Dietary Synbiotic Attenuated the Intestinal Inflammation in Weaned Piglets Challenged with Escherichia coli Lipopolysaccharide
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Synbiotic Diet Components Preparation and Characterization
Prebiotic Mix Preparation and Determination of Composition in Bioactive Compounds
2.2. Probiotic Mix Preparation
2.3. Animals and Treatments
2.4. Determination of LPS Toxicity in Plasma, Jejunum, and Colon Through Lactate Dehydrogenase (LDH) Assay
2.5. Quantitative PCR (qPCR) Array Analysis
2.6. Detection of Cytokine Protein Expression by Protein Array Analysis
2.7. Enzyme-Linked Immunosorbent Assay (ELISA)
2.8. Statistical Analysis
3. Results
3.1. Effects of SYN Diet on LPS-Induced Damage
3.1.1. Effects on LDH Activity in Plasma
3.1.2. Effects on LDH Activity in the Jejunum and Colon
3.2. Effects of SYN Diet on LPS-Induced Inflammation in the Jejunum
3.2.1. Effects on Inflammation-Related Gene Expression in Piglets’ Jejunum
3.2.2. Effects on Inflammation-Related Protein Expression in Piglets’ Jejunum
3.3. Effects of SYN Diet on LPS-Induced Inflammation in the Colon
3.3.1. Effects on Inflammation-Related Gene Expression in Piglets’ Colon
3.3.2. Effects on Inflammation-Related Protein Expression in Piglets’ Colon
3.4. Validation of Gene and Protein Expressions of Pro-Inflammatory Cytokines by ELISA
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pluske, J.R. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J. Anim. Sci. Biotechnol. 2013, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Xiong, K.; Fang, R.; Li, M. Weaning stress and intestinal health of piglets: A review. Front. Immunol. 2022, 13, 1042778. [Google Scholar] [CrossRef]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef]
- Deng, Q.; Tan, X.; Wang, H.; Wang, Q.; Huang, P.; Li, Y.; Li, J.; Huang, J.; Yang, H.; Yin, Y. Changes in cecal morphology, cell proliferation, antioxidant enzyme, volatile fatty acids, lipopolysaccharide, and cytokines in piglets during the postweaning period. J. Anim. Sci. 2020, 98, skaa046. [Google Scholar] [CrossRef]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [PubMed]
- McLamb, B.L.; Gibson, A.J.; Overman, E.L.; Stahl, C.; Moeser, A.J. Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS ONE 2013, 8, e59838. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.S.; Tang, C.H.; Zhao, Q.Y.; Zhan, T.F.; Zhang, K.; Han, Y.M.; Zhang, J.M. Effects of dietary supplementation with combinations of organic and medium chain fatty acids as replacements for chlortetracycline on growth performance, serum immunity, and fecal microbiota of weaned piglets. Livest. Sci. 2018, 216, 210–218. [Google Scholar] [CrossRef]
- Verstegen, M.W.; Williams, B.A. Alternatives to the use of antibiotics as growth promoters for monogastric animals. Anim. Biotechnol. 2002, 13, 113–127. [Google Scholar] [CrossRef]
- Han, X.; Hu, X.; Jin, W.; Liu, G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. Anim. Nutr. 2024, 17, 188–207. [Google Scholar] [CrossRef]
- Vastolo, A.; Serrapica, F.; Cavallini, D.; Fusaro, I.; Atzori, A.S.; Todaro, M. Editorial: Alternative and novel livestock feed: Reducing environmental impact. Front. Vet. Sci. 2024, 11, 1441905. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, P.; Ma, Y.; Chen, H.; Zhou, Y.; Zhang, M.; Chu, Z.; Qin, H. Lactobacillus plantarum prevents the development of colitis in IL-10-deficient mouse by reducing the intestinal permeability. Mol. Biol. Rep. 2011, 38, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Ménard, S.; Candalh, C.; Bambou, J.C.; Terpend, K.; Cerf-Bensussan, N.; Heyman, M. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 2004, 53, 821–828. [Google Scholar] [CrossRef]
- Laval, L.; Martin, R.; Natividad, J.N.; Chain, F.; Miquel, S.; Desclée de Maredsous, C.; Capronnier, S.; Sokol, H.; Verdu, E.F.; van Hylckama Vlieg, J.E.; et al. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Chlebicz-Wójcik, A.; Śliżewska, K. The Effect of Recently Developed Synbiotic Preparations on Dominant Fecal Microbiota and Organic Acids Concentrations in Feces of Piglets from Nursing to Fattening. Animals 2020, 10, 1999. [Google Scholar] [CrossRef]
- Johnson-Henry, K.C.; Abrahamsson, T.R.; Wu, R.Y.; Sherman, P.M. Probiotics, Prebiotics, and Synbiotics for the Prevention of Necrotizing Enterocolitis. Adv. Nutr. 2016, 7, 928–937. [Google Scholar] [CrossRef]
- Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, prebiotics and synbiotics- a review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Duarte, M.E.; Tyus, J.; Kim, S.W. Synbiotic Effects of Enzyme and Probiotics on Intestinal Health and Growth of Newly Weaned Pigs Challenged with Enterotoxigenic F18+Escherichia coli. Front. Vet. Sci. 2020, 7, 573. [Google Scholar] [CrossRef]
- Guevarra, R.B.; Kim, E.S.; Cho, J.H.; Song, M.; Cho, J.H.; Lee, J.H.; Kim, H.; Kim, S.; Keum, G.B.; Lee, C.H.; et al. Gut microbial shifts by synbiotic combination of Pediococcus acidilactici and lactulose in weaned piglets challenged with Shiga toxin-producing Escherichia coli. Front. Vet. Sci. 2022, 9, 1101869. [Google Scholar] [CrossRef] [PubMed]
- Nemcová, R.; Bomba, A.; Gancarcíková, S.; Reiffová, K.; Guba, P.; Koscová, J.; Jonecová, Z.; Sciranková, L.; Bugarský, A. Effects of the administration of lactobacilli, maltodextrins and fructooligosaccharides upon the adhesion of E. coli O8:K88 to the intestinal mucosa and organic acid levels in the gut contents of piglets. Vet. Res. Commun. 2007, 31, 791–800. [Google Scholar] [CrossRef]
- Nemcová, R.; Borovská, D.; Koščová, J.; Gancarčíková, S.; Mudroňová, D.; Buleca, V.; Pistl, J. The effect of supplementation of flax-seed oil on interaction of Lactobacillus plantarum–Biocenol™ LP96 and Escherichia coli O8:K88ab:H9 in the gut of germ-free piglets. Res. Vet. Sci. 2012, 93, 39–41. [Google Scholar] [CrossRef]
- Sathitkowitchai, W.; Mok, K.; Udomsri, P.; Nitisinprasert, S.; Nakphaichit, M. Synergistic activity of synbiotic blend between Lactococcus lactis KAFF 1-4 and fibersol-2 on gut microbiota modulation and anti-VRE properties. 3 Biotech 2025, 15, 133. [Google Scholar] [CrossRef]
- Pistol, G.C.; Marin, D.E.; Dragomir, C.; Taranu, I. Synbiotic combination of prebiotic grape pomace extract and probiotic Lactobacillus sp. reduced important intestinal inflammatory markers and in-depth signalling mediators in lipopolysaccharide-treated Caco-2 cells. Br. J. Nutr. 2019, 121, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Pistol, G.C.; Bulgaru, C.V.; Marin, D.E.; Oancea, A.G.; Taranu, I. Dietary grape seed meal bioactive compounds alleviate epithelial dysfunctions and attenuates inflammation in colon of DSS-treated piglets. Foods 2021, 10, 530. [Google Scholar] [CrossRef]
- Pistol, G.C.; Marin, D.E.; Bulgaru, V.C.; Anghel, A.C.; Sărăcilă, M.; Vlassa, M.; Filip, M.; Taranu, I. Grape seed meal by-product is able to counteract oxidative stress induced by lipopolysaccharide and dextran sulphate in IPEC cells and piglets after weaning. PLoS ONE 2023, 18, e0283607. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.E.; Bulgaru, C.V.; Anghel, C.A.; Pistol, G.C.; Dore, M.I.; Palade, M.L.; Taranu, I. Grape Seed Waste Counteracts Aflatoxin B1 Toxicity in Piglet Mesenteric Lymph Nodes. Toxins 2020, 12, 800. [Google Scholar] [CrossRef]
- Vlassa, M.; Filip, M.; Țăranu, I.; Marin, D.; Untea, A.E.; Ropotă, M.; Dragomir, C.; Sărăcilă, M. The Yeast Fermentation Effect on Content of Bioactive, Nutritional and Anti-Nutritional Factors in Rapeseed Meal. Foods 2022, 11, 2972. [Google Scholar] [CrossRef]
- Wang, H.; Kim, I.H. Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs. Animals 2021, 11, 2232. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012; 420p. [Google Scholar] [CrossRef]
- Wen, X.; Wan, F.; Wu, Y.; Liu, L.; Liu, Y.; Zhong, R.; Chen, L.; Zhang, H. Caffeic acid supplementation ameliorates intestinal injury by modulating intestinal microbiota in LPS-challenged piglets. Food Funct. 2023, 14, 7705–7717. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.E.; Pistol, G.C.; Gras, M.A.; Palade, M.L.; Taranu, I. Comparative effect of ochratoxin A on inflammation and oxidative stress parameters in gut and kidney of piglets. Regul. Toxicol. Pharmacol. 2017, 89, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, 5. [Google Scholar] [CrossRef] [PubMed]
- Semiz, A.; Ozgun Acar, O.; Cetin, H.; Semiz, G.; Sen, A. Suppression of Inflammatory Cytokines Expression with Bitter Melon (Momordica Charantia) in TNBS-instigated Ulcerative Colitis. J. Transl. Int. Med. 2020, 8, 177–187. [Google Scholar] [CrossRef]
- Zheng, L.; Duarte, M.E.; Sevarolli Loftus, A.; Kim, S.W. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front. Vet. Sci. 2021, 8, 628258. [Google Scholar] [CrossRef]
- Gupta, G.S. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022, 45, 2091–2123. [Google Scholar] [CrossRef]
- Sadiku, P.; Willson, J.A.; Ryan, E.M.; Sammut, D.; Coelho, P.; Watts, E.R.; Grecian, R.; Young, J.M.; Bewley, M.; Arienti, S.; et al. Neutrophils Fuel Effective Immune Responses through Gluconeogenesis and Glycogenesis. Cell Metab. 2021, 33, 411–423.e414. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Q.; Wang, Y.; Liang, T.; Li, X.; Wang, D.; Wang, X.; Zhu, H.; Xiao, K. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis. 2021, 12, 62. [Google Scholar] [CrossRef]
- Han, D.; Wu, Y.; Lu, D.; Pang, J.; Hu, J.; Zhang, X.; Wang, Z.; Zhang, G.; Wang, J. Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation. Cell Death Dis. 2023, 14, 656. [Google Scholar] [CrossRef]
- Zheng, J.; Gong, S.; Han, J. Arabinogalactan Alleviates Lipopolysaccharide-Induced Intestinal Epithelial Barrier Damage through Adenosine Monophosphate-Activated Protein Kinase/Silent Information Regulator 1/Nuclear Factor Kappa-B Signaling Pathways in Caco-2 Cells. Int. J. Mol. Sci. 2023, 24, 15337. [Google Scholar] [CrossRef]
- Andrejčáková, Z.; Sopková, D.; Vlčková, R.; Kulichová, L.; Gancarčíková, S.; Almášiová, V.; Holovská, K.; Petrilla, V.; Krešáková, L. Synbiotics suppress the release of lactate dehydrogenase, promote non-specific immunity and integrity of jejunum mucosa in piglets. Anim. Sci. J. 2016, 87, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, K.Z.; Abdel-Salam, A.M.; Magharby, A.S. Immunoprophylactic effect of probiotic yoghurt feeding on Schistosoma mansoni-infected mice. Pol. J. Food Nutr. Sci. 2005, 55, 123–126. [Google Scholar]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef]
- Friedrich, M.; Pohin, M.; Powrie, F. Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity 2019, 50, 992–1006. [Google Scholar] [CrossRef]
- Li, Y.S.; San Andres, J.V.; Trenhaile-Grannemann, M.D.; van Sambeek, D.M.; Moore, K.C.; Winkel, S.M.; Fernando, S.C.; Burkey, T.E.; Miller, P.S. Effects of mannan oligosaccharides and Lactobacillus mucosae on growth performance, immune response, and gut health of weanling pigs challenged with Escherichia coli lipopolysaccharides. J. Anim. Sci. 2021, 99, skab286. [Google Scholar] [CrossRef]
- Badia, R.; Zanello, G.; Chevaleyre, C.; Lizardo, R.; Meurens, F.; Martínez, P.; Brufau, J.; Salmon, H. Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88). Vet. Res. 2012, 43, 1–11. [Google Scholar] [CrossRef]
- Sun, W.; Wang, G.; Zhang, Z.-m.; Zeng, X.-k.; Wang, X. Chemokine RANTES is upregulated in monocytes from patients with hyperhomocysteinemia. Acta Pharmacol. Sin. 2005, 26, 1317–1321. [Google Scholar] [CrossRef]
- Watanabe, S.; Kumazawa, Y.; Inoue, J. Liposomal Lipopolysaccharide Initiates TRIF-Dependent Signaling Pathway Independent of CD14. PLoS ONE 2013, 8, e60078. [Google Scholar] [CrossRef]
- Werner, L.; Guzner-Gur, H.; Dotan, I. Involvement of CXCR4/CXCR7/CXCL12 Interactions in Inflammatory bowel disease. Theranostics 2013, 3, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.; Abdulla, J.; Zayyani, N.; Brahmi, U.; Taha, S.; Satir, A.A. Comparison of RANTES expression in Crohn’s disease and ulcerative colitis: An aid in the differential diagnosis? J. Clin. Pathol. 2006, 59, 1066–1072. [Google Scholar] [CrossRef]
- Lan, J.G.; Cruickshank, S.M.; Singh, J.C.; Farrar, M.; Lodge, J.P.; Felsburg, P.J.; Carding, S.R. Different cytokine response of primary colonic epithelial cells to commensal bacteria. World J. Gastroenterol. 2005, 11, 3375–3384. [Google Scholar] [CrossRef]
- Resta-Lenert, S.; Barrett, K.E. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: Role of iNOS and COX-2. Gastroenterology 2002, 122, 1070–1087. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, M.; Muscarà, C.; Molonia, M.S.; Cimino, F.; Gervasi, T. Synbiotic effect of quercetin and probiotic Lactobacillus SP. protects intestinal barrier from E. coli-induced challenge in Caco-2 cells. J. Funct. Foods 2024, 114, 106062. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Braicu, C.; Pistol, G.C.; Sorescu, I.; Pruteanu, L.L.; Berindan Neagoe, I.; Vodnar, D.C. In Vitro Transcriptome Response to a Mixture of Lactobacilli Strains in Intestinal Porcine Epithelial Cell Line. Int. J. Mol. Sci. 2018, 19, 1923. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Y.; Jiang, Y.; Yin, Z.; Weiss, H.L.; Wang, Q.; Evers, B.M. miR-27a-3p regulates intestinal cell proliferation and differentiation through Wnt/β-catenin signalling. Cell Prolif. 2025, 58, e13757. [Google Scholar] [CrossRef]
- Liu, S.; Cai, P.; You, W.; Yang, M.; Tu, Y.; Zhou, Y.; Valencak, T.G.; Xiao, Y.; Wang, Y.; Shan, T. Enhancement of gut barrier integrity by a Bacillus subtilis secreted metabolite through the GADD45A-Wnt/β-catenin pathway. iMeta 2025, 4, e70005. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef]
- Pistol, G.C.; Marin, D.E.; Rotar, M.C.; Ropota, M.; Taranu, I. Bioactive compounds from dietary whole grape seed meal improved colonic inflammation via inhibition of MAPKs and NF-kB signaling in pigs with DSS induced colitis. J. Funct. Foods 2020, 66, 103708. [Google Scholar] [CrossRef]
- Wang, R.; Yu, H.; Fang, H.; Jin, Y.; Zhao, Y.; Shen, J.; Zhou, C.; Li, R.; Wang, J.; Fu, Y.; et al. Effects of dietary grape pomace on the intestinal microbiota and growth performance of weaned piglets. Arch. Anim. Nutr. 2020, 74, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Grosu, I.A.; Pistol, G.C.; Marin, D.E.; Cişmileanu, A.; Palade, L.M.; Ţăranu, I. Effects of dietary grape seed meal bioactive compounds on the colonic microbiota of weaned piglets with dextran sodium sulfate-induced colitis used as an inflammatory model. Front. Vet. Sci. 2020, 7, 31. [Google Scholar] [CrossRef] [PubMed]
(A) | |
Polyphenols (mg/100 g) | Prebiotic Mix |
Total polyphenols | 3267.9 |
Catechins | 104.70 |
Caffeic acid | 21.75 |
Gallic acid | 12.50 |
Vanillic acid | 3.69 |
Epicatechin | 5.09 |
p-Coumaric Acid | 0.36 |
Ferulic Acid | 0.17 |
Sinapic Acid | 1.29 |
Rutin | 2.96 |
(B) | |
Fatty Acids (g/100 g) | Prebiotic Mix |
Total PUFAS | 64.37 |
cis Oleic Acid (C 18:1n9) | 15.64 |
cis Linoleic Acid (C 18:2) | 47.71 |
α-Linolenic Acid (C 18:3n3) | 14.84 |
Eicosanoic Acid (C:20(1n9)) | 5.18 |
Octadecatetraenoic Acid (C 18:4n3) | 0.55 |
Eicosadienoic Acid (C 20:2n6) | 0.66 |
Eicosatrienoic Acid (C 20:3n6) | 0.33 |
Erucic Acid (C22 (1n9)) | 1.02 |
Eicosapentaenoic (C 20:5n3) | 0.29 |
ω-6 PUFAs | 54.47 |
ω-3 PUFAs | 15.68 |
(C) | |
Bioactive Compounds | Prebiotic Mix |
Carbohydrates (mg/100 g) | |
Sucrose | 1063.88 |
Glucose | 446.15 |
Fructose | 691.52 |
Organic acids (mg/100 g) | |
Succinic acid | 598.51 |
Tartric acid | 231.80 |
Oxalic acid | 216.63 |
Microminerals (ppm) | |
Copper | 5.76 |
Iron | 117.38 |
Manganese | 17.42 |
Zinc | 28.72 |
Sodium | 43.51 |
Fiber (%) | 33.61 |
Ingredients | Control Diet | SYN Diet |
---|---|---|
Corn | 57.43 | 52.67 |
Barley | 5 | 5 |
Wheat | 10 | 10 |
Soybean meal (45.5% CP) | 20 | 18.7 |
Gluten | 2 | 2 |
Powdered milk | 2 | 2 |
Sunflower oil | 0.2 | 1.2 |
Monocalcium phosphate | 0.1 | 0.12 |
Calcium carbonate | 1.16 | 1.12 |
Salt | 0.35 | 0.35 |
DL-Methionine, 99% Met | 0.14 | 0.12 |
L-Lysine -HCl, 78% Lys | 0.42 | 0.42 |
Choline premix | 0.2 | 0.2 |
Vitamin mineral premix 1 | 1 | 1 |
Prebiotic mix 2 | 5 | |
Probiotic mix 3 | 0.1 | |
Calculated nutritive value (%) | ||
Metabolizable energy (MJ/kg) 4 | 13.60 | 13.57 |
Crude protein | 18.15 | 18.12 |
Crude fat | 2.87 | 2.98 |
Crude fiber | 3.38 | 4.72 |
Lysine, total | 1.20 | 1.21 |
Lysine, digestible | 1.02 | 1.01 |
Methionine + cystine, total | 0.75 | 0.75 |
Methionine + cystine, digestible | 0.62 | 0.62 |
Threonine | 0.89 | 0.87 |
Tryptophan | 0.20 | 0.19 |
Valine | 0.94 | 0.91 |
Calcium | 0.75 | 0.75 |
Phosphorus, total | 0.65 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pistol, G.-C.; Bulgaru, V.C.; Grosu, I.A.; Marin, D.E.; Ciurescu, G.; Martău, G.A.; Taranu, I. Dietary Synbiotic Attenuated the Intestinal Inflammation in Weaned Piglets Challenged with Escherichia coli Lipopolysaccharide. Animals 2025, 15, 1832. https://doi.org/10.3390/ani15131832
Pistol G-C, Bulgaru VC, Grosu IA, Marin DE, Ciurescu G, Martău GA, Taranu I. Dietary Synbiotic Attenuated the Intestinal Inflammation in Weaned Piglets Challenged with Escherichia coli Lipopolysaccharide. Animals. 2025; 15(13):1832. https://doi.org/10.3390/ani15131832
Chicago/Turabian StylePistol, Gina-Cecilia, Valeria Cristina Bulgaru, Iulian Alexandru Grosu, Daniela Eliza Marin, Georgeta Ciurescu, Gheorghe Adrian Martău, and Ionelia Taranu. 2025. "Dietary Synbiotic Attenuated the Intestinal Inflammation in Weaned Piglets Challenged with Escherichia coli Lipopolysaccharide" Animals 15, no. 13: 1832. https://doi.org/10.3390/ani15131832
APA StylePistol, G.-C., Bulgaru, V. C., Grosu, I. A., Marin, D. E., Ciurescu, G., Martău, G. A., & Taranu, I. (2025). Dietary Synbiotic Attenuated the Intestinal Inflammation in Weaned Piglets Challenged with Escherichia coli Lipopolysaccharide. Animals, 15(13), 1832. https://doi.org/10.3390/ani15131832