Effects of Biological Characteristics and Environmental Factors on Swimming Performance of Endemic Fish in Southwest China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Fish
2.2. Fish Swimming Ability Test
2.3. Data Analysis
2.4. Ethical Approval
3. Results
3.1. Fish Collection and Field Environmental Conditions
3.2. Fish Morphological Characteristics
3.3. Relationship Between Swimming Ability and Fish Morphology
3.4. Comparison of Swimming Ability Considering Different Periods and Species
3.5. Factors Influencing Swimming Performance
4. Discussion
4.1. The Effect of Morphological Factors on Fish Swimming Performance
4.2. The Effect of Species on Fish Swimming Performance
4.3. The Effect of Life Period on Fish Swimming Performance
4.4. Application and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Uind | Induced Swimming Speed |
Ucrit | Critical Swimming Speed |
Uburst | Burst Swimming Speed |
SL | Standard Body Length |
FL | Fork Length |
W | Weight |
W/SL | Weight-to-Standard-Body-Length Ratio |
TL | Total Length |
DO | Dissolved Oxygen |
T | Temperature |
RF | Random Forest |
QSH | Qingshuihe Hydropower Station |
BSJ | Bisongjiu Hydropower Station |
GLI | Gelei I Hydropower Station |
GLII | Gelei II Hydropower Station |
SB | Shibie Hydropower Station |
HPY | Houpayan Hydropower Station |
BD | Bada Hydropower Station |
References
- Wolter, C.; Arlinghaus, R. Navigation impacts on freshwater fish assemblages: The ecological relevance of swimming performance. Rev. Fish Biol. Fish. 2003, 13, 63–89. [Google Scholar] [CrossRef]
- Wang, Z.L.; Mao, K.; Du, W.; Cai, M.; Li, X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. Water Res. 2020, 184, 116164. [Google Scholar] [CrossRef] [PubMed]
- He, D.R.; Cai, H.C. Fish Behavior; Xiamen University Press: Xiamen, China, 1998; pp. 12–18. [Google Scholar]
- Deslauriers, D. Factors Influencing Swimming Performance and Behaviour of the Shortnose Sturgeon (Acipenser brevirostrum). Bachelor’s Thesis, University of New Brunswick, Department of Biology, Fredericton, NB, Canada, 2011. [Google Scholar]
- Brett, J.R.; Glass, N.R. Metabolic rates and critical swimming speeds of Sockeye salmon (Oncorhynchus nerka) in relation to size and temperature. J. Fish. Res. Board Can. 1973, 30, 379–387. [Google Scholar] [CrossRef]
- Milligan, C.L. Metabolic recovery from exhaustive exercise in rainbow trout. Comp. Biochem. Physiol. Part A Physiol. 1996, 113, 51–60. [Google Scholar] [CrossRef]
- Plaut, I. Critical swimming speed: Its ecological relevance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 131, 41–50. [Google Scholar] [CrossRef]
- Gregory, T.R.; Wood, C.M. Individual variation and interrelationships between swimming performance, growth rate, and feeding in juvenile rainbow trout (Oncorhynchus mykiss). J. Can. Sci. Halieut. Aquat. 1998, 55, 1583–1590. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Cao, Z.D.; Fu, S.J. Flow velocity selection and its relationship to locomotive energetic metabolism in Chinese bream (Parabramis pekinensis) and pale chub (Zacco platypus). Acta Ecol. Sin. 2016, 36, 4187–4194. [Google Scholar]
- Facey, D.E.; Grossman, G.D. The metabolic cost of maintaining position four North American stream fishes: Effects of season and velocity. Physiol. Zool. 1990, 63, 757–776. [Google Scholar] [CrossRef]
- Facey, D.E.; Grossman, G.D. The relationship between water velocity, energetic costs, and microhabitat use in four North American stream fishes. Hydrobiologia 1992, 239, 1–6. [Google Scholar] [CrossRef]
- Yoshida, M.; Matsuura, K.; Uematsu, K. Developmental changes in the swimming behavior and underlying motoneuron activity in the larval angelfish, Pterophyllum scalare. Zool. Sci. 1996, 13, 229–234. [Google Scholar] [CrossRef]
- Koehn, J.D.; Harrington, D.J. Environmental conditions and timing for the spawning of Murray cod (Maccullochella peelii peelii) and the endangered trout cod (M. macquariensis) in southeastern Australian rivers. River Res. Appl. 2006, 22, 327–342. [Google Scholar] [CrossRef]
- Brodie, E.D. Behavioral modification as a means of reducing the cost of reproduction. Am. Nat. 1989, 134, 225–238. [Google Scholar] [CrossRef]
- Jebria, N.B.; Carmigniani, R.; Drouineau, H.; Oliveira, E.D. Coupling 3D hydraulic simulation and fish telemetry data to characterize the behaviour of migrating smolts approaching a bypass. J. Ecohydraul. 2023, 8, 144–157. [Google Scholar] [CrossRef]
- Koya, Y.; Inoue, M.; Naruse, T.; Sawaguchi, S. Dynamics of oocyte and embryonic development during ovarian cycle of the viviparous mosquitofish Gambusia affinis. Fish. Sci. 2000, 66, 63–70. [Google Scholar] [CrossRef]
- Liermann, C.R.; Nilsson, C.; Robertson, J.; Ng, R.Y. Implications of dam obstruction for global freshwater fish diversity. BioScience 2012, 62, 539–548. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; D’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef]
- Chaudhari, S.; Brown, E.; Quispe-Abad, R.; Moran, E.; Müller, N.; Pokhrel, Y. In-stream turbines for rethinking hydropower development in the Amazon basin. Nat. Sustain. 2021, 4, 680–687. [Google Scholar] [CrossRef]
- Mensinger, M.A.; Blomberg, E.J.; Zydlewski, J.D. The consequences of dam passage for downstream-migrating American eel in the Penobscot river, Maine. Can. J. Fish. Aquat. Sci. 2021, 78, 1181–1192. [Google Scholar] [CrossRef]
- Cheong, T.S.; Kavvas, M.L.; Anderson, E.K. Evaluation of adult white sturgeon swimming abilities and applications to fishway design. Environ. Biol. Fishes 2006, 77, 197–208. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, M.; Bahaj, A.B.S.; Yang, Y.; Wang, C. Small hydropower development in China: Growing challenges and transition strategy. Renew. Sustain. Energy Rev. 2021, 137, 110653. [Google Scholar] [CrossRef]
- Shi, X.; Kynard, B.; Liu, D.; Qiao, Y.; Chen, Q. Development of fish passage in China. Fisheries 2015, 40, 161–169. [Google Scholar] [CrossRef]
- Bestgen, K.R.; Mefford, B.; Bundy, J.M.; Walford, C.D.; Compton, R.I. Swimming performance and fishway model passage success of rio grande silvery minnow. Trans. Am. Fish. Soc. 2010, 139, 433–448. [Google Scholar] [CrossRef]
- Mai, Y.; Wang, X.; Peng, S.; Tie, H.; Cai, Y.; Chen, H.M.; Peng, M.; Wang, Y.; Li, H.; Zeng, Y.; et al. Supporting Evidence for the “Ten-Year Fishing Ban”: Different Modes of Fishing and Pollution Induce a Fish Diversity Decline between the Pearl River and Its Estuary. ACS EST Water 2023, 3, 2590–2603. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Pan, Z.; Sun, D.; Zou, J. Microplastics in wild freshwater fish of different feeding habits from Beijiang and Pearl River Delta regions, south China. Chemosphere 2020, 258, 127345. [Google Scholar] [CrossRef]
- Huang, H.; Yan, Z. Present situation and future prospect of hydropower in China. Renew. Sustain. Energy Rev. 2009, 13, 1652–1656. [Google Scholar] [CrossRef]
- Li, X.Z.; Chen, Z.J.; Fan, X.C.; Cheng, Z.J. Hydropower development situation and prospects in china. Renew. Sustain. Energy Rev. 2018, 82 Pt 1, 232–239. [Google Scholar] [CrossRef]
- Mao, X. Review of fishway research in China. Ecol. Eng. 2018, 115, 91–95. [Google Scholar] [CrossRef]
- O’Connor, J.; Hale, R.; Mallen-Cooper, M. Developing performance standards in fish passage: Integrating ecology, engineering and socio-economics. Ecol. Eng. J. Ecotechnol. 2022, 182, 106732. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Wang, Y.; Hao, Y.; Li, K.; Wang, H.; Liang, R. Restoration of a fish-attracting flow field downstream of a dam based on the swimming ability of endemic fishes: A case study in the upper Yangtze River basin. J. Environ. Manag. 2023, 345, 118694. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, T.Y.; Feng, J.J.; He, T.; Li, R. Study on Habitat Simulation and Substrate Rehabilitation Techniques for Spawning Grounds of Schizothorax prenanti. SICHUAN Environ. 2024, 43, 84–93. [Google Scholar]
- Gilbert, M.J.H.; Barbarich, J.M.; Casselman, M.; Kasurak, A.V.; Higgs, D.M.; Tierney, K.B. The role of substrate holding in achieving critical swimming speeds: A case study using the invasive round goby (Neogobius melanostomus). Environ. Biol. Fishes 2016, 99, 793–799. [Google Scholar] [CrossRef]
- Ke, S.; Yang, S.; Tu, Z.; Soomro, S.-E.; Ji, H.; Li, D.; Xu, J.; Qi, H.; Shi, X. Swimming performance of a threatened native fish (Gymnocypris przewalskii) informs fishway design in Qinghai Lake. Hydrobiologia 2025. [Google Scholar] [CrossRef]
- Hammer, C. Fatigue and exercise tests with fish. Comp. Biochem. Physiol. Part A Physiol. 1995, 112, 1–20. [Google Scholar] [CrossRef]
- Song, B.L. Effects of Water Current on Swimming Activity, Growth and Ecophysiological Aspect of Young Barbodes schwanenfeldi. Ph.D. Thesis, Jinan University, Guangzhou, China, 2008. [Google Scholar]
- Jain, K.E.; Birtwell, I.K.; Farrell, A.P.; Jain, K.E.; Birtwell, I.K.; Farrell, A.P. Repeat swimming performance of mature sockeye salmon following a brief recovery period: A proposed measure of fish health and water quality. Can. J. Zool. 1998, 76, 1488–1496. [Google Scholar] [CrossRef]
- Penghan, L.Y.; Cao, D.Z.; Fu, S.J. Effect of starvation on swimming performance of juvenile carp. Chin. J. Ecol. 2014, 33, 2756–2760. [Google Scholar]
- Brett, J.R. The Respiratory metabolism and swimming performance of young Sockeye Salmon. J. Fish. Res. Board Can. 1964, 21, 1183–1226. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, H.; Deng, L.J.; Li, T.C.; Yang, K.; Fu, S.J.; Song, Z.B. Improved aerobic and anaerobic swimming performance after exercise training and detraining in Schizothorax wangchiachii: Implications for fisheries releases. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 245, 110698. [Google Scholar] [CrossRef] [PubMed]
- Pauly, D.; Froese, R.; Liang, C.; Müller, J.; Sorensen, P. Post-spawning growth acceleration in fish as a result of reduced live weight and thus, increased food conversion efficiency. Environ. Biol. Fishes 2023, 106, 2031–2043. [Google Scholar] [CrossRef]
- Peake, S.; Beamish, F.W.H.; McKinley, R.S.; Scruton, D.A.; Katopodis, C. Relating swimming performance of lake sturgeon, Acipenser fulvescens, to fishway design. Can. J. Fish. Aquat. Sci. 1997, 54, 1361–1366. [Google Scholar] [CrossRef]
- Verhille, C.E.; Poletto, J.B.; Cocherell, D.E.; DeCourten, B.; Baird, S.; Cech, J.J., Jr.; Fangue, N.A. Larval green and white sturgeon swimming performance in relation to water-diversion flows. Conserv. Physiol. 2014, 2, cou031. [Google Scholar] [CrossRef]
- Alvarez, D.; Metcalfe, N.B. Catch-up growth and swimming performance in threespine sticklebacks (Gasterosteus aculeatus): Seasonal changes in the cost of compensation. Can. J. Fish. Aquat. Sci. 2005, 62, 2169–2176. [Google Scholar] [CrossRef]
- James, R.S.; Johnston, I.A. Scaling of muscle performance during escape responses in the fish Myoxocephalus scorpius L. J. Exp. Biol. 1998, 201, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Johnson, D.; Mandal, P.; Gan, M.; Yuan, X.; Tu, Z.; Huang, Y. Effect of exhaustive exercise on the swimming capability and metabolism of juvenile Siberian sturgeon. Trans. Am. Fish. Soc. 2015, 144, 532–538. [Google Scholar] [CrossRef]
- Plaut, I. Does pregnancy affect swimming performance of female Mosquitofish, Gambusia affinis? Funct. Ecol. 2002, 16, 290–295. [Google Scholar] [CrossRef]
- Rome, L.C.; Funke, R.P.; Alexander, R.M. The influence of temperature on muscle velocity and sustained performance in swimming carp. J. Exp. Biol. 1990, 154, 163–178. [Google Scholar] [CrossRef]
- Dowson, M.N.; Nevill, M.E.; Lakomy, H.K.A.; Nevill, A.M.; Hazeldine, R.J. Modelling the relationship between isokinetic muscle strength and sprint running performance. J. Sports Sci. 1998, 16, 257–265. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Hancock, K.; Rollison, L.; Ball, T.E.; Bowen, J.C. Contributions of strength and body composition to the gender difference in anaerobic power. J. Sports Med. Phys. Fit. 2001, 41, 33. [Google Scholar]
- Young, W.; Mclean, B.; Ardagna, J. Relationship between strength qualities and sprinting performance. J. Sports Med. Phys. Fit. 1995, 35, 13–19. [Google Scholar]
- Yuan, X.; Tu, Z.Y.; Han, J.C.; Shi, X.T.; Liu, G.Y.; Huang, Y.P. Effects of Flow Rate on Swimming Behavior and Energy Consumption of Carassius auratus. J. Hydroecol. 2011, 32, 103–109. [Google Scholar]
- Kieffer, J.D.; Arsenault, L.M.; Litvak, M.K. Behaviour and performance of juvenile shortnose sturgeon Acipenser brevirostrum at different water velocities. J. Fish Biol. 2009, 74, 674–682. [Google Scholar] [CrossRef]
- Fu, S.J.; Cao, Z.D.; Yan, G.J.; Fu, C.; Pang, X. Integrating environmental variation, predation pressure, phenotypic plasticity and locomotor performance. Oecologia 2013, 173, 343–354. [Google Scholar] [CrossRef]
- Yan, G.J.; He, X.K.; Cao, Z.D.; Fu, S.J. An interspecific comparison between morphology and swimming performance in cyprinids. J. Evol. Biol. 2013, 26, 1802–1815. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.G.; Zeng, X.; Cai, R.Y.; Peng, J.L.; Fu, S.J. Effects of Temperature and Reproductive Status on the Fast-start Swimming Performance of Guppy. J. Chongqing Norm. Univ. (Nat. Sci.) 2017, 34, 28–32. [Google Scholar]
- Zhang, H.; Zeng, C.J.; Li, T.; He, S.F.; Mo, K.L.; Yang, P.S.; Chen, Q.W. Ecological Flow in the Mid-lower Hanjiang River Based on Spawning Demands of the Four Major Chinese Carps. J. Hydroecol. 2022, 43, 1–8. [Google Scholar]
- Huang, Q.F.; Deng, C.K.; Xia, J.Y.; Yan, H.J.; Xia, J.G. Geometric morphology of Brachymystax tsinlingensis and sympatric Phoxinus lagowskii: Life-history stage effects and interspecific differences. Chin. J. Ecol. 2024, 43, 922–929. [Google Scholar]
- Yang, H.; Cao, Z.D.; Fu, S.J. Swimming performance and energy metabolism of male and female crucian carps (Carassius auratus) during their III reproduction phase. Chin. J. Ecol. 2012, 31, 2606–2612. [Google Scholar]
- Videler, J.J. Fish Swimming; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Dudgeon, D. River regulation in Southern China: Ecological implications, conservation and environmental management. Regul. Rivers Res. Manag. 1995, 11, 35–54. [Google Scholar] [CrossRef]
- Dudgeon, D. River rehabilitation for conservation of fish biodiversity in monsoonal Asia. Ecol. Soc. 2005, 10, 15–34. [Google Scholar] [CrossRef]
- Zheng, J.; Han, D.; Hu, W.; Wang, X.; Zhang, X. Fish swimming performance related to fishway design. J. Hydroecol. 2010, 3, 104–110. [Google Scholar]
- Piper, A.T.; Wright, R.M.; Kemp, P.S. The influence of attraction flow on upstream passage of European eel (Anguilla anguilla) at intertidal barriers. Ecol. Eng. 2012, 44, 329–336. [Google Scholar] [CrossRef]
- Silva, A.T.; Baerum, K.M.; Hedger, R.D.; Baktoft, H.; Fjeldstad, H.P.; Gjelland, K.; Økland, F.; Forseth, T. The effects of hydrodynamics on the three-dimensional downstream migratory movement of Atlantic salmon. Sci. Total Environ. 2019, 705, 135773. [Google Scholar] [CrossRef] [PubMed]
- Vowles, A.S.; Kemp, P.S. Effects of light on the behaviour of brown trout (Salmo trutta) encountering accelerating flow: Application to downstream fish passage. Ecol. Eng. 2012, 47, 247–253. [Google Scholar] [CrossRef]
- Gray, D.W.; Goldstein, A.H.; Lerdau, M.T. The influence of light environment on photosynthesis and basal methylbutenol emission from Pinus ponderosa. Plant Cell Environ. 2005, 28, 1463–1474. [Google Scholar] [CrossRef]
- Vowles, A.S.; Anderson, J.J.; Gessel, M.H.; Williams, J.G.; Kemp, P.S. Effects of avoidance behaviour on downstream fish passage through areas of accelerating flow when light and dark. Anim. Behav. 2014, 92, 101–109. [Google Scholar] [CrossRef]
- Deng, C.K.; Huang, Q.F.; Li, P.; Xia, J.Y.; Xia, J.G. Comparative studies on burst swimming performance of Brachymystax tsinlingensis and sympatric Phoxinus lagowskii in different life history stages. Acta Ecol. Sin. 2024, 44, 3999–4008. [Google Scholar]
- Smith, R.L.; Paul, A.J.; Paul, J.M. Seasonal changes in energy and the energy cost of spawning in Gulf of Alaska Pacific cod. J. Fish Biol. 1990, 36, 307–316. [Google Scholar] [CrossRef]
- Claireaux, G.; Lagardère, J.-P. Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 1999, 42, 157–168. [Google Scholar] [CrossRef]
Test Period | Fish Species | Sample Size | ||
---|---|---|---|---|
Uind | Ucrit | Uburst | ||
Non-Spawning Period | Acrossocheilus yunnanensis | 5 | 11 | 5 |
Hemibarbus maculatus | 4 | 11 | 4 | |
Sinocyclocheilus grahami | 3 | 5 | 3 | |
Abbottina rivularis | 5 | 5 | 5 | |
Onychostoma elongatum | 5 | 8 | 5 | |
Discogobio yunnanensis | 9 | / | 9 | |
Pseudocrossocheilus tridentis | 5 | / | 5 | |
Spawning Period | Acrossocheilus yunnanensis | 4 | 12 | 4 |
Hemibarbus maculatus | 4 | 7 | 4 | |
Sinocyclocheilus grahami | / | 4 | / | |
Abbottina rivularis | 6 | 9 | 6 | |
Onychostoma elongatum | 3 | / | 3 | |
Discogobio yunnanensis | 12 | / | 12 | |
Pseudocrossocheilus tridentis | 5 | / | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, J.; Zhang, Z.; Wang, Y.; Wei, Q.; Chen, G.; Li, X.; Liang, R.; Li, K. Effects of Biological Characteristics and Environmental Factors on Swimming Performance of Endemic Fish in Southwest China. Animals 2025, 15, 1819. https://doi.org/10.3390/ani15121819
Rao J, Zhang Z, Wang Y, Wei Q, Chen G, Li X, Liang R, Li K. Effects of Biological Characteristics and Environmental Factors on Swimming Performance of Endemic Fish in Southwest China. Animals. 2025; 15(12):1819. https://doi.org/10.3390/ani15121819
Chicago/Turabian StyleRao, Jianing, Zhiguang Zhang, Yuanming Wang, Qi Wei, Guoqing Chen, Xintong Li, Ruifeng Liang, and Kefeng Li. 2025. "Effects of Biological Characteristics and Environmental Factors on Swimming Performance of Endemic Fish in Southwest China" Animals 15, no. 12: 1819. https://doi.org/10.3390/ani15121819
APA StyleRao, J., Zhang, Z., Wang, Y., Wei, Q., Chen, G., Li, X., Liang, R., & Li, K. (2025). Effects of Biological Characteristics and Environmental Factors on Swimming Performance of Endemic Fish in Southwest China. Animals, 15(12), 1819. https://doi.org/10.3390/ani15121819