Effects of Supplementation with Goat Transitional Milk on Mortality, Growth, Rectal Temperature, and IgG Serological Level in Low-Birth-Weight Piglets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Housing and Management
2.2. Collection and Processing of Goat Transitional Milk
2.3. Experiments
2.3.1. Experiment 1
2.3.2. Experiment 2
2.4. Chemical Analysis
2.5. Statistical Analyses
3. Results
3.1. Experiment 1
3.1.1. Sow Reproductive Performance
3.1.2. Piglet Performance
3.1.3. Immunoglobulin G
3.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roncada, P.; Piras, C.; Soggiu, A.; Turk, R.; Urbani, A.; Bonizzi, L. Farm animal milk proteomics. J. Proteom. 2012, 75, 4259–4274. [Google Scholar] [CrossRef] [PubMed]
- El-Loly, M.M. Colostrum ingredients, its nutritional and health benefits—An overview. Clin. Nutr. Open Sci. 2022, 44, 126–143. [Google Scholar] [CrossRef]
- Le Dividich, J.; Rooke, J.A.; Herpin, P. Nutritional and immunological importance of colostrum for the new-born pig. J. Agric. Sci. 2005, 143, 469–485. [Google Scholar] [CrossRef]
- Inoue, R.; Tsukahara, T. Composition and physiological functions of the porcine colostrum. Anim. Sci. J. 2021, 92, e13618. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.R.; Elnif, J.; Burrin, D.G.; Sangild, P.T. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. J. Nutr. 2001, 131, 3259–3265. [Google Scholar] [CrossRef]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in newly born piglets: Mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometeorol. 2021, 9, 2101. [Google Scholar] [CrossRef]
- Kobek-Kjeldager, C.; Moustsen, V.A.; Theil, P.K.; Pedersen, L.J. Effect of litter size, milk replacer and housing on production results of hyper-prolific sows. Animal 2020, 14, 824–833. [Google Scholar] [CrossRef]
- Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 2014, 8, 1021–1030. [Google Scholar] [CrossRef]
- Boudry, C.; Buldgen, A.; Portetelle, D.; Gianello, P.; Théwisa, A.; Leterme, P.; Dehoux, J.P. Effect of bovine colostrum supplementation on cytokine mRNA expression in weaned piglets. Livest. Sci. 2007, 108, 295–298. [Google Scholar] [CrossRef]
- Poulsen, A.S.R.; De Jonge, N.; Sugiharto, S.; Nielsen, J.L.; Lauridsen, C.; Canibe, N. The microbial community of the gut differs between piglets fed sow milk, milk replacer or bovine colostrum. Br. J. Nutr. 2017, 117, 964–978. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Sánchez-Macías, D.; Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Argüello, A. From goat colostrum to milk: Physical, chemical, and immune evolution from partum to 90 days postpartum. J. Dairy Sci. 2014, 97, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Argüello, A.; Castro, N.; Zamorano, M.J.; Castroalonso, A.; Capote, J. Passive transfer of immunity in kid goats fed refrigerated and frozen goat colostrum and commercial sheep colostrum. Small Rumin. Res. 2004, 54, 237–241. [Google Scholar] [CrossRef]
- Fischer-Tlustos, A.J.; Hertogs, K.; van Niekerk, J.K.; Nagorske, M.; Haines, D.M.; Steele, M.A. Oligosaccharide concentrations in colostrum, transition milk, and mature milk of primi- and multiparous Holstein cows during the first week of lactation. J. Dairy Sci. 2020, 103, 3683–3695. [Google Scholar] [CrossRef] [PubMed]
- De Blas, C.; Gasa, J.; Mateos, G.G.; López-Bote, C.; Gorrachategui, M.; Aguilera, J.; Fructuoso, G. Necesidades Nutricionales Para el Ganado Porcino Normas FEDNA, 2nd ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2013. [Google Scholar]
- Miró, S.M.; Naranjo, S.; Madrid, J.; López, M.J.; Sánchez, C.J.; Segura, M.M.; Hernández, F. Evaluation of immunoglobulin G absorption from goat colostrum by newborn piglets. Animals 2020, 10, 637. [Google Scholar] [CrossRef]
- Decaluwé, R.; Maes, D.; Cools, A.; Wuyts, B.; De Smet, S.; Marescau, B.; De Deyn, P.P.; Janssens, G.P.J. Effect of peripartal feeding strategy on colostrum yield and composition in sows. J. Anim. Sci. 2014, 92, 3557–3567. [Google Scholar] [CrossRef]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Rutherford, K.M.D.; Baxter, E.M.; D’Eath, R.B.; Turner, S.P.; Arnott, G.; Roehe, R.; Ask, B.; Sandøe, P.; Moustsen, V.A.; Thorup, F.; et al. The welfare implications of large litter size in the domestic pig I: Biologica factors. Anim. Welf. 2013, 22, 199–218. [Google Scholar] [CrossRef]
- Declerck, I.; Dewulf, J.; Sarrazin, S.; Maes, D. Long-term effects of colostrum intake in piglet mortality and performance. J. Anim. Sci. 2016, 94, 1633–1643. [Google Scholar] [CrossRef]
- Viott, R.C.; Menezes, T.A.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Performance of low birth-weight piglets upon protein-energy and/or colostrum supplementation. Arq. Bras. Med. Vet. Zootec. 2018, 70, 1293–1300. [Google Scholar] [CrossRef]
- Boudry, C.; Dehoux, J.P.; Wavreille, J.; Portetelle, D.; Théwis, A.; Buldgen, A. Effect of a bovine colostrum whey supplementation on growth performance, faecal Escherichia coli population and systemic immune response of piglets at weaning. Animal 2008, 2, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.P.; Menegat, M.B.; Barros, G.P.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Effects of colostrum, and protein and energy supplementation on survival and performance of low-birth-weight piglets. Livest. Sci. 2017, 202, 188–193. [Google Scholar] [CrossRef]
- Muns, R.; Nuntapaitoon, M.; Tummaruk, P. Effect of oral supplementation with different energy boosters in newborn piglets on pre-weaning mortality, growth and serological levels of IGF-I and IgG. J. Anim. Sci. 2017, 95, 353. [Google Scholar]
- Jarratt, L.; James, S.E.; Kirkwood, R.N.; Nowland, T.L. Effects of Caffeine and Glucose Supplementation at Birth on Piglet Pre-Weaning Growth, Thermoregulation, and Survival. Animals 2023, 13, 435. [Google Scholar] [CrossRef]
- Muns, R.; Silva, C.; Manteca, X.; Gasa, J. Effect of cross-fostering and oral supplementation with colostrums on performance of newborn piglets. J. Anim. Sci. 2014, 92, 1193–1199. [Google Scholar] [CrossRef]
- Amdi, C.; Jensen, L.L.; Oksbjerg, N.; Hansen, C.F. Supplementing newborn intrauterine growth restricted piglets with a bolus of porcine colostrum raises rectal temperatures one degree celsius. J. Anim. Sci. 2017, 95, 2968–2976. [Google Scholar] [CrossRef] [PubMed]
- Sugiharto, S.; Poulsen, A.S.R.; Canibe, N.; Lauridsen, C. Effect of bovine colostrum feeding in comparison with milk replacer and natural feeding on the immune responses and colonisation of enterotoxigenic Escherichia coli in the intestinal tissue of piglets. Br. J. Nutr. 2015, 113, 923–934. [Google Scholar] [CrossRef]
- Viehmann, M.; Unterweger, C.; Ganter, M.; Metzler-Zebeli, B.U.; Ritzmann, M.; Hennig-Pauka, I. Effects of bovine colostrum on performance, survival, and immunoglobulin status of suckling piglets during the first days of life. Czech J. Anim. Sci. 2015, 60, 351–358. [Google Scholar] [CrossRef]
- Herpin, P.; Damon, M.; Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 2002, 78, 25–45. [Google Scholar] [CrossRef]
- Mainau, E.; Temple, D.; Manteca, X. Pre-Weaning Mortality in Piglets. Farm Anim. Welf. Fact Sheet 2015, 11, 11–12. [Google Scholar]
- Rooke, J.A.; Bland, I.M. The acquisition of passive immunity in the new-born piglet. Livest. Prod. Sci. 2002, 78, 13–23. [Google Scholar] [CrossRef]
- McGuirk, S.M.; Collins, M. Managing the production, storage, and delivery of colostrum. Vet. Clin. N. Am.—Food Anim. Pract. 2004, 20, 593–603. [Google Scholar] [CrossRef]
- Muns, R.; Manteca, X.; Gasa, J. Effect of different management techniques to enhance colostrum intake on piglets’ growth and mortality. Anim. Welf. 2015, 24, 185–192. [Google Scholar] [CrossRef]
- Díaz, J.A.C.; Manzanilla, E.G.; Diana, A.; Boyle, L.A. Cross-fostering implications for pig mortality, welfare and performance. Front. Vet. Sci. 2018, 5, 123. [Google Scholar]
- Solà-Oriol, D.; Gasa, J. Feeding strategies in pig production: Sows and their piglets. Anim. Feed Sci. Technol. 2017, 233, 34–52. [Google Scholar] [CrossRef]
Item | Treatment 1 | SED 2 | p-Value | |
---|---|---|---|---|
1C | 1G | |||
n (litters) | 8 | 8 | ||
Backfat thickness 3, mm | 17.4 | 20.1 | 2.19 | 0.237 |
Loin depth 3, mm | 52.7 | 50.6 | 2.94 | 0.468 |
Total number of piglets born/litter | 14.9 | 15.9 | 1.39 | 0.483 |
Number of piglets born alive/litter | 13.5 | 12.5 | 1.05 | 0.358 |
Total weight of born alive, kg | 17.4 | 16.4 | 1.53 | 0.513 |
Average weight of born alive, kg | 1.31 | 1.31 | 0.079 | 0.966 |
Item | Treatment | SED 2 | p-Value | |
---|---|---|---|---|
1C | 1G | |||
n (litters) | 8 | 8 | ||
Body weight (g) | ||||
25th percentile | 1122.5 | 1107.5 | ||
50th percentile | 1290.0 | 1315.0 | ||
75th percentile | 1477.5 | 1497.5 | ||
Initial (0 h) | 1270.9 | 1290.6 | 72.79 | 0.791 |
Final (10 d) | 3334.3 | 3347.8 | 146.14 | 0.928 |
Weight gain (0–10 d) | 2052.6 | 2043.7 | 101.69 | 0.932 |
Temperature after birth (°C) at | ||||
0 h | 37.6 | 37.8 | 0.21 | 0.415 |
6 h | 37.9 | 37.8 | 0.20 | 0.663 |
Temperature increase (0–6 h) | 0.27 | 0.05 | 0.215 | 0.329 |
Nº of piglets per litter (10 d) | 11.4 | 10.9 | 0.51 | 0.173 |
Items | Treatment 1 | SEM 2 | p-Value | |
---|---|---|---|---|
1C | 1G | |||
Piglet birth weight ≤ 1100 g | ||||
n (piglets) | 22 | 24 | ||
Body weight (g) | ||||
Initial (0 h) | 870.0 | 920.6 | 18.82 | 0.125 |
Final (10 d) | 2541.0 | 2798.3 | 76.24 | 0.056 |
Weight gain (0–10 d) | 1642.0 | 1876.4 | 72.54 | 0.065 |
Temperature after birth (°C) | ||||
0 h | 37.3 | 37.5 | 0.13 | 0.290 |
6 h | 37.5 | 37.5 | 0.13 | 0.367 |
Temperature increase (0–6 h) | 0.11 | 0.03 | 0.155 | 0.814 |
% Mortality (10 d) 3 | 9.09 | 8.69 | 1.000 | |
Piglet birth weight > 1100 g | ||||
n (piglets) | 74 | 72 | ||
Body weight (g) | ||||
Initial (0 h) | 1390.1 | 1413.9 | 14.54 | 0.552 |
Final (10 d) | 3553.9 | 3511.7 | 42.69 | 0.856 |
Weight gain (0–10 d) | 2161.4 | 2094.6 | 37.01 | 0.628 |
Temperature after birth (°C) | ||||
0 h | 37.7 | 37.8 | 0.06 | 0.461 |
6 h | 38.0 | 37.8 | 0.05 | 0.131 |
Temperature increase (0–6 h) | 0.27 | 0.05 | 0.059 | 0.114 |
Mortality (%, 10 d) 4 | 3.57 | 8.33 | 0.304 |
Item | Treatment 1 | SED 2 | p-Value | |
---|---|---|---|---|
1C | 1G | |||
n (piglets) | 20 | 20 | ||
Goat IgG (mg/mL) | 0.2 | 0.7 | 0.21 | 0.039 |
Pig IgG (mg/mL) | 52.7 | 59.2 | 5.41 | 0.240 |
Items | Treatment 1 | SED 2 | p-Value | |
---|---|---|---|---|
2C | 2G | |||
n (piglets) | 100 | 100 | ||
Body weight (g) | ||||
Initial (0 h) | 896.0 | 926.0 | 11.90 | 0.253 |
10 d | 2009.8 | 1973.4 | 46.53 | 0.916 |
21 d | 3285.3 | 3157.3 | 85.24 | 0.751 |
Weight gain (g) | ||||
0–10 d | 1066.8 | 1028.5 | 41.57 | 0.848 |
0–21 d | 2343.9 | 2213.9 | 82.28 | 0.919 |
Temperature (°C) | ||||
0 h | 36.9 | 36.9 | 0.11 | 0.927 |
6 h | 37.5 | 37.5 | 0.07 | 0.327 |
Mortality (%, 21 d) 3 | 34.0 | 22.0 | 0.083 | |
IgG (mg/mL, 10 d) | 26.5 | 28.8 | 41.42 | 0.583 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segura, M.M.; Martínez-Miró, S.; López, M.J.; Madrid, J.; González, V.; Hernández, F. Effects of Supplementation with Goat Transitional Milk on Mortality, Growth, Rectal Temperature, and IgG Serological Level in Low-Birth-Weight Piglets. Animals 2025, 15, 1786. https://doi.org/10.3390/ani15121786
Segura MM, Martínez-Miró S, López MJ, Madrid J, González V, Hernández F. Effects of Supplementation with Goat Transitional Milk on Mortality, Growth, Rectal Temperature, and IgG Serological Level in Low-Birth-Weight Piglets. Animals. 2025; 15(12):1786. https://doi.org/10.3390/ani15121786
Chicago/Turabian StyleSegura, Mónica Marcela, Silvia Martínez-Miró, Miguel José López, Josefa Madrid, Verónica González, and Fuensanta Hernández. 2025. "Effects of Supplementation with Goat Transitional Milk on Mortality, Growth, Rectal Temperature, and IgG Serological Level in Low-Birth-Weight Piglets" Animals 15, no. 12: 1786. https://doi.org/10.3390/ani15121786
APA StyleSegura, M. M., Martínez-Miró, S., López, M. J., Madrid, J., González, V., & Hernández, F. (2025). Effects of Supplementation with Goat Transitional Milk on Mortality, Growth, Rectal Temperature, and IgG Serological Level in Low-Birth-Weight Piglets. Animals, 15(12), 1786. https://doi.org/10.3390/ani15121786