Natal and Post-Natal Influences on Neonatal Immunity, Growth and Puberty of Calves-A Review. Animals 2021, 11, 1212. [Google Scholar] [CrossRef]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Kasper, K.; Traber, M.G.; Mosher, W.D.; Pirelli, G.J.; Gamroth, M. Effect of Supranutritional Organic Selenium Supplementation on Postpartum Blood Micronutrients, Antioxidants, Metabolites, and Inflammation Biomarkers in Selenium-Replete Dairy Cows. Biol. Trace Elem. Res. 2014, 161, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, Y.; Dufrasne, I. Selenium in cattle: A review. Molecules 2016, 21, 545. [Google Scholar] [CrossRef]
- Gong, J.; Xiao, M. Effect of Organic Selenium Supplementation on Selenium Status, Oxidative Stress, and Antioxidant Status in Selenium-Adequate Dairy Cows During the Periparturient Period. Biol. Trace Elem. Res. 2018, 186, 430–440. [Google Scholar] [CrossRef]
- Gill, H.; Walker, G. Selenium, immune function and resistance to viral infections. Nutr. Diet. 2008, 65 (Suppl. S3), 41–47. [Google Scholar] [CrossRef]
- Brummer, M.; Hayes, S.; Harlow, B.E.; Strasinger, L.A.; Dawson, K.A.; Horohov, D.W.; Lawrence, L.M. Effect of selenium status on the response of unfit horses to exercise. Comp. Exerc. Physiol. 2012, 8, 203–212. [Google Scholar] [CrossRef]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Estill, C.T.; Mosher, W.D.; Pirelli, G.J.; Gamroth, M. Effect of supranutritional maternal and colostral selenium supplementation on passive absorption of immunoglobulin G in selenium-replete dairy calves. J. Dairy Sci. 2014, 97, 4379–4391. [Google Scholar] [CrossRef]
- Yun, C.-H.; Wynn, P.; Ha, J. Stress, acute phase proteins and immune modulation in calves. Anim. Prod. Sci. 2014, 54, 1561–1568. [Google Scholar] [CrossRef]
- Mezzetti, M.; Trevisi, E. Methods of Evaluating the Potential Success or Failure of Transition Dairy Cows. Vet. Clin. N. Am. Food Anim. Pr. 2023, 39, 219–239. [Google Scholar] [CrossRef]
- Smith, D.B.; Cannon, W.F.; Woodruff, L.G.; Solano, F.; Kilburn, J.E.; Fey, D.L. Geochemical and Mineralogical Data for Soils of the Conterminous United States. U.S. Geological Survey Data Series 801. 2013; 19 p. Available online: https://pubs.usgs.gov/ds/801/ (accessed on 14 May 2025).
- NRC. Requirements of Dairy Cattle Seventh Revised Edition; NRC: Rockville, MD, USA, 2001. [Google Scholar]
- Salman, S.; Dinse, D.; Khol-Parisini, A.; Schafft, H.; Lahrssen-Wiederholt, M.; Schreiner, M.; Scharek-Tedin, L.; Zentek, J. Colostrum and milk selenium, antioxidative capacity and immune status of dairy cows fed sodium selenite or selenium yeast. Arch. Anim. Nutr. 2013, 67, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Oltramari, C.E.; Pinheiro, M.d.G.; de Miranda, M.S.; Arcaro, J.R.P.; Castelani, L.; Toledo, L.M.; Ambrósio, L.A.; Leme, P.R.; Manella, M.Q.; Arcaro Júnior, I. Selenium sources in the diet of dairy cows and their effects on milk production and quality, on udder health and on physiological indicators of heat stress. Ital. J. Anim. Sci. 2014, 13, 48–52. [Google Scholar] [CrossRef]
- Hall, J.A.; Harwell, A.M.; Van Saun, R.J.; Vorachek, W.R.; Stewart, W.C.; Galbraith, M.L.; Hooper, K.J.; Hunter, J.K.; Mosher, W.D.; Pirelli, G.J. Agronomic biofortification with selenium: Effects on whole blood selenium and humoral immunity in beef cattle. Anim. Feed Sci. Technol. 2011, 164, 184–190. [Google Scholar] [CrossRef]
- Hall, J.A.; Vorachek, W.R.; Stewart, W.C.; Gorman, M.E.; Mosher, W.D.; Pirelli, G.J.; Bobe, G. Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS ONE 2013, 8, e82572. [Google Scholar] [CrossRef]
- Jaaf, S.; Batty, B.; Krueger, A.; Estill, C.T.; Bionaz, M. Selenium biofortified alfalfa hay fed in low quantities improves selenium status and glutathione peroxidase activity in transition dairy cows and their calves. J. Dairy Res. 2020, 87, 184–190. [Google Scholar] [CrossRef]
- Hall, J.A.; Bobe, G.; Vorachek, W.R.; Hugejiletu; Gorman, M.E.; Mosher, W.D.; Pirelli, G.J. Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol. Trace Elem. Res. 2013, 156, 96–110. [Google Scholar] [CrossRef]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A Body Condition Scoring Chart for Holstein Dairy Cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Calamari, L.; Ferrari, A.; Minuti, A.; Trevisi, E. Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on Fourier Transform mid-infrared spectroscopy: Preliminary results. BMC Vet. Res. 2016, 12, 4. [Google Scholar] [CrossRef]
- Jacometo, C.B.; Osorio, J.S.; Socha, M.; Correa, M.N.; Piccioli-Cappelli, F.; Trevisi, E.; Loor, J.J. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress. J. Dairy Sci. 2015, 98, 7717–7729. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef]
- Minuti, A.; Ahmed, S.; Trevisi, E.; Piccioli-Cappelli, F.; Bertoni, G.; Jahan, N.; Bani, P. Experimental acute rumen acidosis in sheep: Consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. J. Anim. Sci. 2014, 92, 3966–3977. [Google Scholar] [CrossRef]
- Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Investig. Dermatol. 1982, 78, 206–209. [Google Scholar] [CrossRef]
- Rosa, F.; Osorio, J.S.; Trevisi, E.; Yanqui-Rivera, F.; Estill, C.T.; Bionaz, M. 2,4-Thiazolidinedione Treatment Improves the Innate Immune Response in Dairy Goats with Induced Subclinical Mastitis. PPAR Res. 2017, 2017, 7097450. [Google Scholar] [CrossRef] [PubMed]
- Jaaf, S.; Rosa, F.; Moridi, M.; Osorio, J.S.; Lohakare, J.; Trevisi, E.; Filley, S.; Cherian, G.; Estill, C.T.; Bionaz, M. 2,4-Thiazolidinedione in Well-Fed Lactating Dairy Goats: I. Effect on Adiposity and Milk Fat Synthesis. Vet. Sci. 2019, 6, 45. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Periasamy, K.; Rodriguez-Zas, S.L.; Hurley, W.L.; Loor, J.J. A Novel Dynamic Impact Approach (DIA) for Functional Analysis of Time-Course Omics Studies: Validation Using the Bovine Mammary Transcriptome. PLoS ONE 2012, 7, e32455. [Google Scholar] [CrossRef]
- Sjaunja, L.O.; Baevre, L.; Junkkarinen, L.; Pedersen, J. A Nordic proposal for an energy corrected milk (ECM) formula. In Proceedings of the 27th International Committee for Recording the Productivity of Milk Animals (ICRPMA), Paris, France, 2–6 July 1990; pp. 156–157. [Google Scholar]
- Sava, L.; Pillai, S.; More, U.; Sontakke, A. Serum calcium measurement: Total versus free (ionized) calcium. Indian J. Clin. Biochem. 2005, 20, 158–161. [Google Scholar] [CrossRef]
- Higgins, C. Urea and Creatinine Concentration, the Urea: Creatinine Ratio. Acute Care Testing 2016. Available online: https://acutecaretesting.org/articles/urea-and-creatinine-concentration-the-urea-creatinine-ratio (accessed on 4 March 2023).
- Gonçalves-de-Albuquerque, C.F.; Barnese, M.R.C.; Soares, M.A.; Castro-Faria, M.V.; Silva, A.R.; de Castro-Faria-Neto, H.C.; Burth, P.; Younes-Ibrahim, M. Serum albumin saturation test based on non-esterified fatty acids imbalance for clinical employment. Clin. Chim. Acta 2019, 495, 422–428. [Google Scholar] [CrossRef]
- Cattaneo, L.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Plasma albumin-to-globulin ratio before dry-off as a possible index of inflammatory status and performance in the subsequent lactation in dairy cows. J. Dairy Sci. 2021, 104, 8228–8242. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Hernandez-Jover, M.; Sordillo, L.M.; Abuelo, A. Maternal late-gestation metabolic stress is associated with changes in immune and metabolic responses of dairy calves. J. Dairy Sci. 2018, 101, 6568–6580. [Google Scholar] [CrossRef]
- Swanson, T.J.; Hammer, C.J.; Luther, J.S.; Carlson, D.B.; Taylor, J.B.; Redmer, D.A.; Neville, T.L.; Reed, J.J.; Reynolds, L.P.; Caton, J.S.; et al. Effects of gestational plane of nutrition and selenium supplementation on mammary development and colostrum quality in pregnant ewe lambs. J. Anim. Sci. 2008, 86, 2415–2423. [Google Scholar] [CrossRef]
- Vonnahme, K.; Wienhold, C.M.; Borowicz, P.P.; Neville, T.L.; Redmer, D.a.; Reynolds, L.P.; Caton, J.S. Supranutritional selenium increases mammary gland vascularity in postpartum ewe lambs. J. Dairy Sci. 2011, 94, 2850–2858. [Google Scholar] [CrossRef]
- Ford, H.; Hasan, D.; Ates, S.; Puerto-Hernandez, G.; Klopfenstein, J.J.; Trevisi, E.; Smallman, M.; Matra, M.; Bionaz, M. Feeding chicory silage, but not Se-yeast or a single injection of inorganic Se, affects metabolism, fat in milk, and type I immunity in transition ewes. Front. Anim. Sci. 2024, 5, 1499480. [Google Scholar] [CrossRef]
- Catellani, A.; Mezzetti, M.; Minuti, A.; Cattaneo, L.; Trevisi, E. Metabolic and inflammatory responses reveal different adaptation to the transition period challenges in Holstein, Brown Swiss, and Simmental dairy cows. Ital. J. Anim. Sci. 2023, 22, 388–397. [Google Scholar] [CrossRef]
- Lopreiato, V.; Minuti, A.; Trimboli, F.; Britti, D.; Morittu, V.M.; Cappelli, F.P.; Loor, J.J.; Trevisi, E. Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim. J. Dairy Sci. 2019, 102, 9312–9327. [Google Scholar] [CrossRef]
- Cappelli, F.P.; Trevisi, E.; Bakudila, M.; Gubbiotti, A. Change of selenium in plasma of dairy cows receiving two levels of sodium-selenite during the transition period. Ital. J. Anim. Sci. 2007, 6 (Suppl. S1), 336–338. [Google Scholar] [CrossRef]
- Dodge, M.L.; Wander, R.C.; Butler, J.A.; Du, S.-H.; Thomson, C.D.; Whanger, P.D. Selenium supplementation increases the polyunsaturated fatty acid content of human breast milk. J. Trace Elem. Exp. Med. 1999, 12, 37–44. [Google Scholar] [CrossRef]
- Ran, L.; Wu, X.; Shen, X.; Zhang, K.; Ren, F.; Huang, K. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. J. Sci. Food Agric. 2010, 90, 2214–2219. [Google Scholar] [CrossRef]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.S.; Weiss, W.P.; Smith, K.L. Role of Vitamin E and Selenium in Host Defense Against Mastitis. J. Dairy Sci. 1993, 76, 2795–2803. [Google Scholar] [CrossRef]
- Malbe, M.; Klaassen, E.; Kaartinen, L.; Attila, M.; Atroshi, F. Effects of oral selenium supplementation on mastitis markers and pathogens in Estonian cows. Vet. Ther. Res. Appl. Vet. Med. 2003, 4, 145–154. [Google Scholar]
- Smith, K.L.; Weiss, W.P.; Hogan, J.S. Influence of Vitamin E and Selenium on Mastitis and Milk Quality in Dairy Cows. Nature 2016, 1, 6–10. [Google Scholar]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Juniper, D.T. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals 2019, 9, 462. [Google Scholar] [CrossRef]
- Mal’tseva, V.N.; Goltyaev, M.V.; Turovsky, E.A.; Varlamova, E.G. Immunomodulatory and Anti-Inflammatory Properties of Selenium-Containing Agents: Their Role in the Regulation of Defense Mechanisms against COVID-19. Int. J. Mol. Sci. 2022, 23, 2360. [Google Scholar] [CrossRef]
- Hasan, D.; Ford, H.R.; Bionaz, M. Impact of maternal diet on the antioxidant status, immune function, and whole-blood selenium levels of lamb offspring. Ital. J. Anim. Sci. 2025, 24, 738–752. [Google Scholar] [CrossRef]
- Wallace, L.G.; Bobe, G.; Vorachek, W.R.; Dolan, B.P.; Estill, C.T.; Pirelli, G.J.; Hall, J.A. Effects of feeding pregnant beef cows selenium-enriched alfalfa hay on selenium status and antibody titers in their newborn calves. J. Anim. Sci. 2017, 95, 2408–2420. [Google Scholar] [CrossRef] [PubMed]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef] [PubMed]
- Minich, W.B. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. Biochemistry 2022, 87 (Suppl. S1), S168–S177. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Flohé, L. Selenium and redox signaling. Arch. Biochem. Biophys. 2017, 617, 48–59. [Google Scholar] [CrossRef]
- Wang, P.; Chen, B.; Huang, Y.; Li, J.; Cao, D.; Chen, Z.; Li, J.; Ran, B.; Yang, J.; Wang, R.; et al. Selenium intake and multiple health-related outcomes: An umbrella review of meta-analyses. Front. Nutr. 2023, 10, 1263853. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, M.; Zhang, C.; Zhou, S.; Ji, G. Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes Metab. Syndr. Obes. 2022, 15, 695–711. [Google Scholar] [CrossRef]
- Walker, P.D.; Shah, S.V. Reactive oxygen metabolites in endotoxin-induced acute renal failure in rats. Kidney Int. 1990, 38, 1125–1132. [Google Scholar] [CrossRef]
- Whitin, J.C.; Tham, D.M.; Bhamre, S.; Ornt, D.B.; Scandling, J.D.; Tune, B.M.; Salvatierra, O.; Avissar, N.; Cohen, H.J. Plasma glutathione peroxidase and its relationship to renal proximal tubule function. Mol. Genet. Metab. 1998, 65, 238–245. [Google Scholar] [CrossRef]
- Dusso, A.S. Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int. Suppl. 2011, 1, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Lee, S.Y.; Park, K.C.; Park, S.H.; Chung, J.; Lee, S. The Effects of Selenium on Bone Health: From Element to Therapeutics. Molecules 2022, 27, 392. [Google Scholar] [CrossRef] [PubMed]
- Wilkens, M.R.; Nelson, C.D.; Hernandez, L.L.; McArt, J.A.A. Symposium review: Transition cow calcium homeostasis-Health effects of hypocalcemia and strategies for prevention. J. Dairy Sci. 2020, 103, 2909–2927. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G.; Trevisi, E. Use of the Liver Activity Index and Other Metabolic Variables in the Assessment of Metabolic Health in Dairy Herds. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 413–431. [Google Scholar] [CrossRef]
- Rastani, R.R.; Andrew, S.M.; Zinn, S.A.; Sniffen, C.J. Body Composition and Estimated Tissue Energy Balance in Jersey and Holstein Cows During Early Lactation1. J. Dairy Sci. 2001, 84, 1201–1209. [Google Scholar] [CrossRef]
- Jin, X.; Meng, L.; Qi, Z.; Mi, L. Effects of dietary selenium deficiency and supplementation on liver in grazing sheep: Insights from transcriptomic and metabolomic analysis. Front. Vet. Sci. 2024, 11, 1358975. [Google Scholar] [CrossRef]
- Goldson, A.J.; Fairweather-Tait, S.J.; Armah, C.N.; Bao, Y.; Broadley, M.R.; Dainty, J.R.; Furniss, C.; Hart, D.J.; Teucher, B.; Hurst, R. Effects of Selenium Supplementation on Selenoprotein Gene Expression and Response to Influenza Vaccine Challenge: A Randomised Controlled Trial. PLoS ONE 2011, 6, e14771. [Google Scholar] [CrossRef]
- Sears, T.K.; Angelastro, J.M. The transcription factor ATF5: Role in cellular differentiation, stress responses, and cancer. Oncotarget 2017, 8, 84595–84609. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Fontes, S.K.; Bautista, E.N.; Cheng, Z. Physiological and pathological roles of protein kinase A in the heart. Cardiovasc. Res. 2022, 118, 386–398. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y.; Zhao, H.; Brooks, J.D.; Hawthorn, L.; Nowak, N.; Marshall, J.R.; Gao, A.C.; IP, C. Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer. Cancer Genom. Proteom. 2005, 2, 97–113. [Google Scholar]
- Abdelrahman, M.M.; Kincaid, R.L. Effect of Selenium Supplementation of Cows on Maternal Transfer of Selenium to Fetal and Newborn Calves. J. Dairy Sci. 1995, 78, 625–630. [Google Scholar] [CrossRef]
- Kamada, H.; Nonaka, I.; Ueda, Y.; Murai, M. Selenium addition to colostrum increases immunoglobulin G absorption by newborn calves. J. Dairy Sci. 2007, 90, 5665–5670. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Huang, R.; Peng, Z.; Zou, M. Impact of dietary selenium and blood concentration on liver function: A population-based study. Front. Nutr. 2024, 11, 1415288. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, D.J.; Willett, K.; Agness, D. Selenium and gamma-glutamyl transferase activity in the serum of thoroughbreds. Res. Vet. Sci. 1979, 26, 76–80. [Google Scholar] [CrossRef]
- Novoselec, J.; Klir Šalavardić, Ž.; Đidara, M.; Novoselec, M.; Vuković, R.; Ćavar, S.; Antunović, Z. The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs. Antioxidants 2022, 11, 1664. [Google Scholar] [CrossRef] [PubMed]
- Hogan, I.; Doherty, M.; Fagan, J.; Kennedy, E.; Conneely, M.; Brady, P.; Ryan, C.; Lorenz, I. Comparison of rapid laboratory tests for failure of passive transfer in the bovine. Ir. Vet. J. 2015, 68, 18. [Google Scholar] [CrossRef]
- Bertoni, G.; Annarita, F.; Alessandra, G.; Trevisi, E. Blood indices calves: Relationship with mother values and changes in the first days of life. Ital. J. Anim. Sci. 2009, 8 (Suppl. S2), 595–597. [Google Scholar] [CrossRef]
- Piccione, G.; Casella, S.; Pennisi, P.; Giannetto, C.; Costa, A.; Caola, G. Monitoring of physiological and blood parameters during perinatal and neonatal period in calves. Arq. Bras. Med. Vet. E Zootec. 2010, 62, 1–12. [Google Scholar] [CrossRef]
- Mirmohammadsadeghi, A.; Gharipour, M.; Roohafza, H.; Dianatkhah, M.; Sadeghi, M. Effects of selenium supplementation on paraoxonase-1 and myeloperoxidase activity in subjects with cardiovascular disease: The Selenegene study, a double-blind randomized controlled trial. Arch. Med. Sci. Atheroscler. Dis. 2018, 3, e112–e118. [Google Scholar] [CrossRef]
- Sharma, A.K.; Rodriguez, L.A.; Mekonnen, G.; Wilcox, C.J.; Bachman, K.C.; Collier, R.J. Climatological and Genetic Effects on Milk Composition and Yield1. J. Dairy Sci. 1983, 66, 119–126. [Google Scholar] [CrossRef]
- Carroll, S.M.; DePeters, E.J.; Taylor, S.J.; Rosenberg, M.; Perez-Monti, H.; Capps, V.A. Milk composition of Holstein, Jersey, and Brown Swiss cows in response to increasing levels of dietary fat. Anim. Feed Sci. Technol. 2006, 131, 451–473. [Google Scholar] [CrossRef]
- Curone, G.; Filipe, J.; Cremonesi, P.; Trevisi, E.; Amadori, M.; Pollera, C.; Castiglioni, B.; Turin, L.; Tedde, V.; Vigo, D.; et al. What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Res. Vet. Sci. 2018, 116, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K.; Dann, H.M.; Douglas, N.; Guretzky, N.A.J.; Litherland, N.B.; Underwood, J.P.; Loor, J.J. Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 2005, 4, 323–344. [Google Scholar] [CrossRef]
- Guthrie, G.J.; Charles, K.A.; Roxburgh, C.S.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Kvidera, S.K.; Horst, E.A.; Abuajamieh, M.; Mayorga, E.J.; Fernandez, M.V.; Baumgard, L.H. Glucose requirements of an activated immune system in lactating Holstein cows. J. Dairy Sci. 2017, 100, 2360–2374. [Google Scholar] [CrossRef]
- Celi, P.; Gabai, G. Oxidant/Antioxidant Balance in Animal Nutrition and Health: The Role of Protein Oxidation. Front. Vet. Sci. 2015, 2, 48. [Google Scholar] [CrossRef]
Parameter | Holstein | Jersey | SEM 1 | p-Value 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctr | Sel | Ctr | Sel | Se | Br | Se × Br | Se × T | Br × T | Se × Br × T | ||
BW kg | 559 | 555 | 479 | 473 | 23.5 | 0.83 | <0.01 | 0.98 | 0.99 | 0.06 | 0.99 |
BCS | 2.81 | 2.78 | 2.71 | 2.86 | 0.07 | 0.34 | 0.62 | 0.37 | 0.64 | <0.01 | 0.41 |
DMI kg/d 2 | 12.1 a | 12.7 a | 10.4 b | 10.5 b | 0.29 | 0.18 | <0.01 | <0.01 | 0.82 | <0.01 | 0.16 |
DMI/BW % 2 | 2.22 | 2.23 | 2.14 | 2.31 | 0.06 | 0.08 | 0.55 | 0.44 | 0.90 | <0.01 | 0.24 |
Milk Yield Kg/d 3 | 20.4 b | 22.7 a | 19.6 bc | 17.9 c | 0.70 | 0.70 | <0.01 | <0.01 | <0.01 | <0.01 | 0.02 |
Milk Yield Kg/d 2,4 | 27.2 | 29.1 | 24.7 | 24.7 | 0.68 | 0.15 | <0.01 | 0.15 | 0.02 | 0.20 | <0.01 |
ECM kg/d 5 | 19.2 | 20.9 | 21.0 | 17.8 | 1.68 | 0.64 | 0.68 | 0.15 | 0.21 | 0.37 | 0.73 |
Milk composition | |||||||||||
Fat % | 2.83 | 2.82 | 4.08 | 3.45 | 0.47 | 0.48 | 0.05 | 0.50 | 0.99 | 0.08 | 0.48 |
Protein % | 3.59 | 3.73 | 3.74 | 3.82 | 0.11 | 0.34 | 0.29 | 0.77 | 0.22 | 0.62 | 0.69 |
Lactose % | 4.62 | 4.65 | 4.53 | 4.47 | 0.08 | 0.85 | 0.09 | 0.56 | 0.48 | 0.59 | 0.70 |
SNF % | 9.34 | 9.44 | 9.50 | 9.33 | 0.12 | 0.76 | 0.81 | 0.27 | 0.23 | 0.53 | 0.15 |
SCC (log2) | 7.17 | 5.07 | 8.28 | 7.71 | 0.83 | 0.11 | 0.03 | 0.34 | 0.56 | 0.47 | 0.21 |
MUN mg/dL | 13.2 | 13.6 | 15.1 | 16.4 | 1.01 | 0.42 | 0.02 | 0.66 | 0.83 | 0.33 | 0.25 |
Fat g/d | 593 | 619 | 719 | 632 | 99.1 | 0.75 | 0.47 | 0.56 | 0.64 | 0.01 | 0.51 |
Protein g/d | 750 | 843 | 735 | 656 | 45.8 | 0.87 | 0.03 | 0.07 | 0.23 | 0.72 | 0.13 |
Lactose g/d | 967 | 1070 | 878 | 779 | 55.1 | 0.97 | <0.01 | 0.07 | 0.02 | 0.14 | 0.35 |
Conductivity mS | 9.40 | 9.24 | 9.27 | 9.31 | 0.13 | 0.64 | 0.81 | 0.41 | 0.02 | 0.14 | 0.04 |
Activity min/d | 108 | 114 | 152 | 151 | 14.1 | 0.86 | <0.01 | 0.81 | 0.84 | 0.13 | 0.69 |
Parameter | Holstein | Jersey | SEM 1 | p-Value 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctr | Sel | Ctr | Sel | Se | Br | Se × T | Se × Br | Br × T | Se × Br × T | ||
Hematocrit V/V% | 33.8 | 34.1 | 32.7 | 32.2 | 0.52 | 0.85 | <0.001 | 0.56 | 0.38 | 0.54 | 0.64 |
Metabolism | |||||||||||
NEFA mmol/L | 0.55 | 0.59 | 0.48 | 0.40 | 0.07 | 0.72 | 0.07 | 0.79 | 0.37 | 0.02 | 0.63 |
NEFA/Albumin | 1.12 | 1.13 | 0.94 | 0.70 | 0.13 | 0.35 | 0.03 | 0.56 | 0.33 | 0.07 | 0.25 |
BHB mmol/L | 0.58 | 0.66 | 0.67 | 0.67 | 0.07 | 0.55 | 0.45 | 0.49 | 0.55 | 0.28 | 0.66 |
Glucose mmol/L | 4.36 | 4.40 | 4.34 | 4.26 | 0.09 | 0.80 | 0.41 | 0.55 | 0.47 | 0.01 | 0.96 |
Cholesterol mmol/L | 2.16 | 2.27 | 2.27 | 2.28 | 0.13 | 0.59 | 0.15 | 0.92 | 0.67 | 0.28 | 0.99 |
Urea mmol/L | 5.0 | 5.5 | 5.2 | 4.9 | 0.28 | 0.67 | 0.28 | 0.64 | 0.14 | 0.28 | 0.86 |
Inflammatory status and immune system | |||||||||||
Ceruloplasmin µmol/L | 2.55 | 2.92 | 2.81 | 2.98 | 0.10 | 0.01 | <0.01 | 0.28 | 0.32 | 0.36 | 0.09 |
Haptoglobin g/L | 0.55 | 0.46 | 0.68 | 0.68 | 0.10 | 0.59 | 0.14 | 0.29 | 0.60 | 0.63 | 0.01 |
Myeloperoxidase U/L | 380 | 412 | 382 | 411 | 24.6 | 0.22 | 0.82 | 0.39 | 0.93 | 0.89 | 0.34 |
Total protein g/L | 73.7 a | 70.6 b | 70.6 b | 73.2 a | 0.96 | 0.79 | 0.63 | 0.68 | 0.00 | 0.54 | 0.66 |
Albumin g/L | 35.6 | 35.8 | 35.9 | 36.7 | 0.72 | 0.46 | 0.33 | 0.17 | 0.66 | 0.59 | 0.10 |
Globulin g/L | 38.3 a | 34.5 b | 34.8 b | 36.8 ab | 1.00 | 0.33 | 0.33 | 0.77 | 0.01 | 0.56 | 0.83 |
Paraoxonase U/mL | 71.9 | 77.2 | 78.0 | 79.5 | 4.00 | 0.38 | 0.76 | 0.80 | 0.61 | 0.34 | 0.99 |
Albumin/Globulin | 0.95 | 1.06 | 1.05 | 1.00 | 0.04 | 0.44 | 0.21 | 0.68 | 0.08 | 0.43 | 0.62 |
Liver status | |||||||||||
AST/GOT U/L | 97.0 | 95.6 | 97.6 | 96.5 | 3.18 | 0.68 | 0.77 | 0.69 | 0.95 | 0.02 | 0.57 |
GGT U/L | 20.8 | 21.0 | 22.3 | 22.3 | 1.57 | 0.94 | 0.79 | 0.54 | 0.94 | 0.15 | 0.98 |
ALP U/L | 70.9 | 88.4 | 74.4 | 81.4 | 6.73 | 0.09 | 0.43 | 0.30 | 0.42 | 0.85 | 0.03 |
Bilirubin µmol/L | 4.29 | 4.50 | 3.47 | 3.61 | 0.44 | 0.68 | 0.06 | 0.75 | 0.93 | 0.25 | 0.78 |
Oxidative status | |||||||||||
Thiol Groups µmol/L | 339 | 341 | 348 | 343 | 10.7 | 0.89 | 0.08 | 0.52 | 0.69 | 0.12 | 0.64 |
ROMt mg H2O2/100 mL | 14.0 | 14.8 | 14.3 | 16.2 | 0.61 | 0.02 | <0.01 | 0.55 | 0.33 | 0.57 | 0.28 |
FRAP µmol/L | 145.4 | 147.4 | 147.4 | 141.1 | 6.38 | 0.73 | <0.01 | 0.68 | 0.50 | 0.14 | 0.82 |
AOPP µmol/L | 33.5 | 33.2 | 32.8 | 31.5 | 1.37 | 0.52 | 0.03 | 0.50 | 0.69 | 0.57 | 0.86 |
ROM/FRAP | 0.105 | 0.096 | 0.105 | 0.121 | 0.01 | 0.61 | 0.01 | 0.46 | 0.09 | 0.01 | 0.33 |
Minerals | |||||||||||
Ca mmol/L | 2.45 | 2.48 | 2.43 | 2.48 | 0.03 | 0.11 | 0.58 | 0.22 | 0.67 | 0.89 | 0.02 |
Free Ca mmol/L | 1.21 | 1.22 | 1.20 | 1.22 | 0.01 | 0.09 | 0.26 | 0.29 | 0.61 | 0.60 | 0.10 |
Mg mmol/L | 0.99 | 0.95 | 1.09 | 1.05 | 0.03 | 0.17 | <0.01 | 0.28 | 0.97 | 0.54 | 0.01 |
Kidney function | |||||||||||
Creatinine µmol/L | 96.4 | 92.9 | 88.9 | 85.6 | 1.52 | 0.01 | <0.01 | 0.44 | 0.93 | 0.16 | 0.43 |
Urea/Creatinine | 49.4 | 57.3 | 60.5 | 61.6 | 2.90 | 0.08 | 0.04 | 0.67 | 0.19 | 0.61 | 0.89 |
Parameter | Holstein | Jersey | SEM 1 | p-Value 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctr | Sel | Ctr | Sel | Se | Br | Se × T | Se × Br | Br × T | Se × Br × T | ||
WBC 103/mL | 13.6 | 9.99 | 10.8 | 10.2 | 1.26 | 0.06 | 0.24 | 0.31 | 0.17 | 0.04 | 0.11 |
Lymphocytes 103/mL 2 | 8.41 | 5.78 | 6.28 | 5.80 | 1.19 | 0.15 | 0.32 | 0.27 | 0.31 | 0.27 | 0.60 |
Neutro+mono 103/mL 2 | 5.02 | 4.16 | 4.27 | 4.00 | 0.54 | 0.23 | 0.33 | 0.82 | 0.53 | 0.11 | 0.12 |
Lymphocytes % 3 | 61.7 | 55.7 | 57.4 | 56.4 | 5.77 | 0.50 | 0.72 | 0.35 | 0.62 | 0.45 | 0.84 |
Neutrophils % 3 | 36.9 | 43.6 | 40.5 | 40.1 | 5.32 | 0.50 | 0.99 | 0.21 | 0.45 | 0.52 | 0.91 |
Monocytes % 3 | 1.38 | 0.90 | 2.16 | 3.50 | 1.52 | 0.75 | 0.22 | 0.37 | 0.50 | 0.16 | 0.83 |
Phagocytosis % | |||||||||||
Leukocytes 3 | 26.4 | 37.2 | 20.3 | 21.5 | 4.65 | 0.188 | 0.03 | 0.52 | 0.29 | 0.43 | 0.05 |
Neutrophils 3 | 52.8 | 72.1 | 40.7 | 43.7 | 9.07 | 0.215 | 0.03 | 0.33 | 0.36 | 0.96 | 0.19 |
Parameter | Holstein | Jersey | SEM 1 | p-Value 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ctr | Sel | Ctr | Sel | T 2 | Se | Br | Se × T | Se × Br | Br × T | Se × Br × T | ||
Metabolism | ||||||||||||
NEFA mmol/L | 0.15 | 0.28 | 0.25 | 0.15 | 0.06 | ↓ | 0.84 | 0.86 | 0.43 | 0.09 | 0.73 | 0.26 |
NEFA/Albumin | 0.30 | 0.63 | 0.60 | 0.34 | 0.14 | ↓ | 0.83 | 0.98 | 0.46 | 0.09 | 0.52 | 0.30 |
BHB mmol/L | 0.090 | 0.091 | 0.127 | 0.087 | 0.02 | ↔ | 0.36 | 0.45 | 0.68 | 0.39 | 0.16 | 0.39 |
Glucose mmol/L | 9.22 | 8.95 | 7.05 | 8.01 | 0.42 | ↓ | 0.44 | 0.01 | 0.11 | 0.22 | 0.06 | 0.06 |
Cholesterol mmol/L | 2.66 | 2.40 | 2.13 | 2.33 | 0.32 | ↑ | 0.93 | 0.41 | 0.79 | 0.54 | 0.20 | 0.743 |
Urea mmol/L | 3.89 | 4.35 | 3.56 | 2.72 | 0.30 | 0.56 | 0.01 | 0.57 | 0.09 | 0.12 | 0.33 | |
Ceruloplasmin µmol/L | 1.56 | 1.86 | 2.05 | 1.92 | 0.20 | ↑ | 0.69 | 0.24 | 0.50 | 0.38 | 0.38 | 0.06 |
Haptoglobin g/L | 0.41 | 0.60 | 0.38 | 0.42 | 0.04 | ↑ | 0.01 | 0.03 | 0.11 | 0.14 | 0.01 | 0.15 |
Myeloperoxidase U/L | 385 | 399 | 260 | 356 | 37.9 | ↔ | 0.19 | 0.07 | 0.59 | 0.37 | 0.35 | 0.84 |
Total protein g/L | 70.7 | 73.1 | 67.3 | 71.3 | 2.33 | ↓ | 0.20 | 0.33 | 0.71 | 0.77 | 0.99 | 0.44 |
Albumin g/L | 31.5 | 30.9 | 30.2 | 30.4 | 0.40 | ↑ | 0.65 | 0.07 | 0.53 | 0.36 | 0.06 | 0.13 |
Globulin g/L | 39.1 | 42.1 | 37.1 | 40.8 | 2.33 | ↓ | 0.19 | 0.54 | 0.61 | 0.88 | 0.62 | 0.26 |
Paraoxonase U/mL | 42.5 a | 26.7 b | 24.1 b | 33.2 ab | 3.29 | ↑ | 0.34 | 0.13 | 0.21 | 0.01 | 0.87 | 0.02 |
Albumin/Globulin | 0.84 | 0.75 | 0.87 | 0.79 | 0.05 | ↑ | 0.14 | 0.58 | 0.67 | 0.89 | 0.32 | 0.45 |
Liver status | ||||||||||||
AST/GOT U/L | 55.7 | 53.7 | 57.5 | 53.6 | 6.50 | ↓ | 0.67 | 0.91 | 0.62 | 0.90 | 0.90 | 0.35 |
GGT U/L | 351 | 1530 | 820 | 1335 | 285 | ↓ | 0.01 | 0.67 | 0.50 | 0.33 | 0.25 | 0.93 |
ALP U/L | 344 | 385 | 405 | 352 | 58.4 | ↓ | 0.92 | 0.84 | 0.08 | 0.49 | 0.02 | 0.04 |
Bilirubin µmol/L | 3.04 | 10.63 | 6.84 | 2.81 | 2.41 | ↓ | 0.49 | 0.46 | 0.63 | 0.06 | 0.99 | 0.33 |
Oxidative status | ||||||||||||
Thiol Groups µmol/L | 338 | 330 | 295 | 304 | 20.5 | ↔ | 0.97 | 0.15 | 0.48 | 0.71 | 0.47 | 0.08 |
ROMt mg H2O2/100 mL | 10.9 | 13.4 | 13.3 | 12.4 | 1.24 | ↑ | 0.56 | 0.62 | 0.59 | 0.26 | 0.73 | 0.19 |
FRAP µmol/L | 125 | 140 | 138 | 122 | 13.1 | ↓ | 0.97 | 0.87 | 0.29 | 0.30 | 0.92 | 0.19 |
AOPP µmol/L | 54.8 | 55.7 | 63.1 | 67.0 | 6.82 | ↔ | 0.74 | 0.21 | 0.27 | 0.85 | 0.15 | 0.09 |
ROM/FRAP | 0.090 | 0.114 | 0.115 | 0.104 | 0.01 | ↑ | 0.68 | 0.64 | 0.46 | 0.33 | 0.99 | 0.07 |
Minerals | ||||||||||||
Ca mmol/L | 3.09 | 3.05 | 3.03 | 3.02 | 0.06 | ↓ | 0.71 | 0.55 | 0.63 | 0.86 | 0.86 | 0.57 |
Free Ca mmol/L | 1.56 | 1.55 | 1.55 | 1.54 | 0.03 | ↓ | 0.77 | 0.67 | 0.75 | 0.98 | 0.93 | 0.77 |
Mg mmol/L | 0.86 | 0.97 | 0.95 | 0.90 | 0.05 | ↓ | 0.49 | 0.93 | 0.32 | 0.14 | 0.71 | 0.25 |
Kidney function | ||||||||||||
Creatinine µmol/L | 86.4 | 93.5 | 79.1 | 69.1 | 3.90 | ↓ | 0.72 | 0.00 | 0.47 | 0.08 | 0.71 | 0.35 |
Urea/Creatinine | 45.6 | 45.8 | 46.3 | 41.6 | 2.78 | ↑ | 0.46 | 0.57 | 0.50 | 0.47 | 0.09 | 0.42 |
Parameter | Holstein | Jersey | SEM 1 | p-Value 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctr | Sel | Ctr | Sel | Se | Br | Se × T | Se × Br | Br × T | Se × Br × T | ||
WBC 103/mL | 10.1 | 10.7 | 10.9 | 8.32 | 1.45 | 0.44 | 0.60 | 0.53 | 0.27 | 0.07 | 0.84 |
Lymphocytes 103/mL 2 | 5.59 | 4.96 | 6.26 | 4.73 | 0.62 | 0.06 | 0.71 | 0.06 | 0.47 | 0.03 | 0.76 |
Neutro + mono 103/mL 2 | 4.51 | 5.63 | 4.29 | 3.70 | 0.93 | 0.75 | 0.25 | 0.97 | 0.37 | 0.33 | 0.86 |
Lymphocytes % 3 | 64.8 | 59.1 | 61.5 | 63.9 | 4.32 | 0.68 | 0.85 | 0.04 | 0.31 | 0.07 | 0.21 |
Neutrophils % 3 | 32.6 | 35.7 | 35.1 | 33.0 | 4.20 | 0.90 | 0.99 | 0.05 | 0.49 | 0.05 | 0.40 |
Monocytes % 3 | 2.87 | 4.85 | 3.40 | 3.14 | 1.58 | 0.57 | 0.69 | 0.05 | 0.46 | 0.04 | <0.01 |
Phagocytosis % | |||||||||||
Leukocytes 3 | 24.5 | 33.3 | 18.4 | 20.8 | 5.68 | 0.28 | 0.12 | 0.01 | 0.57 | 0.46 | 0.02 |
Neutrophils 3 | 61.7 | 77.5 | 37.5 | 37.5 | 12.3 | 0.48 | 0.02 | 0.03 | 0.51 | 0.39 | 0.46 |
Immunoglobulins | |||||||||||
Colostrum | |||||||||||
IgG mg/mL | 0.58 | 0.57 | 0.38 | 0.37 | 0.10 | 0.96 | 0.06 | 0.99 | |||
IgA mg/mL | 4.64 | 5.45 | 4.21 | 3.92 | 0.69 | 0.70 | 0.16 | 0.42 | |||
Calves’ serum | |||||||||||
IgG mg/mL | 0.22 | 0.40 | 0.17 | 0.19 | 0.08 | 0.42 | <0.01 | 0.07 | 0.22 | 0.43 | 0.02 |
IgA mg/mL | 3.94 | 3.08 | 2.10 | 2.32 | 0.44 | 0.15 | 0.07 | 0.29 | 0.27 | 0.21 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaaf, S.; Mezzetti, M.; Busato, S.; Trevisi, E.; Bionaz, M. Selenium-Biofortified Alfalfa Hay Supplemented to Jersey and Holstein Dairy Heifers During the Peripartum Period: Effects on Dams and Their Offspring. Animals 2025, 15, 1866. https://doi.org/10.3390/ani15131866
Jaaf S, Mezzetti M, Busato S, Trevisi E, Bionaz M. Selenium-Biofortified Alfalfa Hay Supplemented to Jersey and Holstein Dairy Heifers During the Peripartum Period: Effects on Dams and Their Offspring. Animals. 2025; 15(13):1866. https://doi.org/10.3390/ani15131866
Chicago/Turabian StyleJaaf, Shana, Matteo Mezzetti, Sebastiano Busato, Erminio Trevisi, and Massimo Bionaz. 2025. "Selenium-Biofortified Alfalfa Hay Supplemented to Jersey and Holstein Dairy Heifers During the Peripartum Period: Effects on Dams and Their Offspring" Animals 15, no. 13: 1866. https://doi.org/10.3390/ani15131866
APA StyleJaaf, S., Mezzetti, M., Busato, S., Trevisi, E., & Bionaz, M. (2025). Selenium-Biofortified Alfalfa Hay Supplemented to Jersey and Holstein Dairy Heifers During the Peripartum Period: Effects on Dams and Their Offspring. Animals, 15(13), 1866. https://doi.org/10.3390/ani15131866