Bacteriophages as Potential Anti-Pathogenic Agents for Intestinal Health of Weaned Piglets in the Post-Antibiotic Era: An Updated Review
Simple Summary
Abstract
1. Introduction
2. An Overview of Bacteriophages
3. Isolation of Specific Bacteriophages Targeting Enteric Pathogenic Bacteria in Weaned Piglets
3.1. Isolation of Bacteriophage Targeting E. coli
3.2. Isolation of Bacteriophage Targeting Salmonella typhimurium
4. The Application of Bacteriophages in Weaned Piglets
4.1. Effects on Growth Performance of Weaned Piglets
4.2. Effects on Diarrhea Characteristics of Weaned Piglets
4.3. Effects on Intestinal Morphology of Weaned Piglets
4.4. Effects on Intestinal pH and Nutrient Digestibility of Weaned Piglets
4.5. Effects on Intestinal Barrier Function of Weaned Piglets
4.6. Effects on Inflammation Response of Weaned Piglets
4.7. Effects on Intestinal Microecology of Weaned Piglets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADFI | Average daily feed intake |
ADG | Average daily gain |
BW | Body weight |
CD | Crypt depth |
DAO | Diamine oxidase |
E. coli | Escherichia coli |
ETEC | Enterotoxigenic E. coli |
G/F | Gain-to-feed ratio |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
ITF | Intestinal trefoil factor |
MUC2 | Mucin 2 |
PFU | Plaque-forming unit |
sIgA | Secretory immunoglobulin A |
TGF-α | Tumor growth factor-α |
TLR-2 | Toll-like receptor-2 |
TLR-4 | Toll-like receptor-4 |
TLR-9 | Toll-like receptor-9 |
TNF-α | Tumor necrosis factor-α |
VH | Villous height |
ZO-1 | Zonula occludens-1 |
References
- Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef]
- Jo, H.; Han, G.; Kim, E.B.; Kong, C.; Kim, B.G. Effects of supplemental bacteriophage on the gut microbiota and nutrient digestibility of ileal-cannulated pigs. J. Anim. Sci. Technol. 2024, 66, 340. [Google Scholar] [CrossRef] [PubMed]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Castanon, J.I.R. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef]
- Monger, X.C.; Gilbert, A.A.; Saucier, L.; Vincent, A.T. Antibiotic resistance: From pig to meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef]
- Holmer, I.; Salomonsen, C.M.; Jorsal, S.E.; Astrup, L.B.; Jensen, V.F.; Høg, B.B.; Pedersen, K. Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Vet. Res. 2019, 15, 449. [Google Scholar] [CrossRef]
- Albernaz-Gonçalves, R.; Olmos Antillón, G.; Hötzel, M.J. Linking animal welfare and antibiotic use in pig farming—A review. Animals 2022, 12, 216. [Google Scholar] [CrossRef]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Vet. World 2022, 15, 662–671. [Google Scholar] [CrossRef]
- Gamboa-Cruz, C.; Barros, S.; Vila Pouca, A.S.; Barbosa, J.; Freitas, A.; Ramos, F. Assessing antibiotic residues in piglet liver and kidney samples: How to manage the results obtained. Food Control 2021, 122, 107819. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K.; Fang, R.; Li, M. Weaning stress and intestinal health of piglets: A review. Front. Immunol. 2022, 13, 1042778. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, B.; Zhu, W. Pathogenic Escherichia coli-specific bacteriophages and polyvalent bacteriophages in piglet guts with increasing coliphage numbers after weaning. Appl. Environ. Microbiol. 2021, 87, e00966-21. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.T.; Everaert, N.; Bindelle, J. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J. Anim. Physiol. Anim. Nutr. 2018, 102, 17–32. [Google Scholar] [CrossRef]
- Liu, Y.; Espinosa, C.D.; Abelilla, J.J.; Casas, G.A.; Lagos, L.V.; Lee, S.A.; Kwon, W.B.; Mathai, J.K.; Navarro, D.M.D.L.; Jaworski, N.W.; et al. Non-antibiotic feed additives in diets for pigs: A review. Anim. Nutr. 2018, 4, 113–125. [Google Scholar] [CrossRef]
- Li, L.; Han, K.; Mao, X.; Wang, L.; Cao, Y.; Li, Z.; Wu, Y.; Tan, Y.; Shi, Y.; Zhang, L. Oral phages prophylaxis against mixed Escherichia coli O157: H7 and Salmonella Typhimurium infections in weaned piglets. Vet. Microbiol. 2024, 288, 109923. [Google Scholar] [CrossRef]
- Fang, Q.; Yin, X.; He, Y.; Feng, Y.; Zhang, L.; Luo, H.; Yin, G.; McNally, A.; Zong, Z. Safety and efficacy of phage application in bacterial decolonisation: A systematic review. Lancet Microbe 2024, 5, e489–e499. [Google Scholar] [CrossRef]
- Bianchessi, L.; De Bernardi, G.; Vigorelli, M.; Dall’Ara, P.; Turin, L. Bacteriophage therapy in companion and farm animals. Antibiotics 2024, 13, 294. [Google Scholar] [CrossRef]
- Gencay, Y.E.; Jasinskytė, D.; Robert, C.; Semsey, S.; Martínez, V.; Petersen, A.Ø.; Brunner, K.; de Santiago Torio, A.; Salazar, A.; Turcu, I.C. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 2024, 42, 265–274. [Google Scholar] [CrossRef]
- Duan, Y.; Young, R.; Schnabl, B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 135–144. [Google Scholar] [CrossRef]
- Loponte, R.; Pagnini, U.; Iovane, G.; Pisanelli, G. Phage therapy in veterinary medicine. Antibiotics 2021, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Z.; Cao, Z.; Wang, L.; Li, X.; Li, S.; Xu, Y. Bacteriophages as antimicrobial agents against major pathogens in swine: A review. J. Anim. Sci. Biotechnol. 2015, 6, 39. [Google Scholar] [CrossRef]
- Hyman, P. Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef]
- Costinar, L.; Herman, V.; Iancu, I.; Pascu, C. Phenotypic characterizations and antimicrobials resistance of Salmonella strains isolated from pigs from fattening farms. Rev. Rom. Med. Vet. 2021, 31, 31–34. [Google Scholar]
- Abdelsattar, A.; Dawoud, A.; Makky, S.; Nofal, R.; Aziz, R.K.; El-Shibiny, A. Bacteriophages: From isolation to application. Curr. Pharm. Biotechnol. 2022, 23, 337–360. [Google Scholar] [CrossRef]
- Callaway, T.R.; Edrington, T.S.; Brabban, A.; Kutter, E.; Karriker, L.; Stahl, C.; Wagstrom, E.; Anderson, R.C.; Genovese, K.; McReynolds, J. Occurrence of Salmonella-specific bacteriophages in swine feces collected from commercial farms. Foodborne Pathog. Dis. 2010, 7, 851–856. [Google Scholar] [CrossRef]
- Mao, X.; Wu, Y.; Ma, R.; Li, L.; Wang, L.; Tan, Y.; Li, Z.; Liu, H.; Han, K.; Cao, Y. Oral phage therapy with microencapsulated phage A221 against Escherichia coli infections in weaned piglets. BMC Vet. Res. 2023, 19, 165. [Google Scholar] [CrossRef]
- Imklin, N.; Sriprasong, P.; Phuttapatimok, S.; Kaminsonsakul, T.; Woonwong, Y.; Jirawattanapong, P.; Lekcharoensuk, P.; Thanantong, N.; Nasanit, R. In vivo assessment of bacteriophages specific to multidrug resistant Escherichia coli on fecal bacterial counts and microbiome in nursery pigs. Res. Vet. Sci. 2022, 151, 138–148. [Google Scholar] [CrossRef]
- Lee, C.; Kim, S.; Park, B.; Han, J. Effects of dietary supplementation of bacteriophages against enterotoxigenic Escherichia coli (ETEC) K88 on clinical symptoms of post-weaning pigs challenged with the ETEC pathogen. J. Anim. Physiol. Anim. Nutr. 2017, 101, 88–95. [Google Scholar] [CrossRef]
- Han, S.-J.; Oh, Y.; Lee, C.Y.; Han, J.-H. Efficacy of dietary supplementation of bacteriophages in treatment of concurrent infections with enterotoxigenic Escherichia coli K88 and K99 in postweaning pigs. J. Swine Health Prod. 2016, 24, 259–263. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Zhu, W. Systemic effects of a phage cocktail on healthy weaned piglets. Biology 2024, 13, 271. [Google Scholar] [CrossRef] [PubMed]
- Jamalludeen, N.; Johnson, R.P.; Friendship, R.; Kropinski, A.M.; Lingohr, E.J.; Gyles, C.L. Isolation and characterization of nine bacteriophages that lyse O149 enterotoxigenic Escherichia coli. Vet. Microbiol. 2007, 124, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.B.; Yoo, A.N.; Lee, W.J.; Shin, M.K.; Jung, M.H.; Shin, S.W.; Cho, Y.W.; Yoo, H.S. Effect of bacteriophage in enterotoxigenic Escherichia coli (ETEC) infected pigs. J. Vet. Med. Sci. 2012, 74, 1037–1039. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, L.; Han, K.; Wang, L.; Cao, Y.; Ma, D.; Wang, X. A polyvalent broad-spectrum Escherichia phage tequatrovirus EP01 capable of controlling Salmonella and Escherichia coli contamination in foods. Viruses 2022, 14, 286. [Google Scholar] [CrossRef]
- Thanki, A.M.; Brown, N.; Millard, A.D.; Clokie, M.R.J. Genomic characterization of Jumbo Salmonella phages that effectively target United Kingdom pig-associated Salmonella serotypes. Front. Microbiol. 2019, 10, 1491. [Google Scholar] [CrossRef]
- Thanki, A.M.; Clavijo, V.; Healy, K.; Wilkinson, R.C.; Sicheritz-Pontén, T.; Millard, A.D.; Clokie, M.R.J. Development of a phage cocktail to target Salmonella strains associated with swine. Pharmaceuticals 2022, 15, 58. [Google Scholar] [CrossRef]
- Thanki, A.M.; Mignard, G.; Atterbury, R.J.; Barrow, P.; Millard, A.D.; Clokie, M.R. Prophylactic delivery of a bacteriophage cocktail in feed significantly reduces Salmonella colonization in pigs. Microbiol. Spectr. 2022, 10, e00422. [Google Scholar] [CrossRef]
- Won, Y.-K.; Kim, S.-J.; Han, J.-H. The protective effect of dietary supplementation of Salmonella-specific bacteriophages in post-weaning piglets challenged with Salmonella typhimurium. J. Adv. Vet. Anim. Res. 2021, 8, 440. [Google Scholar] [CrossRef]
- Seo, B.-J.; Song, E.-T.; Lee, K.; Kim, J.-W.; Jeong, C.-G.; Moon, S.-H.; Son, J.S.; Kang, S.H.; Cho, H.-S.; Jung, B.Y. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium. J. Vet. Med. Sci. 2018, 80, 851–860. [Google Scholar] [CrossRef]
- Choi, Y.; Hosseindoust, A.; Ha, S.H.; Kim, J.; Min, Y.; Jeong, Y.; Mun, J.; Sa, S.; Kim, J. Effects of dietary supplementation of bacteriophage cocktail on health status of weanling pigs in a non-sanitary environment. J. Anim. Sci. Biotechnol. 2023, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Hosseindoust, A.; Lee, S.; Kim, J.; Choi, Y.; Kwon, I.; Chae, B. Productive performance of weanling piglets was improved by administration of a mixture of bacteriophages, targeted to control Coliforms and Clostridium spp. shedding in a challenging environment. J. Anim. Physiol. Anim. Nutr. 2017, 101, e98–e107. [Google Scholar] [CrossRef] [PubMed]
- Kingkan, P.; Supcharoenkul, T.; Rakangthong, C.; Bunchasak, C.; Surachat, K.; Loongyai, W. Effect of bacteriophages on intestinal colonization of Escherichia coli, cecal microbiota composition, intestinal morphology, and growth performance in nursery pigs from commercial pig farms. Adv. Anim. Vet. Sci. 2023, 11, 960–967. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, Z.; Zou, T.; Chen, J.; Li, G.; Zheng, L.; Li, S.; You, J. Bacteriophage as an alternative to antibiotics promotes growth performance by regulating intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets. Front. Vet. Sci. 2021, 8, 623899. [Google Scholar] [CrossRef]
- Hosseindoust, A.; Lee, S.; Kim, J.; Choi, Y.; Noh, H.; Lee, J.; Jha, P.; Kwon, I.; Chae, B. Dietary bacteriophages as an alternative for zinc oxide or organic acids to control diarrhoea and improve the performance of weanling piglets. Vet. Med. 2017, 62, 53–61. [Google Scholar] [CrossRef]
- Kim, J.; Hosseindoust, A.; Lee, S.; Choi, Y.; Kim, M.; Lee, J.; Kwon, I.; Chae, B. Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: Effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal 2017, 11, 45–53. [Google Scholar] [CrossRef]
- Lee, S.; Hosseindoust, A.; Goel, A.; Choi, Y.; Kwon, I.K.; Chae, B. Effects of dietary supplementation of bacteriophage with or without zinc oxide on the performance and gut development of weanling pigs. Ital. J. Anim. Sci. 2016, 15, 412–418. [Google Scholar] [CrossRef]
- Szabó, C.; Kachungwa Lugata, J.; Ortega, A.D.S.V. Gut health and influencing factors in pigs. Animals 2023, 13, 1350. [Google Scholar] [CrossRef]
- Huting, A.M.S.; Middelkoop, A.; Guan, X.; Molist, F. Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals 2021, 11, 402. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Jia, X.; Hu, Y.; Zhao, X.; You, J.; Zou, T. Dietary benzoic acid supplementation attenuates enterotoxigenic Escherichia coli K88-induced inflammation response and intestinal barrier dysfunction associated with gut microbiota modulation in newly-weaned mice. J. Funct. Foods 2024, 113, 106044. [Google Scholar] [CrossRef]
- Chen, J.; Xia, Y.; Hu, Y.; Zhao, X.; You, J.; Zou, T. A blend of formic acid, benzoic acid, and tributyrin alleviates ETEC K88-induced intestinal barrier dysfunction by regulating intestinal inflammation and gut microbiota in a murine model. Int. Immunopharmacol. 2023, 114, 109538. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jia, X.; Hu, Y.; Zhao, X.; Cheng, Y.; Lu, L.; Zhong, S.; You, J.; Zou, T. Benzoic acid as a dietary supplement mitigates inflammation and intestinal injury in acute enterotoxigenic Escherichia coli-infected mice without adverse effects in healthy mice. Food Funct. 2025, 16, 3195–3210. [Google Scholar] [CrossRef] [PubMed]
- Modina, S.C.; Polito, U.; Rossi, R.; Corino, C.; Di Giancamillo, A. Nutritional regulation of gut barrier integrity in weaning piglets. Animals 2019, 9, 1045. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Gu, M.J.; Kye, Y.-C.; Ju, Y.-J.; Hong, R.; Ju, D.B.; Pyung, Y.J.; Han, S.H.; Park, B.-C.; Yun, C.-H. Bacteriophage EK99P-1 alleviates enterotoxigenic Escherichia coli K99-induced barrier dysfunction and inflammation. Sci. Rep. 2022, 12, 941. [Google Scholar] [CrossRef]
- Dong, C.; Chen, Y.; Ding, M.; Liu, Y.; Chen, X.; He, Y.; Zou, T.; Chen, J.; You, J. Dietary bacteriophage administration alleviates enterotoxigenic Escherichia coli-induced diarrhea and intestinal impairment through regulating intestinal inflammation and gut microbiota in a newly weaned mouse model. Int. J. Mol. Sci. 2024, 25, 10736. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Z.; Han, J.; Chen, X.; Zou, T.; You, J.; Chen, J. An updated review of emerging sources of selenium in weaned piglet nutrition. Animals 2024, 14, 2599. [Google Scholar] [CrossRef]
- Desiree, K.; Mosimann, S.; Ebner, P. Efficacy of phage therapy in pigs: Systematic review and meta-analysis. J. Anim. Sci. 2021, 99, skab157. [Google Scholar] [CrossRef]
- van der Wolf, P.J.; Wientjes, J.G.M.; Heuvelink, A.E.; Veldhuis, A.M.B.; van Hees, H.M.J.; Roubos-van den Hil, P.J. Development of a Salmonella Typhimurium challenge model in weaned pigs to evaluate effects of water and feed interventions on fecal shedding and growth performance. J. Anim. Sci. 2017, 95, 2879–2890. [Google Scholar] [CrossRef]
- Hyman, P.; Abedon, S.T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. [Google Scholar]
- Teklemariam, A.D.; Hindi, R.A.; Qadri, I.; Alharbi, M.G.; Hashem, A.M.; Alrefaei, A.A.; Basamad, N.A.; Haque, S.; Alamri, T.; Harakeh, S. Phage cocktails—An emerging approach for the control of bacterial infection with major emphasis on foodborne pathogens. Biotechnol. Genet. Eng. Rev. 2024, 40, 36–64. [Google Scholar] [CrossRef]
- Liang, S.; Qi, Y.; Yu, H.; Sun, W.; Raza, S.H.A.; Alkhorayef, N.; Alkhalil, S.S.; Salama, E.E.A.; Zhang, L. Bacteriophage therapy as an application for bacterial infection in China. Antibiotics 2023, 12, 417. [Google Scholar] [CrossRef]
Host Bacteria Strains | Sample Sources | Screened Bacteriophages | References |
---|---|---|---|
1 Escherichia coli (E. coli) strain (E. coli GXXW-1103) | Pig farm sewage | 1 bacteriophage (bacteriophage A221) | [28] |
14 E. coli strains (E. coli M158, M170, M171, M179, M181, M184, M187, M209, M226, M240, M241, M242, M243, M245) | Drained water from meat stalls1 and dissected areas from local markets | 6 bacteriophages (bacteriophage vB_EcoM-RPN170, vB_EcoM-RPN171, vB_EcoM-RPN187, vB_EcoM-RPN226, vB_EcoM-RPN242, vB_EcoP-RPN243) | [29] |
1 E. coli strain (enterotoxigenic E. coli (ETEC) K88) | Pig manure from a commercial farm | 1 bacteriophage (bacteriophage L86) | [30] |
2 E. coli strains (ETEC K88 and K99) | Feces of 30- to 70-day-old grower pigs on a commercial swine farm | 2 bacteriophages (ETEC K88-specific bacteriophage and K99-specific bacteriophage) | [31] |
87 E. coli strains | Feces from a pig farm | 1 bacteriophage (bacteriophage C1) | [12,32] |
1 E. coli strain (ETEC JG280) | Pig farm sewage | 1 bacteriophage (ETEC-specific lytic bacteriophage CJ12) | [33,34] |
1 E. coli strain (E. coli O157:H7 GN07) | Pig farm sewage | 1 bacteriophage (bacteriophage EP01) | [16,35] |
1 Salmonella typhimurium strain (Salmonella typhimurium SM022) | Pig farm sewage | 1 bacteriophage (Salmonella bacteriophage NJ12) | [16] |
12 Salmonella strains | Food processing plant and pig farm | 2 bacteriophages (bacteriophage SPFM10 and SPFM14) | [36,37,38] |
1 Salmonella typhimurium strain | Pig manure collected from a sewage treatment plant of a commercial swine farm | 1 bacteriophage (Salmonella typhimurium-specific bacteriophage STP-1) | [39] |
6 Salmonella strains (Salmonella enterica Enteritidis SE30, Salmonella enterica Gallinarum SG40, Salmonella enterica typhimurium ST11, Salmonella enterica typhimurium ST2, Salmonella enterica Enteritidis SE5, Salmonella enterica Choleraesuis SC1) | Sewage and feces from a pig farm | 16 lytic bacteriophages (bacteriophage SEP-1, SGP-1, STP-1, SS3eP-1, EK99P-1, SalTP-2, SChP-1, SAP-1, SAP-2, E41P-1, EK88P-1, CPP-3, CPP-5) | [40] |
Subject | Bacteriophage | Bacteriophage Dosage and Duration | Challenge Model | Main Results (Bacteriophage Group vs. Control Group) | References |
---|---|---|---|---|---|
Weaned piglets (3-week-old) | Microencapsulated bacteriophage (1 bacteriophage isolated using Escherichia coli (E. coli) GXXW-1103 as host strain) |
| E. coli challenge (E. coli GXXW-1103) (the challenge group as the control group) |
| [28] |
Weaned piglets (3-week-old) | Bacteriophage cocktail (6 bacteriophages isolated using 14 multidrug-resistant E. coli as host strains) |
| E. coli challenge (E. coli M170, M171, M187, M226, M242, M243) (the challenge group as the control group) |
| [29] |
Weaned piglets (5-week-old) | Enterotoxigenic E. coli (ETEC) K88-specific bacteriophage |
| ETEC K88 challenge (the challenge group as the control group) |
| [30] |
Weaned piglets (4-week-old) | Bacteriophage cocktail (2 bacteriophages specific to ETEC K88 and K99, respectively) |
| ETEC K88 and K99 challenge (the challenge group as the control group) |
| [31] |
Weaned piglets (3-week-old) | ETEC-specific bacteriophage |
| ETEC JG280 challenge (the challenge group as the control group) |
| [34] |
Weaned piglets (3-week-old) | Microencapsulated bacteriophage cocktail (EP01 and NJ12 bacteriophages isolated using E. coli O157:H7 and Salmonella typhimurium SM022 as host strains, respectively) |
| E. coli O157:H7 and Salmonella typhimurium SM022 challenge (the challenge group as the control group) |
| [16] |
Weaned piglets (7.28–7.49 kg) | Bacteriophage cocktail (SPFM10 and SPFM14 bacteriophages) |
| Salmonella typhimurium SL1344 challenge (the challenge group as the control group) |
| [38] |
Weaned piglets (3-week-old) | Salmonella typhimurium-specific bacteriophage |
| Salmonella typhimurium CTC1110 challenge (the challenge group as the control group) |
| [39] |
Weaned piglets (4-week-old) | Bacteriophage cocktail (SEP-1, SGP-1, STP-1, SS3eP-1, SalTP-2, SChP-1, SAP-1, and SAP-2 bacteriophages) |
| Salmonella typhimurium ATCC14028 challenge (the challenge group as the control group) |
| [40] |
Weaned piglets (3-week-old) | Bacteriophage cocktail (E. coli (K88, K99, and F41), Salmonella (S. typhimurium and S. enteritidis), and Clostridium perfringens types A- and C-specific bacteriophages) |
| Non-sanitary environment challenge (the challenge group as the control group) |
| [41] |
Weaned piglets (8.08 ± 0.36 kg) | Bacteriophage cocktail (E. coli (K88, K99, and F41), Salmonella (S. typhimurium, S. enteritidis, S. cholerasuis, and S. derby), Staphylococcus aureus, and Clostridium perfringens types A- and C-specific bacteriophages) |
| Contaminated environment challenge (the challenge group as the control group) |
| [42] |
Weaned piglets (3-week-old) | Bacteriophage cocktail (C1, S19cd, S143_2, N2, and C6 bacteriophages) |
| No challenge (the non-bacteriophage-administrated group as the control group) |
| [32] |
Weaned piglets (6-week-old) | Bacteriophage cocktail (E. coli (K88, F18, Stx2e [ETEC], and enteropathogenic E. coli), Salmonella (S. typhimurium, S. enteritidis, and S. cholerasuis), and Clostridium perfringens types A- and C-specific bacteriophages) |
| No challenge (the antibiotics group as the control group) |
| [43] |
Weaned piglets (25-day-old) | Bacteriophage cocktail (E. coli (K88, K99, 987P, F18, F41, and O78), Salmonella (S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. gallinarum, S. pullorum, and S. typhimurium), Clostridium perfringens (types A, B, C, D, and E), and Staphylococcus aureus-specific bacteriophages) |
| No challenge (the antibiotics group as the control group) |
| [44] |
Weaned piglets (7.27 ± 0.26 kg) | Bacteriophage cocktail (E. coli (K88, K99, and F41), Salmonella (S. typhimurium, S. enteritidis, S. cholerasuis, and S. derby), Staphylococcus aureus, and Clostridium perfringens types A- and C-specific bacteriophages) |
| No challenge (the non-bacteriophage-supplemented group as the control group) |
| [45] |
Weaned piglets (24 ± 3-day-old) | Bacteriophage cocktail (E. coli (K88, K99, and F41), Salmonella (S. typhimurium, S. enteritidis, S. cholerasuis, and S. derby), Staphylococcus aureus, and Clostridium perfringens types A- and C-specific bacteriophages) |
| No challenge (the non-bacteriophage-supplemented group as the control group) |
| [46] |
Weaned piglets (7.34 ± 0.27 kg) | Bacteriophage cocktail (E. coli (K88, K99, and F41), Salmonella (S. typhimurium, S. enteritidis, S. cholerasuis, and S. derby), Staphylococcus aureus, and Clostridium perfringens types A- and C-specific bacteriophages) |
| No challenge (the non-bacteriophage-supplemented group as the control group) |
| [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Han, J.; Yang, Z.; Zhou, W.; He, Y.; Chen, X.; Li, X.; Zou, T.; You, J. Bacteriophages as Potential Anti-Pathogenic Agents for Intestinal Health of Weaned Piglets in the Post-Antibiotic Era: An Updated Review. Animals 2025, 15, 1713. https://doi.org/10.3390/ani15121713
Chen J, Han J, Yang Z, Zhou W, He Y, Chen X, Li X, Zou T, You J. Bacteriophages as Potential Anti-Pathogenic Agents for Intestinal Health of Weaned Piglets in the Post-Antibiotic Era: An Updated Review. Animals. 2025; 15(12):1713. https://doi.org/10.3390/ani15121713
Chicago/Turabian StyleChen, Jun, Jiajun Han, Zheng Yang, Wenyue Zhou, Yuyong He, Xingping Chen, Xin Li, Tiande Zou, and Jinming You. 2025. "Bacteriophages as Potential Anti-Pathogenic Agents for Intestinal Health of Weaned Piglets in the Post-Antibiotic Era: An Updated Review" Animals 15, no. 12: 1713. https://doi.org/10.3390/ani15121713
APA StyleChen, J., Han, J., Yang, Z., Zhou, W., He, Y., Chen, X., Li, X., Zou, T., & You, J. (2025). Bacteriophages as Potential Anti-Pathogenic Agents for Intestinal Health of Weaned Piglets in the Post-Antibiotic Era: An Updated Review. Animals, 15(12), 1713. https://doi.org/10.3390/ani15121713