Characterisation of the Faecal Microbiome of Alpacas Raised in South Eastern Australia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Faecal Collections
2.2. DNA Extraction and Bioinformatics
2.3. Statistical Analysis
3. Results
3.1. Faecal Microbiome Population
3.2. Effect of Location, Age and Production Status
3.3. Methanogens Present in Alpaca Faecal Microbiome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cholewińska, P.; Czyz, K.; Nowakowski, P.; Wyrostek, A. The microbiome of the digestive system of ruminants—A review. Anim. Health Res. Rev. 2020, 21, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Ellison, M.J.; Conant, G.C.; Lamberson, W.R.; Cockrum, R.R.; Austin, K.J.; Rule, D.C.; Cammack, K.M. Diet and feed efficiency status affect rumen microbial profiles of sheep. Small Rumin. Res. 2017, 156, 12–19. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Abecia, L.; Angarita, E.; Aravena, P.; Arenas, G.N.; et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed]
- Maslen, B.N.; Duff, C.; Clark, S.A.; Van der Werf, J.; White, J.D.; Pant, S.D. Increased Yearling Weight Gain Is Associated with a Distinct Faecal Microbial Profile. Animals 2023, 13, 3062. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Guan, L.L. Gut microbiome and omics: A new definition to ruminant production and health. Anim. Front. 2016, 6, 8–12. [Google Scholar] [CrossRef]
- Hook, S.E.; Wright, A.D.G.; McBride, B.W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef] [PubMed]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 7, 8. [Google Scholar] [CrossRef]
- Samsudin, A.A.; Evans, P.N.; Wright, A.D.G.; Al Jassim, R. Molecular diversity of the foregut bacteria community in the dromedary camel (Camelus dromedarius). Environ. Microbiol. 2011, 13, 3024–3035. [Google Scholar] [CrossRef] [PubMed]
- Carroll, C. The Relationship Between Microbiota, Diet, and Energy Production in the Alpaca. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2017. [Google Scholar]
- Dande, S.S.; Bhatt, V.D.; Patil, N.V.; Joshi, C.G. The camel faecal metagenome under different systems of management: Phylogenetic and gene-centric approach. Livest. Sci. 2015, 178, 108–118. [Google Scholar] [CrossRef]
- Bedenice, D.; Resnick-Sousa, J.; Bookbinder, L.; Trautwein, V.; Creasey, H.N.; Widmer, G. The association between fecal microbiota, age and endoparasitism in adult alpacas. PLoS ONE 2022, 17, e0272556. [Google Scholar] [CrossRef]
- Pei, C.X.; Liu, Q.; Dong, C.S.; Li, H.Q.; Jiang, J.B.; Gao, W.J. Microbial Community in the Forestomachs of Alpacas (Lama pacos) and Sheep (Ovis aries). J. Integr. Agric. 2013, 12, 314–318. [Google Scholar] [CrossRef]
- St-Pierre, B.; Wright, A.D.G. Molecular analysis of methanogenic archaea in the forestomach of the alpaca (Vicugna pacos). BMC Microbiol. 2011, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Meale, S.J.; Li, S.; Azevedo, P.; Derakhshani, H.; Plaizier, J.C.; Khafipour, E.; Steele, M.A. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front. Microbiol. 2016, 7, 582. [Google Scholar] [CrossRef]
- Santiago, A.; Panda, S.; Mengels, G.; Martinez, X.; Azpiroz, F.; Dore, J.; Guarner, F.; Manichanh, C. Processing faecal samples: A step forward for standards in microbial community analysis. BMC Microbiol. 2014, 14, 112. [Google Scholar] [CrossRef]
- Boughey, I.; Hall, E.; Bush, R. Australian Alpaca Demographics and Management: A National Survey. Animals 2024, 14, 2861. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Microsoft Corporation. Microsoft Excel; Microsoft Corporation: Redmond, WA, USA, 2018. [Google Scholar]
- Miller, S.; Hendry, M.; King, J.; Sankaranarayanan, K.; Lawson, P.A. Bacteroides vicugnae sp. nov. isolated from the fecal material of an alpaca. Anaerobe 2024, 88, 102862. [Google Scholar] [CrossRef]
- Miller, S.; Hendry, M.; King, J.; Sankaranarayanan, K.; Lawson, P.A. Clostridium tanneri sp. nov., isolated from the faecal material of an alpaca. Int. J. Syst. Evol. Microbiol. 2024, 74. [Google Scholar] [CrossRef]
- Guo, W.; Liu, T.; Wang, W.; Yu, Y.; Neves, A.L.A.; Zhou, M.; Chen, X. Survey of the fecal microbiota of indigenous small ruminants living in different areas of Guizhou. Front. Microbiol. 2024, 15, 1415230. [Google Scholar] [CrossRef]
- Mamun, M.A.; Sandeman, M.; Rayment, P.; Brook-Carter, P.; Scholes, E.; Kasinadhuni, N.; Piedrafita, D.; Greenhill, A.R. The composition and stability of the faecal microbiota of Merino sheep. J. Appl. Microbiol. 2020, 128, 280–291. [Google Scholar] [CrossRef]
- Faniyi, T.O.; Adegbeye, M.J.; Elghandour, M.M.; Pilego, A.B.; Salem, A.Z.; Olaniyi, T.A.; Adediran, O.; Adewumi, M.K. Role of diverse fermentative factors towards microbial community shift in ruminants. J. Appl. Microbiol. 2019, 127, 2–11. [Google Scholar] [CrossRef]
- McLoughlin, S.; Spillane, C.; Claffey, N.; Smith, P.E.; O’Rourke, T.; Diskin, M.G.; Waters, S.M. Rumen Microbiome Composition Is Altered in Sheep Divergent in Feed Efficiency. Front. Microbiol. 2020, 11, 1981. [Google Scholar] [CrossRef]
- He, J.; Hai, L.; Orgoldol, K.; Yi, L.; Ming, L.; Guo, F.; Li, G.; Ji, R. High-Throughput Sequencing Reveals the Gut Microbiome of the Bactrian Camel in Different Ages. Curr. Microbiol. 2019, 76, 810–817. [Google Scholar] [CrossRef]
- Lima, F.S.; Oikonomou, G.; Lima, S.F.; Bicalho, M.L.; Ganda, E.K.; de Oliveira Filho, J.C.; Lorenzo, G.; Trojacanec, P.; Bicalho, R.C. Prepartum and postpartum rumen fluid microbiomes: Characterization and correlation with production traits in dairy cows. Appl. Environ. Microbiol. 2015, 81, 1327–1337. [Google Scholar] [CrossRef]
- Sha, Y.; Liu, X.; Li, X.; Wang, Z.; Shao, P.; Jiao, T.; He, Y.; Zhao, S. Succession of rumen microbiota and metabolites across different reproductive periods in different sheep breeds and their impact on the growth and development of offspring lambs. Microbiome 2024, 12, 172. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, G.; Wu, Y.; Zhang, T.; Guo, M.; Lei, Y.; Cao, X.; Suo, L.; Brugger, D.; Wang, X.; et al. Gut Microbial Succession Patterns and Metabolic Profiling during Pregnancy and Lactation in a Goat Model. Microbiol. Spectr. 2023, 11, e02955-22. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology. In Developments in Environmental Modelling Series; Elsevier: Amsterdam, The Netherlands, 2012; Volume 3. [Google Scholar]
- Dittmann, M.T.; Runge, U.; Lang, R.A.; Moser, D.; Galeffi, C.; Kreuzer, M.; Clauss, M. Methane emission by camelids. PLoS ONE 2014, 9, e94363. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef]
- Chao, R.; Xia, C.; Pei, C.; Huo, W.; Liu, Q.; Zhang, C.; Ren, Y. Comparison of the microbial communities of alpacas and sheep fed diets with three different ratios of corn stalk to concentrate. J. Anim. Physiol. Anim. Nutr. 2021, 105, 26–34. [Google Scholar] [CrossRef]
- Zeng, B. Camel culling and carbon emissions in rangelands in central Australia. J. Environ. Plan. Manag. 2015, 58, 270–282. [Google Scholar] [CrossRef]
Region | Primary Pasture Species | Supplemental Feed |
---|---|---|
Central West | Phalaris (Phalaris aquatica), Cocksfoot (Dactylis glomerata), Wallaby Grass (Rytidosperma spp), Microlena (Microlena stipoides), Tussock Grass (Poa labillardierei), White Clover (Trifolium repens), Subterranean Clover (Trifolium subterraneum), Perennial Ryegrass (Lolium perenne) | |
Far South Coast | Kikuyu (Cenchrus clandestinus), Phalaris (Phalaris aquatica), Cocksfoot (Dactylis glomerata), Wallaby Grass (Rytidosperma spp.), Microlena (Microlena stipoides), Tussock Grass (Poa labillardierei) | Ad Lib Access to Hay Mix: Lucerne (Alfalfa) Hay (Medicago sativa), Oaten Hay, Clover Hay |
Greater Sydney | Kikuyu (Cenchrus clandestinus), Microlena (Microlena stipoides), Couch (Cynodon dactylon) | Ad Lib Access to Hay Mix: Lucerne Alfalfa) Hay (Medicago sativa), Oaten Chaff, Horse Pellet Mix |
Northern NSW | Phalaris (Phalaris aquatica), Cocksfoot (Dactylis glomerata), White Clover (Trifolium repens), Perennial Ryegrass (Lolium perenne) | |
Southern Highlands | Kikuyu (Cenchrus clandestinus), Perennial Ryegrass (Lolium perenne) |
Region | Age (Months) | N | Production Status | N | Vaccination | Drench | Recent Supplements |
---|---|---|---|---|---|---|---|
Far South | 13–18 | 0 | Empty with Cria | 1 | 5in1 | STARTECH | ADE and |
Coast | 19–29 | 1 | Pregnant | 9 | Phosphorus | ||
30–47 | 2 | Empty | 2 | Injection | |||
48+ | 9 | Pregnant with Cria | 0 | ||||
Central | 13–18 | 0 | Empty with Cria | 2 | 5in1 | NA | Selenium |
West | 19–29 | 1 | Pregnant | 0 | 1 mL | ||
30–47 | 2 | Empty | 9 | ||||
48+ | 9 | Pregnant with Cria | 1 | ||||
Greater | 13–18 | 0 | Empty with Cria | 2 | 5in1 | AVERMEC | |
Sydney | 19–29 | 3 | Pregnant | 5 | Dual | ||
30–47 | 0 | Empty | 5 | ||||
48+ | 9 | Pregnant with Cria | 0 | ||||
Southern | 13–18 | 0 | Empty with Cria | 0 | 5in1 | Startech | ADE |
High- | 19–29 | 0 | Pregnant | 1 | Injection | ||
lands | 30–47 | 2 | Empty | 11 | |||
48+ | 10 | Pregnant with Cria | 0 | ||||
Northern | 13–18 | 2 | Empty with Cria | 1 | 5in1 | Ivermectin | |
NSW | 19–29 | 2 | Pregnant | 5 | Injectable | ||
30–47 | 0 | Empty | 6 | (Cattle) | |||
48+ | 8 | Pregnant with Cria | 0 |
Phylum | |
---|---|
Firmicutes | 57.78% |
Bacteroidota | 29.12% |
Class | |
Firmicutes Clostridia | 51.76% |
Bacteroidota Bacteroidia | 29.16% |
Firmicutes Bacilli | 5.48% |
Verrucomicrobiota Verrucomicrobiae | 2.90% |
Order | |
Bacteroidota Bacteroidia Bacteroidales | 29.05% |
Firmicutes Clostridia Lachnospirales | 21.41% |
Firmicutes Clostridia Peptostreptococcales-Tissierellales | 11.99% |
Firmicutes Clostridia Oscillospirales | 10.19% |
Verrucomicrobiota Verrucomicrobiae Verrucomicrobiales | 5.12% |
Firmicutes Bacilli Erysipelotrichales | 2.89% |
Desulfobacterota Desulfovibrionia Desulfovibrionales | 2.71% |
Firmicutes Clostridia Christensenellales | 2.40% |
Verrucomicrobiota Kiritimatiellae WCHB1-41 | 2.00% |
Proteobacteria Alphaproteobacteria Rhodospirillales | 1.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boughey, I.; Samsing, F.; Hall, E.; Rodney, R.; Bush, R. Characterisation of the Faecal Microbiome of Alpacas Raised in South Eastern Australia. Animals 2025, 15, 1748. https://doi.org/10.3390/ani15121748
Boughey I, Samsing F, Hall E, Rodney R, Bush R. Characterisation of the Faecal Microbiome of Alpacas Raised in South Eastern Australia. Animals. 2025; 15(12):1748. https://doi.org/10.3390/ani15121748
Chicago/Turabian StyleBoughey, Imogen, Francisca Samsing, Evelyn Hall, Rachael Rodney, and Russell Bush. 2025. "Characterisation of the Faecal Microbiome of Alpacas Raised in South Eastern Australia" Animals 15, no. 12: 1748. https://doi.org/10.3390/ani15121748
APA StyleBoughey, I., Samsing, F., Hall, E., Rodney, R., & Bush, R. (2025). Characterisation of the Faecal Microbiome of Alpacas Raised in South Eastern Australia. Animals, 15(12), 1748. https://doi.org/10.3390/ani15121748