Potential Epigenetic Impacts of Phytochemicals on Ruminant Health and Production: Connecting Lines of Evidence
Simple Summary
Abstract
1. Introduction
2. Methods
3. Phytochemicals and Animal Health
4. Epigenetics: Foundational Concepts
4.1. Epigenetic Mechanisms
4.2. Environmental Influences and Their Heritability
4.3. The Viable Yellow Agouti Mouse Model
5. Existing Evidence: Epigenetic Effects of Nutritional Status
5.1. Epigenetic Effects of Nutrition in Individuals
5.2. Transgenerational Effects in Humans and Predictive Adaptive Responses
5.3. Transgenerational Effects of Nutrition in Ruminants
6. Existing Evidence: Epigenetic Effects of Phytochemicals
6.1. The Blurred Primary–Secondary Metabolite Dichotomy
6.2. Phytochemicals as Epigenetic Actors
6.3. Phytochemicals as Epigenetic Regulators of Immune Response
6.4. Epigenetic Effects of Phytochemicals in Ruminants
6.5. Transgenerational Effects of Phytochemicals in Ruminants
7. Future Directions: Diverse Chemoscapes and Epigenetics
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
Asip | Agouti signaling protein |
αKG | Alpha ketoglutarate |
CASP3 | Caspase-3 |
CpG | Cytosine phosphate guanine (DNA nucleotide sequence) |
DNA | Deoxyribonucleic acid |
DNMT | DNA methyltransferase |
DOHaD | Developmental origins of health and disease |
EGCG | Epigallocatechin-3-gallate |
EWASs | Epigenome-wide association studies |
HAT | Histone acetyltransferase |
HDAC | Histone deacetylase |
HSP70 | Heat shock protein 70 |
IAP | Intracisternal A particle |
LAD | Lamina-associated domain |
MGC | Matrix Gla protein |
NADH/NAD+ | Nicotinamide-adenine dinucleotide |
ncRNA | Non-coding RNA |
NF-κB | Nuclear factor-κB |
PAR | Predictive adaptive response |
PGCs | Primordial germ cells |
PPAR | Peroxisome proliferator-activated receptor |
PSCs | Plant secondary compounds |
RCT | Randomized controlled trial |
RNA | Ribonucleic acid |
SAM | S-Adenosylmethionine |
SIRT | Sirtuin |
SOD1 | Superoxide dismutase 1 |
TADs | Topologically associated domains |
References
- Wang, M.; Ibeagha-Awemu, E.M. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front. Genet. 2021, 11, 613636. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. Animal Models to Study Environmental Epigenetics. Biol. Reprod. 2010, 82, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, T.; Greally, J.M. Associating Cellular Epigenetic Models with Human Phenotypes. Nat. Rev. Genet. 2017, 18, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kutateladze, T.G. Diet and the Epigenome. Nat. Commun. 2018, 9, 3375. [Google Scholar] [CrossRef]
- Darnaudéry, M.; Maccari, S. Epigenetic Programming of the Stress Response in Male and Female Rats by Prenatal Restraint Stress. Brain Res. Rev. 2008, 57, 571–585. [Google Scholar] [CrossRef]
- Murdoch, B.M.; Murdoch, G.K.; Greenwood, S.; McKay, S. Nutritional Influence on Epigenetic Marks and Effect on Livestock Production. Front. Genet. 2016, 7, 182. [Google Scholar] [CrossRef]
- Provenza, F. Nourishing Earth, Nourishing Ourselves. Part 1: Linking Plant Diversity With the Health of Livestock and Humans. J. Am. Holist. Vet. Med. Assoc. 2023, 71, 10–17. [Google Scholar] [CrossRef]
- Provenza, F.D.; Meuret, M.; Gregorini, P. Our Landscapes, Our Livestock, Ourselves: Restoring Broken Linkages among Plants, Herbivores, and Humans with Diets That Nourish and Satiate. Appetite 2015, 95, 500–519. [Google Scholar] [CrossRef]
- van Vliet, S.; Provenza, F.D.; Kronberg, S.L. Health-Promoting Phytonutrients Are Higher in Grass-Fed Meat and Milk. Front. Sustain. Food Syst. 2021, 4, 555426. [Google Scholar] [CrossRef]
- Açar, Y.; Akbulut, G. Nutritional Epigenetics and Phytochemicals in Cancer Formation. J. Am. Nutr. Assoc. 2023, 42, 700–705. [Google Scholar] [CrossRef]
- Li, Y.; Tollefsbol, T.O.; Li, S.; Chen, M. Prenatal Epigenetics Diets Play Protective Roles against Environmental Pollution. Clin. Epigenetics 2019, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, T. The Lost Origin of Chemical Ecology in the Late 19th Century. Proc. Natl. Acad. Sci. USA 2008, 105, 4541–4546. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, T. From Waste Products to Ecochemicals: Fifty Years Research of Plant Secondary Metabolism. Phytochemistry 2007, 68, 2831–2846. [Google Scholar] [CrossRef]
- Robbins, C.T. Plant Defenses Against Mammalian Herbivory, 1st ed.; Robbins, C.T., Palo, R.T., Eds.; CRC Press: Boca Raton, FL, USA, 1991; ISBN 10:0849365503. [Google Scholar]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Freeland, W.J.J.; Janzen, D.H. Strategies in Herbivory by Mammals: The Role of Plant Secondary Compounds. Am. Nat. 1974, 108, 269–289. [Google Scholar] [CrossRef]
- Provenza, F.D. Postingestive Feedback as an Elementary Determinant of Preference and Intake in Ruminants. J. Range Manag. 1995, 48, 2–17. [Google Scholar] [CrossRef]
- Cheeke, P.R. Natural Toxicants in Feeds, Forages, and Poisonous Plants, 2nd ed.; Interstate Publishers: Danville, IL, USA, 1998. [Google Scholar]
- Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Plant Secondary Metabolites and Their General Function in Plants. In Lessons on Caffeine, Cannabis & Co: Plant-Derived Drugs and Their Interaction with Human Receptors; Springer Nature Switzerland AG: Cham, Switzerland, 2018; pp. 3–17. [Google Scholar]
- Ramakrishna, A.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Mazzei, J.L.; Evangelista, H.; Marques, M.R.C.; Ferraz, E.R.A.; Felzenszwalb, I. Protection against UV-Induced Oxidative Stress and DNA Damage by Amazon Moss Extracts. J. Photochem. Photobiol. B 2018, 183, 331–341. [Google Scholar] [CrossRef]
- Anjali; Kumar, S.; Korra, T.; Thakur, R.; Arutselvan, R.; Kashyap, A.S.; Nehela, Y.; Chaplygin, V.; Minkina, T.; Keswani, C. Role of Plant Secondary Metabolites in Defence and Transcriptional Regulation in Response to Biotic Stress. Plant Stress 2023, 8, 100154. [Google Scholar] [CrossRef]
- Torres-Fajardo, R.A.; Higuera-Piedrahita, R.I. In Vivo Anthelmintic Activity of Terpenes and Essential Oils in Small Ruminants. Rev. MVZ Cordoba 2021, 26, e2317. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin Containing Legumes as a Model for Nutraceuticals against Digestive Parasites in Livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Lisonbee, L.D.; Villalba, J.J.; Provenza, F.D.; Hall, J.O. Tannins and Self-Medication: Implications for Sustainable Parasite Control in Herbivores. Behav. Process. 2009, 82, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. In Dietary Phytochemicals and Microbes; Patra, A.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–32. [Google Scholar]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and Challenges of Tannins as an Alternative to In-Feed Antibiotics for Farm Animal Production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of Plant Polyphenols to Combat Oxidative Stress and Inflammatory Processes in Farm Animals. J. Anim. Physiol. Anim. Nutr. 2017, 101, 605–628. [Google Scholar] [CrossRef]
- Jaiswal, L.; Ismail, H.; Worku, M. A Review of the Effect of Plant-Derived Bioactive Substances on the Inflammatory Response of Ruminants (Sheep, Cattle, and Goats). Int. J. Vet. Anim. Med. 2020, 3, 130. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-Inflammatory Effects of Phytochemicals from Fruits, Vegetables, and Food Legumes: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
- Amarowicz, R. Tannins: The New Natural Antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 549–551. [Google Scholar] [CrossRef]
- Krinsky, N.I. Carotenoids as Antioxidants. Nutrition 2001, 17, 815–817. [Google Scholar] [CrossRef]
- Provenza, F.D.; Villalba, J.J. The Role of Natural Plant Products in Modulating the Immune System: An Adaptable Approach for Combating Disease in Grazing Animals. Small Rumin. Res. 2010, 89, 131–139. [Google Scholar] [CrossRef]
- Maheshwari, S.; Kumar, V.; Bhadauria, G.; Mishra, A. Immunomodulatory Potential of Phytochemicals and Other Bioactive Compounds of Fruits: A Review. Food Front. 2022, 3, 221–238. [Google Scholar] [CrossRef]
- Schreiber, S.P.; Burson, R.D.; Scott, C.B.; Owens, C.J. The Effect of Phytochemical Diversity on Immune Response in Livestock. Range Ecol. Manag. 2025; accepted. [Google Scholar]
- Cornell, H.V.; Hawkins, B.A. Herbivore Responses to Plant Secondary Compounds: A Test of Phytochemical Coevolution Theory. Am. Nat. 2003, 161, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T.; Wei, C.I.; Johnson, M.G. Are Tannins a Double-Edged Sword in Biology and Health? Trends Food Sci. Technol. 1998, 9, 168–175. [Google Scholar] [CrossRef]
- Villalba, J.J.; Costes-Thiré, M.; Ginane, C. Phytochemicals in Animal Health: Diet Selection and Trade-Offs between Costs and Benefits. Proc. Nutr. Soc. 2017, 76, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Cheng, A. Neurohormetic Phytochemicals: Low-Dose Toxins That Induce Adaptive Neuronal Stress Responses. Trends Neurosci. 2006, 29, 632–639. [Google Scholar] [CrossRef]
- Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W.F.; Salminen, J.P.; et al. Benefits of Condensed Tannins in Forage Legumes Fed to Ruminants: Importance of Structure, Concentration, and Diet Composition. Crop Sci. 2019, 59, 861–885. [Google Scholar] [CrossRef]
- Provenza, F.D.; Villalba, J.J.; Dziba, L.E.; Atwood, S.B.; Banner, R.E. Linking Herbivore Experience, Varied Diets, and Plant Biochemical Diversity. Small Rumin. Res. 2003, 49, 257–274. [Google Scholar] [CrossRef]
- Villalba, J.J.; Ramsey, R.D.; Athanasiadou, S. Review: Herbivory and the Power of Phytochemical Diversity on Animal Health. Animal 2024, 101287. [Google Scholar] [CrossRef]
- Provenza, F. Nourishment—What Animals Can Teach Us About Rediscovering Our Nutritional Wisdom; Chelsea Green Publishing: White River Junction, VT, USA, 2018; ISBN 9781603588034. [Google Scholar]
- Moore, B.D.; Andrew, R.L.; Külheim, C.; Foley, W.J. Explaining Intraspecific Diversity in Plant Secondary Metabolites in an Ecological Context. New Phytol. 2014, 201, 733–750. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D.; Manteca, X. Links between Ruminants Food Preference and Their Welfare. Animal 2010, 4, 1240–1247. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D. Self-Medication and Homeostatic Behaviour in Herbivores: Learning about the Benefits of Nature’s Pharmacy. Animal 2007, 1, 1360–1370. [Google Scholar] [CrossRef]
- Villalba, J.J.; Miller, J.; Ungar, E.D.; Landau, S.Y.; Glendinning, J. Ruminant Self-Medication against Gastrointestinal Nematodes: Evidence, Mechanism, and Origins I. Parasite 2014, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)Phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, V.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Selvakumar, P.; Badgeley, A.; Murphy, P.; Anwar, H.; Sharma, U.; Lawrence, K.; Lakshmikuttyamma, A. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients 2020, 12, 761. [Google Scholar] [CrossRef]
- Vaid, M.; Prasad, R.; Singh, T.; Jones, V.; Katiyar, S.K. Grape Seed Proanthocyanidins Reactivate Silenced Tumor Suppressor Genes in Human Skin Cancer Cells by Targeting Epigenetic Regulators. Toxicol. Appl. Pharmacol. 2012, 263, 122–130. [Google Scholar] [CrossRef]
- Hassan, F.U.; Rehman, M.S.U.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front. Genet. 2019, 10, 514. [Google Scholar] [CrossRef]
- Gibney, E.R.; Nolan, C.M. Epigenetics and Gene Expression. Heredity 2010, 105, 4–13. [Google Scholar] [CrossRef]
- Bird, A. Perceptions of Epigenetics. Nature 2007, 447, 396–398. [Google Scholar] [CrossRef]
- Steffen, P.A.; Ringrose, L. What Are Memories Made of? How Polycomb and Trithorax Proteins Mediate Epigenetic Memory. Nat. Rev. Mol. Cell Biol. 2014, 15, 340–356. [Google Scholar] [CrossRef]
- Li, C.Z.; Haghani, A.; Yan, Q.; Lu, A.T.; Zhang, J.; Fei, Z.; Ernst, J.; William Yang, X.; Gladyshev, V.N.; Robeck, T.R.; et al. Epigenetic Predictors of Species Maximum Life Span and Other Life-History Traits in Mammals. Sci. Adv. 2024, 10, 7273. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, P.; Magotra, A.; Sindhu, V.; Chaudhary, P. Unravelling the Impact of Epigenetic Mechanisms on Offspring Growth, Production, Reproduction and Disease Susceptibility. Zygote 2024, 32, 190–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, H.; Hu, Q.; Wang, L.; Liu, J.; Zheng, Z.; Zhang, W.; Ren, J.; Zhu, F.; Liu, G.H. Epigenetic Regulation of Aging: Implications for Interventions of Aging and Diseases. Signal Transduct. Target. Ther. 2022, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C.; Molnár, F. Human Epigenetics: How Science Works, 1st ed.; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-22906-1. [Google Scholar]
- Willemin, A.; Szabó, D.; Pombo, A. Epigenetic Regulatory Layers in the 3D Nucleus. Mol. Cell 2024, 84, 415–428. [Google Scholar] [CrossRef]
- Kim, J.K.; Samaranayake, M.; Pradhan, S. Epigenetic Mechanisms in Mammals. Cell. Mol. Life Sci. 2009, 66, 596–612. [Google Scholar] [CrossRef]
- Zhang, G.; Pradhan, S. Mammalian Epigenetic Mechanisms. IUBMB Life 2014, 66, 240–256. [Google Scholar] [CrossRef]
- Grummt, I. Different Epigenetic Layers Engage in Complex Crosstalk to Define the Epigenetic State of Mammalian RRNA Genes. Hum. Mol. Genet. 2007, 16, R21–R27. [Google Scholar] [CrossRef]
- Kaikkonen, M.U.; Lam, M.T.Y.; Glass, C.K. Non-Coding RNAs as Regulators of Gene Expression and Epigenetics. Cardiovasc. Res. 2011, 90, 430–440. [Google Scholar] [CrossRef]
- Villicaña, S.; Bell, J.T. Genetic Impacts on DNA Methylation: Research Findings and Future Perspectives. Genome Biol. 2021, 22, 127. [Google Scholar] [CrossRef]
- Trerotola, M.; Relli, V.; Simeone, P.; Alberti, S. Epigenetic Inheritance and the Missing Heritability. Hum. Genom. 2015, 9, 17. [Google Scholar] [CrossRef]
- Smith, Z.D.; Chan, M.M.; Mikkelsen, T.S.; Gu, H.; Gnirke, A.; Regev, A.; Meissner, A. A Unique Regulatory Phase of DNA Methylation in the Early Mammalian Embryo. Nature 2012, 484, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, P.; Yan, L.; Li, R.; Hu, B.; Lian, Y.; Yan, J.; Ren, X.; Lin, S.; Li, J.; et al. The DNA Methylation Landscape of Human Early Embryos. Nature 2014, 511, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Guiltinan, C.; Denicol, A.C. Molecular Determinants of Bovine Pluripotency and Germline Emergence. University of California Davis Electronic Theses and Dissertations: Davis, CA, USA, 2024. [Google Scholar]
- Rothi, M.H.; Greer, E.L. From Correlation to Causation: The New Frontier of Transgenerational Epigenetic Inheritance. BioEssays 2023, 45, e2200118. [Google Scholar] [CrossRef] [PubMed]
- Chmurzynska, A. Fetal Programming: Link between Early Nutrition, DNA Methylation, and Complex Diseases. Nutr. Rev. 2010, 68, 87–98. [Google Scholar] [CrossRef]
- Soubry, A.; Hoyo, C.; Jirtle, R.L.; Murphy, S.K. A Paternal Environmental Legacy: Evidence for Epigenetic Inheritance through the Male Germ Line. BioEssays 2014, 36, 359–371. [Google Scholar] [CrossRef]
- Guo, Y.; Ross, E.M.; Hayes, B.; Nguyen, L.T. Uncover Cattle Age-Related Differentially Methylated Genes Using Oxford Nanopore Technologies. Preprint 2025. [Google Scholar] [CrossRef]
- Dolinoy, D.C. The Agouti Mouse Model: An Epigenetic Biosensor for Nutritional and Environmental Alterations on the Fetal Epigenome. Nutr. Rev. 2008, 66, S7–S11. [Google Scholar] [CrossRef]
- Dolinoy, D.C.; Weidman, J.R.; Waterland, R.A.; Jirtle, R.L. Maternal Genistein Alters Coat Color and Protects Avy Mouse Offspring from Obesity by Modifying the Fetal Epigenome. Env. Health Perspect. 2006, 114, 567–572. [Google Scholar] [CrossRef]
- Petersen, A.K.; Zeilinger, S.; Kastenmüller, G.; Werner, R.M.; Brugger, M.; Peters, A.; Meisinger, C.; Strauch, K.; Hengstenberg, C.; Pagel, P.; et al. Epigenetics Meets Metabolomics: An Epigenome-Wide Association Study with Blood Serum Metabolic Traits. Hum. Mol. Genet. 2014, 23, 534–545. [Google Scholar] [CrossRef]
- Gut, P.; Verdin, E. The Nexus of Chromatin Regulation and Intermediary Metabolism. Nature 2013, 502, 489–498. [Google Scholar] [CrossRef]
- Carrillo, J.A.; He, Y.; Li, Y.; Liu, J.; Erdman, R.A.; Sonstegard, T.S.; Song, J. Integrated Metabolomic and Transcriptome Analyses Reveal Finishing Forage Affects Metabolic Pathways Related to Beef Quality and Animal Welfare. Sci. Rep. 2016, 6, 25948. [Google Scholar] [CrossRef]
- Crouse, M.S.; Caton, J.; Ward, A.K. 390 Micronutrients, One-Carbon Metabolism, and Epigenetics: Potential Developmental and Production Outcomes. J. Anim. Sci. 2020, 98, 170. [Google Scholar] [CrossRef]
- Monné, M.; Marobbio, C.M.T.; Agrimi, G.; Palmieri, L.; Palmieri, F. Mitochondrial Transport and Metabolism of the Major Methyl Donor and Versatile Cofactor S-Adenosylmethionine, and Related Diseases: A Review. IUBMB Life 2022, 74, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- Peñagaricano, F.; Souza, A.H.; Carvalho, P.D.; Driver, A.M.; Gambra, R.; Kropp, J.; Hackbart, K.S.; Luchini, D.; Shaver, R.D.; Wiltbank, M.C.; et al. Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos. PLoS ONE 2013, 8, e72302. [Google Scholar] [CrossRef]
- Silva, G.M.; Chalk, C.D.; Ranches, J.; Schulmeister, T.M.; Henry, D.D.; DiLorenzo, N.; Arthington, J.D.; Moriel, P.; Lancaster, P.A. Effect of Rumen-Protected Methionine Supplementation to Beef Cows during the Periconception Period on Performance of Cows, Calves, and Subsequent Offspring. Animal 2021, 15, 100055. [Google Scholar] [CrossRef]
- Janke, R.; Dodson, A.E.; Rine, J. Metabolism and Epigenetics. Annu. Rev. Cell Dev. Biol. 2015, 31, 473–496. [Google Scholar] [CrossRef]
- Schulz, L.C. The Dutch Hunger Winter and the Developmental Origins of Health and Disease. Proc. Natl. Acad. Sci. USA 2010, 107, 16757–16758. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Low, F.M. Evolutionary and Developmental Mismatches Are Consequences of Adaptive Developmental Plasticity in Humans and Have Implications for Later Disease Risk. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180109. [Google Scholar] [CrossRef]
- Gluckman, P.D.; Hanson, M.A.; Spencer, H.G. Predictive Adaptive Responses and Human Evolution. Trends Ecol. Evol. 2005, 20, 527–533. [Google Scholar] [CrossRef]
- Bowman, C.E.; Selen Alpergin, E.S.; Cavagnini, K.; Smith, D.M.; Scafidi, S.; Wolfgang, M.J. Maternal Lipid Metabolism Directs Fetal Liver Programming Following Nutrient Stress. Cell Rep. 2019, 29, 1299–1310.e3. [Google Scholar] [CrossRef]
- López, C.B.; Moreno, G.G.; Palloni, A. Empirical Evidence of Predictive Adaptive Response in Humans: Systematic Review and Meta-Analysis of Migrant Populations. J. Dev. Orig. Health Dis. 2023, 14, 728–745. [Google Scholar] [CrossRef] [PubMed]
- Vickers, M.H. Early Life Nutrition, Epigenetics and Programming of Later Life Disease. Nutrients 2014, 6, 2165–2178. [Google Scholar] [CrossRef] [PubMed]
- Vaag, A.A.; Grunnet, L.G.; Arora, G.P.; Brøns, C. The Thrifty Phenotype Hypothesis Revisited. Diabetologia 2012, 55, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Christoforou, E.R.; Sferruzzi-Perri, A.N. Molecular Mechanisms Governing Offspring Metabolic Programming in Rodent Models of in Utero Stress. Cell. Mol. Life Sci. 2020, 77, 4861–4898. [Google Scholar] [CrossRef]
- O’Rourke, R.W. Metabolic Thrift and the Genetic Basis of Human Obesity. Ann. Surg. 2014, 259, 642–648. [Google Scholar] [CrossRef]
- Jilo, D.D.; Abebe, B.K.; Wang, J.; Guo, J.; Li, A.; Zan, L. Long Non-Coding RNA (LncRNA) and Epigenetic Factors: Their Role in Regulating the Adipocytes in Bovine. Front. Genet. 2024, 15, 1405588. [Google Scholar] [CrossRef]
- Attree, E.; Griffiths, B.; Panchal, K.; Xia, D.; Werling, D.; Banos, G.; Oikonomou, G.; Psifidi, A. Identification of DNA Methylation Markers for Age and Bovine Respiratory Disease in Dairy Cattle: A Pilot Study Based on Reduced Representation Bisulfite Sequencing. Commun. Biol. 2024, 7, 1251. [Google Scholar] [CrossRef]
- Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K.; Diniz, W.J.S.; Hammer, C.J.; Swanson, R.M.; Hauxwell, K.M.; Syring, J.G.; Safain, K.S.; et al. International Symposium on Ruminant Physiology: Maternal Nutrient Supply: Impacts on Physiological and Whole Animal Outcomes in Offspring. J. Dairy Sci. 2024; in press. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-Invited Review: Intrauterine Growth Retardation: Implications for the Animal Sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef]
- Mech, L.D.; Nelson, M.E.; Mcroberts, R.E. Effects of Maternal and Grandmaternal Nutrition on Deer Mass and Vulnerability to Wolf Predation. J. Mammal. 1991, 72, 146–151. [Google Scholar] [CrossRef]
- Funston, R.N.; Summers, A.F. Epigenetics: Setting up Lifetime Production of Beef Cows by Managing Nutrition. Annu. Rev. Anim. Biosci. 2013, 1, 339–363. [Google Scholar] [CrossRef]
- Tillquist, N.M.; Reed, S.A.; Zinn, S.A.; Govoni, K.E. Fetal Programming in Sheep: Epigenetic Modifications in Offspring from Poorly Nourished Dams. J. Anim. Sci. 2024, 102, 103–104. [Google Scholar] [CrossRef]
- Schalch Junior, F.J.; Polizel, G.H.G.; Cançado, F.A.C.Q.; Fernandes, A.C.; Mortari, I.; Pires, P.R.L.; Fukumasu, H.; Santana, M.H.d.A.; Saran Netto, A. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 2022, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Vonnahme, K.A.; Tanner, A.R.; Hildago, M.A.V. Effect of Maternal Diet on Placental Development, Uteroplacental Blood Flow, and Offspring Development in Beef Cattle. Anim. Reprod. 2018, 15, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Vonnahme, K.; Lardy, G.; Adams, D.C.; Funston, R.N.; Martin, J.; Vonnahme, K.; Lardy, G.; Adams, D.C. Effects of Dam Nutrition on Growth and Reproductive Performance of Heifer Calves. J. Anim. Sci. 2006, 85, 841–847. [Google Scholar] [CrossRef]
- Funston, R.N.; Martin, J.L.; Summers, A.F.; Adams, D.; Musgrave, J. Winter Grazing System and Supplementation of Beef Cows During Late Gestation Influence Heifer Progeny; University of Nebraska—Lincoln: Lincoln, NE, USA, 2011. [Google Scholar]
- Lan, X.; Cretney, E.C.; Kropp, J.; Khateeb, K.; Berg, M.A.; Peñagaricano, F.; Magness, R.; Radunz, A.E.; Khatib, H. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep. Front Genet 2013, 4, 49. [Google Scholar] [CrossRef]
- Ali, M.; Mehboob, H.A.; Mirza, M.A.; Raza, H.; Osredkar, M. Effect of Hydrolysable Tannin Supplementation on Production Performance of Crossbred Cows. J. Anim. Plant Sci. 2017, 27, 1088–1093. [Google Scholar]
- Kadigi, J.H.; Muzzo, B.I.; Schreiber, S. Potential Benefits of Tannins on Ruminant Health, Production and Environmental Sustainability. Eur. J. Nutr. Food Saf. 2024, 16, 13–24. [Google Scholar] [CrossRef]
- Weigand, M.C.; Duncan, Z.M.; Schwandt, E.; Ellis, W.; Weir, C.; Levy, A.; Gott, P.; Martinez, S.E.; Tarpoff, A.J.; Blasi, D.A. Effects of Vitamin and Mineral Supplementation to Beef Cattle during Gestation on Programming Outcomes in the Offspring. J. Anim. Sci. 2024, 102, 364–365. [Google Scholar]
- Saltveit, M.E. Synthesis and Metabolism of Phenolic Compounds. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health; Yahia, E.M., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; Volume 1, pp. 115–123. ISBN 9781119158042. [Google Scholar]
- Thirumurugan, D.; Cholarajan, A.; Raja, S.S.S.; Vijayakumar, R. An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites—Sources and Applications; IntechOpen: London, UK, 2018. [Google Scholar]
- Sokoloff, B.; Eddy, W.H.; Redd, J.B. The Biological Activity of a Flavonoid (Vitamin “P”) Compound. J. Clin. Investig. 1951, 30, 395–400. [Google Scholar] [CrossRef]
- Blanco, A.; Blanco, G. Chapter 13—Metabolism. In Medical Biochemistry, 2nd ed.; Elsevier: London, UK, 2022. [Google Scholar]
- Drewnowski, A.; Gomez-Carneros, C. Bitter Taste, Phytonutrients, and the Consumer: A Review. Am. Soc. Clin. Nutr. 2000, 72, 1424–1435. [Google Scholar] [CrossRef]
- van Vliet, S.; Bain, J.R.; Muehlbauer, M.J.; Provenza, F.D.; Kronberg, S.L.; Pieper, C.F.; Huffman, K.M. A Metabolomics Comparison of Plant-Based Meat and Grass-Fed Meat Indicates Large Nutritional Differences despite Comparable Nutrition Facts Panels. Nat. Sci. Rep. 2021, 11, 13828. [Google Scholar] [CrossRef] [PubMed]
- Bilir, B.; Sharma, N.V.; Lee, J.; Hammarstrom, B.; Svindland, A.; Kucuk, O.; Moreno, C.S. Effects of Genistein Supplementation on Genome-Wide DNA Methylation and Gene Expression in Patients with Localized Prostate Cancer. Int. J. Oncol. 2017, 51, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H. Genistein, an Epigenome Modifier during Cancer Prevention. Epigenetics 2011, 6, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Qaed, E.; Liu, W.; Almoiliqy, M.; Mohamed, R.; Tang, Z. Unleashing the Potential of Genistein and Its Derivatives as Effective Therapeutic Agents for Breast Cancer Treatment. Naunyn Schmiedeberg’s Arch. Pharmacol. 2025, 398, 3321–3343. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Santell, R.C.; Haslam, S.Z.; Helferich, W.G. Estrogenic Effects of Genistein on the Growth of Estrogen Receptor- Positive Human Breast Cancer (MCF-7) Cells in Vitro and in Vivo. Cancer Res. 1998, 58, 3833–3838. [Google Scholar]
- Reuter, S.; Gupta, S.C.; Park, B.; Goel, A.; Aggarwal, B.B. Epigenetic Changes Induced by Curcumin and Other Natural Compounds. Genes. Nutr. 2011, 6, 93–108. [Google Scholar] [CrossRef]
- Kondilis-Mangum, H.D.; Wade, P.A. Epigenetics and the Adaptive Immune Response. Mol. Asp. Med. 2013, 34, 813–825. [Google Scholar] [CrossRef]
- Emam, M.; Livernois, A.; Paibomesai, M.; Atalla, H.; Mallard, B. Genetic and Epigenetic Regulation of Immune Response and Resistance to Infectious Diseases in Domestic Ruminants. Vet. Clin. N. Am.—Food Anim. Pract. 2019, 35, 405–429. [Google Scholar] [CrossRef]
- Sender, R.; Milo, R. The Distribution of Cellular Turnover in the Human Body. Nat. Med. 2021, 27, 45–48. [Google Scholar] [CrossRef]
- Demarco, C.F.; Paisley, S.; Goodall, R.; Cassal, C.; Lake, S. Effects of Bacterial DFM and Tannins on Measures of Immunity and Growth Performance of Newly Weaned Beef Calves. Livest. Sci. 2021, 250, 104571. [Google Scholar] [CrossRef]
- Yuan, P.; Xu, H.; Ma, Y.; Niu, J.; Liu, Y.; Huang, L.; Jiang, S.; Jiao, N.; Yuan, X.; Yang, W. Effects of Dietary Galla Chinensis Tannin Supplementation on Immune Function and Liver Health in Broiler Chickens Challenged with Lipopolysaccharide. Front. Vet. Sci. 2023, 10, 1126911. [Google Scholar] [CrossRef] [PubMed]
- Asiamah, E.K.; Adjei-fremah, S.; Osei, B.; Ekwemalor, K.; Worku, M. An Extract of Sericea Lespedeza Modulates Production of Inflammatory Markers in Pathogen Associated Molecular Pattern (PAMP) Activated Ruminant Blood. J. Agric. Sci. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, X.; Wan, Y.; Qin, Q.; Xu, M.; Ma, J.; Zan, L.; Wang, H. Transcriptome Reveals the Promoting Effect of Beta-Sitosterol on the Differentiation of Bovine Preadipocytes. J. Agric. Food Chem. 2025, 73, 3400–3412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, L.; Tan, J.; Zhao, H.; Wang, Y.; Zhang, A.; Jiang, L. Metagenomic Insights into the Inhibitory Effect of Phytochemical Supplementation on Antibiotic Resistance Genes and Virulence Factors in the Rumen of Transition Dairy Cows. J. Hazard. Mater. 2025, 490, 137717. [Google Scholar] [CrossRef]
- Michelotti, T.C.; Trevisi, E.; Osorio, J.S. An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows. Antioxidants 2021, 10, 1478. [Google Scholar] [CrossRef]
- Kong, F.; Wang, S.; Dai, D.; Cao, Z.; Wang, Y.; Li, S.; Wang, W. Preliminary Investigation of the Effects of Rosemary Extract Supplementation on Milk Production and Rumen Fermentation in High-Producing Dairy Cows. Antioxidants 2022, 11, 1715. [Google Scholar] [CrossRef]
- Gabr, A.A.; Farrag, F.; Ahmed, M.; Soltan, Y.A.; Ateya, A.; Mafindi, U. The Performance, Ingestive Behavior, Nutrient Digestibility, Ruminal Fermentation Profile, Health Status, and Gene Expression of Does Fed a Phytochemical-Lactobacilli Blend in Late Pregnancy. Animals 2025, 15, 598. [Google Scholar] [CrossRef]
- Armstrong, S.A.; McLean, D.J.; Bionaz, M.; Bobe, G. A Natural Bioactive Feed Additive Alters Expression of Genes Involved in Inflammation in Whole Blood of Healthy Angus Heifers. Innate Immun. 2020, 26, 285–293. [Google Scholar] [CrossRef]
- van Vliet, S.; Blair, A.D.; Hite, L.M.; Cloward, J.; Ward, R.E.; Kruse, C.; van Wietmarchsen, H.A.; van Eekeren, N.; Kronberg, S.L.; Provenza, F.D. Pasture-Finishing of Bison Improves Animal Metabolic Health and Potential Health-Promoting Compounds in Meat. J. Anim. Sci. Biotechnol. 2023, 14, 49. [Google Scholar] [CrossRef]
- Carpino, S.; Mallia, S.; La Terra, S.; Melilli, C.; Licitra, G.; Acree, T.E.; Barbano, D.M.; Van Soest, P.J. Composition and Aroma Compounds of Ragusano Cheese: Native Pasture and Total Mixed Rations. J. Dairy. Sci. 2004, 87, 816–830. [Google Scholar] [CrossRef]
- Tsopmo, A. Phytochemicals in Human Milk and Their Potential Antioxidative Protection. Antioxidants 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.; Valero-Jara, V.; Thomas-Valdés, S. Phytochemicals in Breast Milk and Their Benefits for Infants. Crit. Rev. Food Sci. Nutr. 2022, 62, 6821–6836. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, X.; Berde, Y.; Low, Y.L.; Kuchan, M.J. Milk and Plasma Lutein and Zeaxanthin Concentrations in Chinese Breast-Feeding Mother–Infant Dyads With Healthy Maternal Fruit and Vegetable Intake*. J. Am. Coll. Nutr. 2019, 38, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Lipkie, T.E.; Morrow, A.L.; Jouni, Z.E.; McMahon, R.J.; Ferruzzi, M.G. Longitudinal Survey of Carotenoids in Human Milk from Urban Cohorts in China, Mexico, and the USA. PLoS ONE 2015, 10, e0127729. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Deligeorgis, S.G.; Bizelis, J.A.; Fegeros, K. Feeding Preferences in Lambs Influenced by Prenatal Flavour Exposure. Physiol. Behav. 2008, 93, 529–536. [Google Scholar] [CrossRef]
- Priolo, A.; Cornu, A.; Prache, S.; Krogmann, M.; Kondjoyan, N.; Micol, D.; Berdagué, J.L. Fat Volatiles Tracers of Grass Feeding in Sheep. Meat Sci. 2004, 66, 475–481. [Google Scholar] [CrossRef]
- Larick, D.K.; Hedrick, H.B.; Bailey, M.E.; Williams, J.E.; Hancock, D.L.; Garner, G.B.; Morrow, R.E. Flavor Constituents of Beef as Influenced by Forage- and Grain-Feeding. J. Food Sci. 1987, 52, 245–251. [Google Scholar] [CrossRef]
- Ismail, R.F.S.A.; Khalil, W.A.; Grawish, S.I.; Mahmoud, K.G.M.; Abdelnour, S.A.; Gad, A.M.A. Putative Effects of Moringa Oil or Its Nano-Emulsion on the Growth, Physiological Responses, Blood Health, Semen Quality, and the Sperm Antioxidant-Related Genes in Ram. BMC Vet. Res. 2025, 21, 11. [Google Scholar] [CrossRef]
- Khan, I.; Lee, K.L.; Fakruzzaman, M.; Song, S.H.; Ihsan-Ul-Haq; Mirza, B.; Yan, C.G.; Kong, I.K. Coagulansin-A Has Beneficial Effects on the Development of Bovine Embryos in Vitro via HSP70 Induction. Biosci. Rep. 2016, 36, e00310. [Google Scholar] [CrossRef]
- Campagna, M.P.; Xavier, A.; Lechner-Scott, J.; Maltby, V.; Scott, R.J.; Butzkueven, H.; Jokubaitis, V.G.; Lea, R.A. Epigenome-Wide Association Studies: Current Knowledge, Strategies and Recommendations. Clin. Epigenet. 2021, 13, 214. [Google Scholar] [CrossRef]
- Powell, J.; Talenti, A.; Fisch, A.; Hemmink, J.D.; Paxton, E.; Toye, P.; Santos, I.; Ferreira, B.R.; Connelley, T.K.; Morrison, L.J.; et al. Profiling the Immune Epigenome across Global Cattle Breeds. Clin. Epigenet. 2023, 24, 127. [Google Scholar] [CrossRef] [PubMed]
- Gunasekara, C.J.; Scott, C.A.; Laritsky, E.; Baker, M.S.; MacKay, H.; Duryea, J.D.; Kessler, N.J.; Hellenthal, G.; Wood, A.C.; Hodges, K.R.; et al. A Genomic Atlas of Systemic Interindividual Epigenetic Variation in Humans. Genome Biol. 2019, 20, 105. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Baker, M.S.; Laritsky, E.; Gunasekara, C.J.; Maduranga, U.; Galliou, J.C.; McFadden, J.W.; Waltemyer, J.R.; Berggren-Thomas, B.; Tate, B.N.; et al. Systemic Interindividual DNA Methylation Variants in Cattle Share Major Hallmarks with Those in Humans. Genome Biol. 2024, 25, 185. [Google Scholar] [CrossRef] [PubMed]
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar]
- Villalba, J.J.; Provenza, F.D.; Han, G.D. Experience Influences Diet Mixing by Herbivores: Implications for Plant Biochemical Diversity. Oikos 2004, 107, 100–109. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, J.; Li, X.; Huang, K.; Yuan, L.; Zhao, Y.; Xu, D.; Zhang, Y.; Zhao, L.; Yang, X.; et al. Comprehensive Multi Tissue Epigenome Atlas in Sheep: A Resource for Complex Traits, Domestication, and Breeding. iMeta 2024, 3, e254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiber, S.P.; Villalba, J.; Meyer-Ficca, M.L. Potential Epigenetic Impacts of Phytochemicals on Ruminant Health and Production: Connecting Lines of Evidence. Animals 2025, 15, 1787. https://doi.org/10.3390/ani15121787
Schreiber SP, Villalba J, Meyer-Ficca ML. Potential Epigenetic Impacts of Phytochemicals on Ruminant Health and Production: Connecting Lines of Evidence. Animals. 2025; 15(12):1787. https://doi.org/10.3390/ani15121787
Chicago/Turabian StyleSchreiber, Sebastian P., Juan Villalba, and Mirella L. Meyer-Ficca. 2025. "Potential Epigenetic Impacts of Phytochemicals on Ruminant Health and Production: Connecting Lines of Evidence" Animals 15, no. 12: 1787. https://doi.org/10.3390/ani15121787
APA StyleSchreiber, S. P., Villalba, J., & Meyer-Ficca, M. L. (2025). Potential Epigenetic Impacts of Phytochemicals on Ruminant Health and Production: Connecting Lines of Evidence. Animals, 15(12), 1787. https://doi.org/10.3390/ani15121787