Plasma Hormone and Metabolomics Identifies Metabolic Pathways Associated with Growth Rate of Dezhou Donkeys
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Determination of Growth Performance
2.3. Hormone Level Measurement
2.4. Metabolomic Analysis
2.4.1. Metabolite Extraction
2.4.2. LC–MS/MS Detection
2.4.3. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Determination of Growth Performance of Donkeys
3.2. Hormone Levels of Donkeys
3.3. Metabolomic Profiling of Plasma Samples
3.3.1. Analysis of Plasma Differentially Abundant Metabolites
3.3.2. Functional Enrichment Analysis of Differentially Abundant Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seyiti, S.; Kelimu, A. Donkey industry in China: Current aspects, suggestions and future challenges. J. Equine Vet. Sci. 2021, 102, 103642. [Google Scholar] [PubMed]
- Lu, F.; Wang, Y.; Liu, Q.; Wang, C. The state of development, real constraints and the countermeasures of the donkey industry in China in 2023. Chin. J. Anim. Sci. 2024, 60, 396–399. [Google Scholar]
- Chai, W.; Xu, J.; Qu, H.; Ma, Q.; Zhu, M.; Li, M.; Zhan, Y.; Wang, T.; Gao, J.; Yao, H. Differential proteomic analysis to identify potential biomarkers associated with quality traits of Dezhou donkey meat using a data-independent acquisition (DIA) strategy. LWT 2022, 166, 113792. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhan, Y.; Han, Y.; Liu, Z.; Wang, Y.; Wang, C. Estimation of liveweight from body measurements through best fitted regression model in Dezhou donkey breed. J. Equine Vet. Sci. 2021, 101, 103457. [Google Scholar] [CrossRef]
- Irvin, M.E.; Kidane, N.F.; Carstens, G.E.; Foxworth, W.B.; O’Reilly, K.; Horner, S. 375 Effects of Breed Type and Gender on Performance, Feeding Behavior, and Feed Efficiency in Growing goats. J. Anim. Sci. 2023, 101, 305–306. [Google Scholar] [CrossRef]
- Albechaalany, J.; Ellies-Oury, M.; Saracco, J.; Campo, M.; Richardson, I.; Ertbjerg, P.; Failla, S.; Panea, B.; Williams, J.; Christensen, M. Modelling the physiological, muscular, and sensory characteristics in relation to beef quality from 15 cattle breeds. Livest. Sci. 2024, 280, 105395. [Google Scholar] [CrossRef]
- Brown-Borg, H.M. Growth hormone, not IGF-1 is the key longevity regulator in mammals. J. Gerontol. Ser. A 2022, 77, 1719–1723. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar]
- Frassetto, L.A.; Masharani, U. Effects of Alterations in Acid–Base Effects on Insulin Signaling. Int. J. Mol. Sci. 2024, 25, 2739. [Google Scholar]
- Todini, L.; Malfatti, A.; Mughetti, L.; Acuti, G.; Barbato, O.; Beghelli, D.; Trabalza-Marinucci, M. Blood thyroid hormones, insulin and leptin, metabolites and enzymes in transition dairy ewes, as affected by dietary linseed and physiological stage. Res. Vet. Sci. 2022, 151, 47–56. [Google Scholar] [CrossRef]
- Rizk, J.; Sahu, R.; Duteil, D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023, 199, 109306. [Google Scholar] [PubMed]
- Pehlivan, E. Relationship between insulin-like growth factor-1 (IGF-1) concentrations and body trait measurements and climatic factors in prepubertal goat kids. Arch. Anim. Breed. 2019, 62, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Ghanima, M.M.A.; Abd El-Hack, M.E.; Al-Otaibi, A.M.; Nasr, S.; Almohmadi, N.H.; Taha, A.E.; Jaremko, M.; El-Kasrawy, N.I. Growth performance, liver and kidney functions, blood hormonal profile, and economic efficiency of broilers fed different levels of threonine supplementation during feed restriction. Poult. Sci. 2023, 102, 102796. [Google Scholar]
- Abdel-Hamid, T.M.; El-Tarabany, M.S. Effect of bee pollen on growth performance, carcass traits, blood parameters, and the levels of metabolic hormones in New Zealand White and Rex rabbits. Trop. Anim. Health Prod. 2019, 51, 2421–2429. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar]
- Salari, F.; Licitra, R.; Altomonte, I.; Martini, M. Donkey feeding during maintenance, pregnancy, and lactation: Effects on Body weight, Milk production, and foal growth. J. Equine Vet. Sci. 2020, 91, 103131. [Google Scholar]
- Zhang, Z.; Huang, B.; Wang, Y.; Zhu, M.; Liu, G.; Wang, C. A survey report on the donkey original breeding farms in China: Current aspects and future prospective. Front. Vet. Sci. 2023, 10, 1126138. [Google Scholar] [CrossRef]
- Sjögren, K.; Liu, J.-L.; Blad, K.; Skrtic, S.; Vidal, O.; Wallenius, V.; LeRoith, D.; Törnell, J.; Isaksson, O.G.; Jansson, J.-O. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 7088–7092. [Google Scholar]
- Yakar, S.; Liu, J.-L.; Stannard, B.; Butler, A.; Accili, D.; Sauer, B.; LeRoith, D. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 1999, 96, 7324–7329. [Google Scholar]
- Khalilvandi-Behroozyar, H.; Mohtashami, B.; Dehghan-Banadaky, M.; Kazemi-Bonchenari, M.; Ghaffari, M. Effects of fat source in calf starter on growth performance, blood fatty acid profiles, and inflammatory markers during cold season. Sci. Rep. 2023, 13, 18627. [Google Scholar]
- Wang, S.; Li, Q.; Peng, J.; Niu, H. Effects of long-term cold stress on growth performance, behavior, physiological parameters, and energy metabolism in growing beef cattle. Animals 2023, 13, 1619. [Google Scholar] [CrossRef] [PubMed]
- Petraitienė, I.; Valūnienė, M.; Albertsson-Wikland, K.; Verkauskienė, R. Adrenal function in adolescence is related to intrauterine and postnatal growth. Medicina 2019, 55, 167. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Liu, J.; Yang, H. Research progress on effects of cold stress on main neuroendocrine responses. J. Environ. Health 2012, 29, 470–472. [Google Scholar]
- Chang, H.R.; Kim, H.J.; Xu, X.; Ferrante, A.W., Jr. Macrophage and adipocyte IGF 1 maintain adipose tissue homeostasis during metabolic stresses. Obesity 2016, 24, 172–183. [Google Scholar]
- Gavate, N.D.; Shetty, S.; Nayak, R.S.; K, V.; Narayan, A.; KR, C. Assessment of dehydroepiandrosterone sulphate (DHEAS) and cortisol levels in saliva and their correlation to cervical vertebrae maturation method in males and females at different growth stages: A clinical study. Dent. Press J. Orthod. 2023, 28, e2322277. [Google Scholar] [CrossRef]
- Perry, R.; Farquharson, C.; Ahmed, S. The role of sex steroids in controlling pubertal growth. Clin. Endocrinol. 2008, 68, 4–15. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, Y.; Zhang, X.; Wang, D. Cold exposure inhibits hypothalamic Kiss-1 gene expression, serum leptin concentration, and delays reproductive development in male Brandt’s vole (Lasiopodomys brandtii). Int. J. Biometeorol. 2015, 59, 679–691. [Google Scholar]
- Imaz, J.A.; García, S.; González, L.A. The metabolomics profile of growth rate in grazing beef cattle. Sci. Rep. 2022, 12, 2554. [Google Scholar] [CrossRef]
- Cong, P.; Liu, Y.; Liu, N.; Zhang, Y.; Tong, C.; Shi, L.; Liu, X.; Shi, X.; Liu, Y.; Tong, Z. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc. Disord. 2018, 18, 36. [Google Scholar]
- Su, Y.; Zhang, X.; Xin, H.; Li, S.; Li, J.; Zhang, R.; Li, X.; Li, J.; Bao, J. Effects of prior cold stimulation on inflammatory and immune regulation in ileum of cold-stressed broilers. Poult. Sci. 2018, 97, 4228–4237. [Google Scholar]
- Cesari, M.; Kritchevsky, S.B.; Nicklas, B.; Kanaya, A.M.; Patrignani, P.; Tacconelli, S.; Tranah, G.J.; Tognoni, G.; Harris, T.B.; Incalzi, R.A. Oxidative damage, platelet activation, and inflammation to predict mobility disability and mortality in older persons: Results from the health aging and body composition study. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2012, 67, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, M.; Guichardant, M.; Bernoud-Hubac, N.; Calzada, C.; Véricel, E. Oxygenation of polyunsaturated fatty acids and oxidative stress within blood platelets. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2018, 1863, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Rohr, M.; Narasimhulu, C.A.; Keewan, E.a.; Hamid, S.; Parthasarathy, S. The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells. Food Funct. 2020, 11, 9526–9534. [Google Scholar] [CrossRef] [PubMed]
- Suksatan, W.; Putera, H.D.; Abdulkadhim, A.H.; Hammid, A.T.; Ismailov, J.A.; Jannat, B.; Parvizi, R.; Izadi, F. The effect of conjugated linoleic acid supplementation on oxidative stress markers: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2022, 49, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, L.; Qing, J.; Wu, X.; Li, H.; Chen, H.; Liu, X. Multiple biological activities and biosynthesis mechanisms of specific conjugated linoleic acid isomers and analytical methods for prospective application. Food Chem. 2023, 409, 135257. [Google Scholar] [CrossRef]
- Cao, J.; Yu, L.; Zhao, J.; Ma, H. Effect of dehydroepiandrosterone on the immune function of mice in vivo and in vitro. Mol. Immunol. 2019, 112, 283–290. [Google Scholar] [CrossRef]
- Gao, R.; Shi, L.; Guo, W.; Xu, Y.; Jin, X.; Yan, S.; Shi, B. Effects of housing and management systems on the growth, immunity, antioxidation, and related physiological and biochemical indicators of donkeys in cold weather. Animals 2022, 12, 2405. [Google Scholar] [CrossRef]
- Cordero, G.; Isabel, B.; Menoyo, D.; Daza, A.; Morales, J.; Pineiro, C.; López-Bote, C. Dietary CLA alters intramuscular fat and fatty acid composition of pig skeletal muscle and subcutaneous adipose tissue. Meat Sci. 2010, 85, 235–239. [Google Scholar] [CrossRef]
- Zhang, F.; Fu, Y.; Wang, J.; Li, F.; Lang, L.; Zhu, X.; Wang, L.; Gao, P.; Shu, G.; Zhu, C. Conjugated linoleic acid (CLA) reduces HFD-induced obesity by enhancing BAT thermogenesis and iWAT browning via the CD36–AMPK pathway. Cell Biochem. Funct. 2024, 42, e3937. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, X.; Wang, Z.; Zhou, A.; Peng, Q.; Zou, H.; Xue, B.; Wang, L. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed × Simmental cattle. Anim. Sci. J. 2016, 87, 517–524. [Google Scholar] [CrossRef]
- Chen, J.; You, R.; Lv, Y.; Liu, H.; Yang, G. Conjugated linoleic acid regulates adipocyte fatty acid binding protein expression via peroxisome proliferator-activated receptor α signaling pathway and increases intramuscular fat content. Front. Nutr. 2022, 9, 1029864. [Google Scholar] [CrossRef]
- Edwards, L.M.; Lawler, N.G.; Nikolic, S.B.; Peters, J.M.; Horne, J.; Wilson, R.; Davies, N.W.; Sharman, J.E. Metabolomics reveals increased isoleukotoxin diol (12, 13-DHOME) in human plasma after acute Intralipid infusion. J. Lipid Res. 2012, 53, 1979–1986. [Google Scholar] [CrossRef]
Traits | FG-Initial | SG-Initial | FG-Final | SG-Final |
---|---|---|---|---|
BH (cm) | 120.6 ± 2.5 | 119.5 ± 2.5 | 127.0 ± 2.4 | 124.8 ± 2.7 |
BSL (cm) | 111.0 ± 2.7 b | 110.2 ± 0.8 b | 123.4 ± 1.9 a | 122 ± 2.0 a |
CD (cm) | 45.7 ± 0.9 | 46.3 ± 1.2 | 48 ± 0.8 | 48.8 ± 1.0 |
CC (cm) | 119.8 ± 1.3 b | 120.4 ± 2.0 b | 130.3 ± 1.8 a | 129.6 ± 2.0 a |
CW (cm) | 27.2 ± 0.4 b | 27.6 ± 0.4 b | 31.2 ± 1.0 a | 31.2 ± 0.3 a |
RH (cm) | 122.9 ± 2.8 | 120.6 ± 2.8 | 131.1 ± 2.1 | 128.7 ± 3.0 |
RL (cm) | 36.4 ± 0.9 b | 36.2 ± 0.6 b | 39.4 ± 1.2 ab | 40 ± 0.8 a |
RW (cm) | 31.8 ± 0.3 b | 31.4 ± 0.8 b | 34.9 ± 0.5 a | 34.7 ± 0.4 a |
BC (cm) | 14.4 ± 0.3 b | 14.6 ± 0.4 b | 16.7 ± 0.5 a | 16.3 ± 0.2 a |
Items | FG | SG | p-Value |
---|---|---|---|
IBW (kg) | 159.36 ± 8.32 | 166.35 ± 3.61 | 0.463 |
FBW (kg) | 212.80 ± 10.43 | 203.60 ± 7.32 | 0.491 |
ADG (kg/day) | 0.35 ± 0.02 a | 0.24 ± 0.03 b | 0.024 |
Differential Abundant Metabolites | log2FC | p-Value | VIP |
---|---|---|---|
(3b,6b,8a,12a)-8,12-Epoxy-7(11)-eremophilene-6,8,12-trimethoxy-3-ol | 29.68 | 0.020 | 1.70 |
PA (14:0/PGJ2) | 29.52 | 0.022 | 1.70 |
Bacoside A | 29.49 | 0.021 | 1.72 |
solasodine 3-O-beta-D-glucopyranoside | 29.18 | 0.020 | 1.75 |
Tryptophyl-Valine | 27.65 | 0.019 | 1.72 |
Prizidilol | 26.09 | 0.020 | 1.70 |
Heteroxanthin | 6.71 | 0.018 | 1.74 |
DG (8:0/PGE1/0:0) | 6.01 | 0.017 | 1.73 |
Annomuricin A | 5.87 | 0.018 | 1.76 |
Dihydromycoplanecin A | 4.60 | 0.021 | 1.69 |
1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine | −5.40 | 0.001 | 2.01 |
Retinyl palmitate | −5.24 | 0.003 | 1.96 |
Isobutyl 10-undecenoate | −4.70 | 0.001 | 1.99 |
(±)-(E)-3-Methyl-4-decen-1-yl acetate | −4.22 | 0.000 | 2.04 |
Hexosylsphingosine | −3.80 | 0.000 | 2.03 |
DG (8:0/0:0/17:0) | −3.20 | 0.000 | 1.97 |
apicidin | −3.07 | 0.003 | 1.88 |
Neomycin B | −2.98 | 0.001 | 1.89 |
12-Hydroxy-12-octadecanoylcarnitine | −2.96 | 0.001 | 1.93 |
Glycocholate | −2.91 | 0.002 | 1.96 |
KEGG Pathway | Differentially Abundant Metabolites |
---|---|
Linoleic acid metabolism | c9,t11-conjugated linoleic acid (c9, t11-CLA), dihydroxyoctadecenoic acids (9,10-DHOME, 12,13-DHOME), epoxyoctadecenoic acids (9(10)-EpOME), 13-hydroperoxyoctadecadienoic acid (13(S)-HPODE) |
Arachidonic acid metabolism | 8(R)-hydroxyperoxyeicosatetraenoic acid (8(R)-HPETE), prostaglandin J2 (PGJ2), 2,3-dinor-8-iso-PGF2α, 11-dehydro-thromboxane B2 (11-DH-TXB2) |
Steroid hormone biosynthesis | corticosterone, cortol, dehydroepiandrosterone-sulfate (DHEAS), androsterone, testosterone |
Primary bile acid biosynthesis | taurocholic acid, glycocholate, 3α,7α,26-trihydroxy-5β-cholestane |
Sphingolipid metabolism | galabiosylceramide, sphingosylphosphorylcholine, 3-O-Sulfogalactosylceramide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, T.; Ma, Q.; Qu, H.; Wang, C.; Liu, W.; Chai, W. Plasma Hormone and Metabolomics Identifies Metabolic Pathways Associated with Growth Rate of Dezhou Donkeys. Animals 2025, 15, 1435. https://doi.org/10.3390/ani15101435
Wang L, Li T, Ma Q, Qu H, Wang C, Liu W, Chai W. Plasma Hormone and Metabolomics Identifies Metabolic Pathways Associated with Growth Rate of Dezhou Donkeys. Animals. 2025; 15(10):1435. https://doi.org/10.3390/ani15101435
Chicago/Turabian StyleWang, Liyuan, Tong Li, Qiugang Ma, Honglei Qu, Changfa Wang, Wenqiang Liu, and Wenqiong Chai. 2025. "Plasma Hormone and Metabolomics Identifies Metabolic Pathways Associated with Growth Rate of Dezhou Donkeys" Animals 15, no. 10: 1435. https://doi.org/10.3390/ani15101435
APA StyleWang, L., Li, T., Ma, Q., Qu, H., Wang, C., Liu, W., & Chai, W. (2025). Plasma Hormone and Metabolomics Identifies Metabolic Pathways Associated with Growth Rate of Dezhou Donkeys. Animals, 15(10), 1435. https://doi.org/10.3390/ani15101435