Transcriptomic Analysis of Tambaqui (Colossoma macropomum) Exposed to Trichlorfon-Induced Toxicity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design and Exposure to Trichlorfon
2.3. Sample Collection, RNA Extraction and cDNA Construction
2.4. Library Construction and Sequencing
2.5. Transcriptome Data Analysis and Identification of Differentially Expressed Genes (DEGs)
2.6. Statistical Analysis
3. Results
3.1. Transcriptomie Analysis
3.2. Gene Onthology and KEGG Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khatib, I.; Rychter, P.; Falfushynska, H. Pesticide Pollution: Detrimental Outcomes and Possible Mechanisms of Fish Exposure to Common Organophosphates and Triazines. J. Xenobiotics 2022, 12, 236–265. [Google Scholar] [CrossRef] [PubMed]
- Dzudzevic Cancar, H.; Soylemez, S.; Akpinar, Y.; Kesik, M.; Göker, S.; Gunbas, G.; Volkan, M.; Toppare, L. A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides. ACS Appl. Mater. Interfaces 2016, 8, 8058–8067. [Google Scholar] [CrossRef] [PubMed]
- da Silva, H.C.M.; de Carvalho, A.P.C.; Gomes, A.L.S.; Artoni, R.F.; Matoso, D.A. Impact of Trichlorfon Organophosphate Use in Pisciculture: A Review. Stud. Environ. Anim. Sci. 2022, 3, 1399–1423. [Google Scholar] [CrossRef]
- Rauco, L.R.R. Toxicidade Aguda Do Sulfato de Cobre e Do Triclorfon Para Três Espécies de Daphnias Em Presença e Ausência de Sedimento. Master’s Thesis, Centro de Aquicultura, Universidade Estadual Paulista, Sao Paulo, Brazil, 2002. [Google Scholar]
- Kubitza, F.; Ono, E.A. Os Caminhos Da Produção de Peixes Nativos No Brasil: Uma Análise Da Produção e Obstáculos Da Piscicultura. Panor. Da Aquicultura 2007, 15. [Google Scholar]
- De Aguiar, L.H.; Moraes, G.; Avilez, I.M.; Altran, A.E.; Corrêa, C.F. Metabolical Effects of Folidol 600 on the Neotropical Freshwater Fish Matrinxã, Brycon Cephalus. Environ. Res. 2004, 95, 224–230. [Google Scholar] [CrossRef]
- da Silva, H.C.M.; da Silva, A.G.; Idalino, J.J.S.; de Sousa, F.B.; Gomes, A.L.S.; Duncan, W.P.; Matoso, D.A. Trichlorfon Acute Lethal Toxicity to Juvenile Tambaqui (Colossoma macropomum). Aquac. Res. 2020, 51, 863–866. [Google Scholar] [CrossRef]
- Woo, S.J.; Kim, N.Y.; Kim, S.H.; Ahn, S.J.; Seo, J.S.; Jung, S.H.; Cho, M.Y.; Chung, J.K. Toxicological Effects of Trichlorfon on Hematological and Biochemical Parameters in Cyprinus carpio L. Following Thermal Stress. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 209, 18–27. [Google Scholar] [CrossRef]
- Altenhofen, S.; Nabinger, D.D.; Bitencourt, P.E.R.; Bonan, C.D. Dichlorvos Alters Morphology and Behavior in Zebrafish (Danio rerio) Larvae. Environ. Pollut. 2019, 245, 1117–1123. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Descovi, S.N.; Zanella, R.; Prestes, O.D.; de Matos, A.F.I.M.; da Silva, A.S.; Baldisserotto, B.; Gris, A.; Mendes, R.E. Disturbance of Energetic Homeostasis and Oxidative Damage Provoked by Trichlorfon as Relevant Toxicological Mechanisms Using Silver Catfish as Experimental Model. Chem. Biol. Interact. 2019, 299, 94–100. [Google Scholar] [CrossRef]
- Duncan, W.P.; Idalino, J.J.S.; da Silva, A.G.; Moda, R.F.; da Silva, H.C.M.; Matoso, D.A.; Gomes, A.L.S. Acute Toxicity of the Pesticide Trichlorfon and Inhibition of Acetylcholinesterase in Colossoma macropomum (Characiformes: Serrasalmidae). Aquac. Int. 2020, 28, 815–830. [Google Scholar] [CrossRef]
- Tavares-dias, M.; Martins, M.L.; Kronka, N. Evaluation of the Haematological Parameters in Piaractus Mesopotamicus Holmberg (Osteichthyes, Characidae) with Argulus Sp. (Crustacea, Branchiura) Infestation and Treatment with Organophosphate. Rev. Bras. Zool. 1999, 16, 553–555. [Google Scholar] [CrossRef]
- Mataqueiro, M.I.; Nakaghi, L.S.O.; De Souza, J.P.; Da Cruz, C.; De Oliveira, G.H.; Urbinati, E.C. Histopathological Changes in the Gill, Liver and Kidney of Pacu (Piaractus mesopotamicus, Holmberg, 1887) Exposed to Various Concentrations of Trichlorfon. J. Appl. Ichthyol. 2009, 25, 124–127. [Google Scholar] [CrossRef]
- Sinha, A.K.; Vanparys, C.; De Boeck, G.; Kestemont, P.; Wang, N.; Phuong, N.T.; Scippo, M.L.; De Coen, W.; Robbens, J. Expression Characteristics of Potential Biomarker Genes in Tra Catfish, Pangasianodon Hypophthalmus, Exposed to Trichlorfon. Comp. Biochem. Physiol. Part D Genom. Proteom. 2010, 5, 207–216. [Google Scholar] [CrossRef]
- Xu, W.; Liu, W.; Lu, K.; Jiang, Y.; Li, G. Effect of Trichlorfon on Oxidative Stress and Hepatocyte Apoptosis of Carassius auratus gibelio in Vivo. Fish Physiol. Biochem. 2012, 38, 769–775. [Google Scholar] [CrossRef]
- Xu, W.N.; Liu, W.B.; Shao, X.P.; Jiang, G.Z.; Li, X.F. Effect of Trichlorfon on Hepatic Lipid Accumulation in Crucian Carp Carassius auratus gibelio. J. Aquat. Anim. Health 2012, 24, 185–194. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, M.; Lu, L. Tissue Metabolism, Hematotoxicity, and Hepatotoxicity of Trichlorfon in Carassius auratus gibelio after a Single Oral Administration. Front. Physiol. 2018, 9, 551. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Descovi, S.N.; Zanella, R.; Prestes, O.D.; da Silva, A.S.; Baldisserotto, B. Organophosphate Pesticide Trichlorfon Induced Neurotoxic Effects in Freshwater Silver Catfish Rhamdia Quelen via Disruption of Blood-Brain Barrier: Implications on Oxidative Status, Cell Viability and Brain Neurotransmitters. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 218, 8–13. [Google Scholar] [CrossRef]
- FAO. In Brief to The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; ISBN 9789251363645. [Google Scholar]
- Costa-Silva, J.; Domingues, D.S.; Menotti, D.; Hungria, M.; Lopes, F.M. Temporal Progress of Gene Expression Analysis with RNA-Seq Data: A Review on the Relationship between Computational Methods. Comput. Struct. Biotechnol. J. 2023, 21, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Baldissera, M.D.; Souza, C.F.; Zanella, R.; Prestes, O.D.; Meinhart, A.D.; Da Silva, A.S.; Baldisserotto, B. Behavioral Impairment and Neurotoxic Responses of Silver Catfish Rhamdia Quelen Exposed to Organophosphate Pesticide Trichlorfon: Protective Effects of Diet Containing Rutin. Comp. Biochem. Physiol. Par C Toxicol. Pharmacol. 2021, 239, 108871. [Google Scholar] [CrossRef]
- Assis, C.R.D.; Castro, P.F.; Amaral, I.P.G.; Carvalho, E.V.M.M.; Carvalho, L.B.; Bezerra, R.S. Characterization of Acetylcholinesterase from the Brain of the Amazonian Tambaqui (Colossoma macropomum) and in Vitro Effect of Organophosphorus and Carbamate Pesticides. Environ. Toxicol. Chem. 2010, 29, 2243–2248. [Google Scholar] [CrossRef]
- Costa, M.d.S.; da Silva, H.C.M.; Soares, S.C.; Favarato, R.M.; Feldberg, E.; Silva-Gomes, A.L.; Artoni, R.F.; Matoso, D.A. A Perspective of Molecular Cytogenomics, Toxicology, and Retrotransposable Elements in Tambaqui (Colossoma macropomum ) Exposed to the Parasiticide Trichlorfon. Animals 2022, 12, 1945. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira-Lima, J.; Santos, E.L.R.; Moron, S.E. Effects of Trichlorfon Organophosphate on the Morphology of the Gills and Liver of Pseudoplatystoma corruscans. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 2021, 56, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, M.G.; Jerônimo, G.T.; dos Santos Torres, G.; de Matos, L.V.; Monteiro dos Santos, D.K.; Serra, B.N.V.; Santana, T.M.; Gonçalves, L.U. Acute Toxicity of Trichlorfon and Histological Changes in the Gills of Arapaima Gigas, a Neotropical Fish from Amazon. Aquac. Rep. 2022, 25, 101229. [Google Scholar] [CrossRef]
- Jia, R.; Hou, Y.; Feng, W.; Li, B.; Zhu, J. Alterations at Biochemical, Proteomic and Transcriptomic Levels in Liver of Tilapia (Oreochromis niloticus) under Chronic Exposure to Environmentally Relevant Level of Glyphosate. Chemosphere 2022, 294, 133818. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Wang, Q.; Yang, H. The Combined Use of Copper Sulfate and Trichlorfon Exerts Stronger Toxicity on the Liver of Zebrafish. Int. J. Mol. Sci. 2023, 24, 11203. [Google Scholar] [CrossRef]
- de Souza, S.S.; Castro, J.d.S.; Campos, D.F.; Pereira, R.S.; Bataglion, G.A.; da Silva, G.S.; de Almeida-Val, V.M.F. Temporal Exposure to Malathion: Biochemical Changes in the Amazonian Fish Tambaqui, Colossoma macropomum. Aquat. Toxicol. 2021, 241, 105997. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, X.; Zhao, L.; Feng, J.; Li, H.; Liang, J. Trichlorfon Exposure in Common Carp (Cyprinus carpio L.) Leads to Oxidative Stress, Neurotoxicity, and Immune Responses. Aquaculture 2022, 548, 737681. [Google Scholar] [CrossRef]
- Han, M.; Zhu, X.; Li, D.; Si, Q.; Zhu, T.; Zhou, Z.; Liu, G.; Ren, D.; Jiang, Q.; Tang, S. Quercetin and Taxifolin Enhance Immunity in Chinese Sucker (Myxocyprinus asiaticus) and Increase Its Resistance to Aeromonas Hydrophila. Comp. Biochem. Physiol. Part D Genom. Proteom. 2025, 54, 101369. [Google Scholar] [CrossRef]
- Raibeemol, K.P.; Chitra, K.C. Induction of Immunological, Hormonal and Histological Alterations after Sublethal Exposure of Chlorpyrifos in the Freshwater Fish, Pseudetroplus Maculatus (Bloch, 1795). Fish Shellfish Immunol. 2020, 102, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Xu, P.; Tang, Y.; Su, S.; Liu, G.; Wu, N.; Xue, M.; Yu, F.; Feng, W.; et al. Hypothermia-Mediated Apoptosis and Inflammation Contribute to Antioxidant and Immune Adaption in Freshwater Drum, Aplodinotus grunniens. Antioxidants 2022, 11, 1657. [Google Scholar] [CrossRef]
- Carvalho, A.P.C.; Silva, H.C.M.; Gomes, A.L.S.; Duncan, W.L.P.; Mota, A.J.; Artoni, R.F.; Carvalho-Zilse, G.; Matoso, D.A. Effects of Trichlorfon on Ecotoxicological Biomarkers in Farmed Colossoma macropomum (Tambaqui). Braz. J. Biol. 2024, 84, e281971. [Google Scholar] [CrossRef] [PubMed]
- Dzul-Caamal, R.; Domínguez-Lòpez, M.L.; Olivares-Rubio, H.F.; Garciá-Latorre, E.; Vega-Loṕez, A. The Relationship between the Bioactivation and Detoxification of Diazinon and Chlorpyrifos, and the Inhibition of Acetylcholinesterase Activity in Chirostoma Jordani from Three Lakes with Low to High Organophosphate Pesticides Contamination. Ecotoxicology 2014, 23, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Venturini, F.P.; Moraes, F.D.; Cortella, L.R.X.; Rossi, P.A.; Cruz, C.; Moraes, G. Metabolic Effects of Trichlorfon (Masoten??) On the Neotropical Freshwater Fish Pacu (Piaractus mesopotamicus). Fish Physiol. Biochem. 2014, 41, 299–309. [Google Scholar] [CrossRef] [PubMed]
Gene | Gene Name | Gene ID (NCBI) | Log2 Fold Change |
---|---|---|---|
Antigen F10 | Class I Histocompatibility Antigen, F10 alpha chain-like | LOC118803584 | −2.12 |
Aldh1l1 | Aldehyde Dehydrogenase 1 Family, member L1 | LOC118808393 | −1.94 |
Piezo-type 2 | Piezo-type Mehcanosensitive Ion Channel Component 2 | LOC118796923 | −2.36 |
Mao | Monoamine Oxidase | LOC118817391 | −2.14 |
Progranulin-like | Progranulin-like | LOC118817705 | 2.71 |
Fkbp5 | FKBP Prolyl Isomerase 5 | LOC118808338 | 4.05 |
Progranulin-like | Progranulin-like | LOC118817703 | 2.81 |
Me1 | Malic Enzyme 1, NADP(+)-dependent, cytosolic | LOC118796726 | 3.08 |
Bbox1 | Butyrobetaine (gamma), 2-oxoglutarate dioxygenase 1 | LOC118817504 | 2.21 |
Tumor protein p53 | Tumor protein p53-inducible nuclear protein 2 | LOC118822861 | 1.66 |
Cidec | Cell Death inducing DFFA like effector c | LOC118808364 | 1.40 |
Fatty Acid Transport | Long-Chain Fatty Acid Transport Protein 1-like | LOC118798082 | 2.10 |
Adgb | Androglobin | LOC118815891 | 2.45 |
Hydroxysteroid Dehydrogenase | Hydroxysteroid Dehydrogenase-like Protein 2 | LOC118824306 | 2.12 |
Slc25a38a | Solute Carrier Family 25 Member 38a | LOC118805305 | 2.08 |
Bada | BLC2 associated agonist of cell death a | LOC118820664 | 1.75 |
Antigen Q9 | H-2 class I Histocompatibility Antigen, Q9 alpha chain-like | LOC118801148 | 2.12 |
Pim-2 | Serine/Threonine-protein kinase pim-2-like | LOC118822920 | 2.37 |
Abcb6a | ATP biding cassette subfamily B member 6 (LAN blood group) a | LOC118802335 | 2.08 |
Aerolysin-like | Aerolysin-like Protein | LOC118799499 | 2.14 |
Padi2 | Peptidyl Arginine Deiminase, type II | LOC118808437 | 2.33 |
Slc20a1a | Solute Carrier Family 20 Member 1a | LOC118813336 | 2.01 |
All-trans-retinol | All-trans-retinol 13,14-reductase-like | LOC118820983 | 2.89 |
Wnk4b | WNK lysine deficient protein kinase 4b | LOC118806065 | 2.28 |
Pir | Pirin | LOC118802703 | 2.54 |
Higd1a | HIG1Hypoxia Inducible Domain Family, member 1A | LOC118826377 | 3.61 |
Mibp | Muscle-specific beta 1 integrin binding protein | LOC118819161 | 3.25 |
Number | Pathway | Enzyme in Pathway | Pathway ID |
---|---|---|---|
1 | Glyoxylate and dicarboxylate metabolism | 2 | map00630 |
2 | Glycolysis/Gluconeogenesis | 3 | map00010 |
3 | Tryptophan metabolism | 2 | map00380 |
4 | Lysine degradation | 4 | map00310 |
5 | Pyruvate metabolism | 6 | map00620 |
6 | Biotin metabolism | 3 | map00780 |
7 | Nicotinate and nicotinamide metabolism | 4 | map00760 |
8 | Purine metabolism | 2 | map00230 |
9 | Fatty acid elongation | 2 | map00062 |
10 | Arginine biosynthesis | 4 | map00220 |
11 | Valine, leucine and isoleucine degradation | 5 | map00280 |
12 | Benzoate degradation | 2 | map00362 |
13 | Drug metabolism—cytochrome P450 | 2 | map00982 |
14 | Retinol metabolism | 2 | map00830 |
15 | Biosynthesis of unsaturated fatty acids | 5 | map01040 |
16 | Metabolism of xenobiotics by cytochrome P450 | 2 | map00980 |
17 | Phenylalanine metabolism | 2 | map00360 |
18 | One carbon pool by folate | 2 | map00670 |
19 | Nitrogen metabolism | 4 | map00910 |
20 | Tyrosine metabolism | 2 | map00350 |
21 | Pentose and glucuronate interconversions | 3 | map00040 |
22 | Histidine metabolism | 2 | map00340 |
23 | Butanoate metabolism | 3 | map00650 |
24 | Chloroalkane and chloroalkene degradation | 2 | map00625 |
25 | Glycerophospholipid metabolism | 3 | map00564 |
26 | Folate biosynthesis | 2 | map00790 |
27 | Carbon fixation pathways in prokaryotes | 2 | map00720 |
28 | beta-Alanine metabolism | 4 | map00410 |
29 | Glycine, serine and threonine metabolism | 7 | map00260 |
30 | Fatty acid degradation | 6 | map00071 |
31 | Carbon fixation in photosynthetic organisms | 2 | map00710 |
32 | Drug metabolism—other enzymes | 2 | map00983 |
33 | Ascorbate and aldarate metabolism | 3 | map00053 |
34 | Alanine, aspartate and glutamate metabolism | 4 | map00250 |
35 | Fatty acid biosynthesis | 7 | map00061 |
36 | Arginine and proline metabolism | 3 | map00330 |
37 | Propanoate metabolism | 3 | map00640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.C.M.d.; Lobo, I.K.C.; Silva, A.G.d.; Gomes, A.L.S.; Duncan, W.P.; Silva, J.C.; Lopes, F.M.; Artoni, R.F.; Matoso, D.A. Transcriptomic Analysis of Tambaqui (Colossoma macropomum) Exposed to Trichlorfon-Induced Toxicity. Animals 2025, 15, 1807. https://doi.org/10.3390/ani15121807
Silva HCMd, Lobo IKC, Silva AGd, Gomes ALS, Duncan WP, Silva JC, Lopes FM, Artoni RF, Matoso DA. Transcriptomic Analysis of Tambaqui (Colossoma macropomum) Exposed to Trichlorfon-Induced Toxicity. Animals. 2025; 15(12):1807. https://doi.org/10.3390/ani15121807
Chicago/Turabian StyleSilva, Hallana Cristina Menezes da, Igor Kelvyn Cavalcante Lobo, André Gentil da Silva, Ana Lúcia Silva Gomes, Wallice Paxiúba Duncan, Juliana Costa Silva, Fabrício M. Lopes, Roberto Ferreira Artoni, and Daniele Aparecida Matoso. 2025. "Transcriptomic Analysis of Tambaqui (Colossoma macropomum) Exposed to Trichlorfon-Induced Toxicity" Animals 15, no. 12: 1807. https://doi.org/10.3390/ani15121807
APA StyleSilva, H. C. M. d., Lobo, I. K. C., Silva, A. G. d., Gomes, A. L. S., Duncan, W. P., Silva, J. C., Lopes, F. M., Artoni, R. F., & Matoso, D. A. (2025). Transcriptomic Analysis of Tambaqui (Colossoma macropomum) Exposed to Trichlorfon-Induced Toxicity. Animals, 15(12), 1807. https://doi.org/10.3390/ani15121807