Establishment of an In-House Indirect Enzyme-Linked Immunosorbent Assay to Detect Antibodies Against African Horse Sickness Based on Monovalent and Polyvalent Live Attenuated Vaccines During the First Outbreak in Thailand
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horse Sera and Animal Ethics
2.2. Commercial ELISA Test Kit
2.3. AHSV Antigen Preparation
2.4. Indirect ELISA
2.5. Standardization of the Indirect ELISA Method
2.6. Calculation of Cut-Off Value
2.7. Analysis
2.8. Intra- and Inter-Assay Variability
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairbanks, E.L.; Brennan, M.L.; Mertens, P.P.C.; Tildesley, M.J.; Daly, J.M. Re-parameterization of a mathematical model of African horse sickness virus using data from a systematic literature search. Transbound Emerg. Dis. 2022, 69, e671–e681. [Google Scholar] [CrossRef] [PubMed]
- Coetzer, J.; Guthrie, A.J. African horse sickness. In Infectious Diseases of Livestock, 2nd ed.; Coetzer, J.T., Ed.; Oxford University Press: Cape Town, South Africa, 2004; pp. 1231–1246. [Google Scholar]
- Taesuji, M.; Rattanamas, K.; Yim, P.B.; Ruenphet, S. Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction. Animals 2024, 14, 1242. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.; Mellor, P.S.; Fall, A.G.; Garros, C.; Venter, G.J. African horse sickness virus: History, transmission, and current status. Annu. Rev. Entomol. 2017, 62, 343–358. [Google Scholar] [CrossRef]
- Potgieter, A.C.; Wright, I.M.; van Dijk, A.A. Consensus sequence of 27 African horse sickness virus genomes from viruses collected over a 76-year period (1933 to 2009). Genome Announc. 2015, 3, e00921-15. [Google Scholar] [CrossRef]
- Wang, Y.; Ong, J.; Ng, O.W.; Songkasupa, T.; Koh, E.Y.; Wong, J.P.S.; Puangjinda, K.; Fernandez, C.J.; Huangfu, T.; Ng, L.C.; et al. Development of Differentiating Infected from Vaccinated Animals (DIVA) Real-Time PCR for African Horse Sickness Virus Serotype 1. Emerg. Infect. Dis. 2022, 28, 2446–2454. [Google Scholar] [CrossRef]
- Martínez-Torrecuadrada, J.L.; Langeveld, J.P.M.; Meloen, R.H.; Casal, J.I. Definition of neutralizing sites on African horse sickness virus serotype 4 VP2 at the level of peptides. J. Gen. Virol. 2001, 82, 2415–2424. [Google Scholar] [CrossRef]
- Grewar, J.D.; Koize, J.L.; Parker, B.J.; van Helden, L.S.; Weyer, C.T. An entry risk assessment of African horse sickness virus into the controlled area of South Africa through the legal movement of equids. PLoS ONE 2021, 16, e0252117. [Google Scholar] [CrossRef]
- de Klerk, J.N.; Gorsich, E.E.; Grewar, J.D.; Atkins, B.D.; Tennant, W.S.D.; Labuschagne, K.; Tidesley, M.J. Modelling African horse sickness emergence and transmission in the South African control area using a deterministic metapopulation approach. PLoS Comput. Biol. 2023, 19, e1011448. [Google Scholar] [CrossRef]
- Castillo-Olivares, J. African horse sickness in Thailand: Challenges of controlling an outbreak by vaccination. Equine Vet. J. 2021, 53, 9–14. [Google Scholar] [CrossRef]
- King, S.; Rajko-Nenow, P.; Ashby, M.; Frost, L.; Carpenter, S.; Batten, C. Outbreak of African horse sickness in Thailand, 2020. Transbound. Emerg. Dis. 2020, 67, 1764–1767. [Google Scholar] [CrossRef]
- Lu, G.; Pan, J.; Ou, J.; Shao, R.; Hu, X.; Wang, C.; Li, S. African horse sickness: Its emergence in Thailand and potential threat to other Asian countries. Transbound. Emerg. Dis. 2020, 67, 1751–1753. [Google Scholar] [CrossRef] [PubMed]
- Bunpapong, N.; Charoenkul, K.; Nasamran, C.; Chamsai, E.; Udom, K.; Boonyapisitsopa, S.; Tantilertcharoen, R.; Kesdangsakonwut, S.; Techakriengkrai, N.; Suradhat, S.; et al. African Horse sickness virus serotype 1 on horse farm, Thailand, 2020. Emerg. Infect. Dis. 2021, 27, 2208–2211. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.; Page, P.; Archer, D.; Baylis, M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. 2016, 48, 659–669. [Google Scholar] [CrossRef]
- Mellor, P.S.; Boorman, J.; Jennings, M. The multiplication of African horse-sickness virus in two species of Culicoides (Diptera, Ceratopogonidae). Arch. Virol. 1975, 47, 351–356. [Google Scholar] [CrossRef]
- Boorman, J.; Mellor, P.S.; Penn, M.; Jennings, M. The growth of African horse-sickness virus in embryonated hen eggs and the transmission of virus by Culicoides variipennis Coquillett (Diptera, Ceratopogonidae). Arch. Virol. 1975, 47, 343–349. [Google Scholar] [CrossRef]
- Dennis, S.J.; Meyers, A.E.; Hitzeroth, I.I.; Rybicki, E.P. African horse sickness: A review of current understanding and vaccine development. Viruses 2019, 11, 11. [Google Scholar] [CrossRef]
- Mellor, P.S.; Hamblin, C. African horse sickness. Vet. Res. 2004, 35, 445–466. [Google Scholar] [CrossRef]
- Crafford, J.E.; Lourens, C.W.; Smit, T.K.; Gardner, I.A.; MacLachlan, N.J.; Guthrie, A.J. Serological response of foals to polyvalent and monovalent live-attenuated African horse sickness virus vaccines. Vaccine 2014, 32, 3611–3616. [Google Scholar] [CrossRef]
- Weyer, C.T.; Grewar, J.D.; Burger, P.; Rossouw, E.; Lourens, C.; Joone, C.; le Grange, M.; Coetzee, P.; Venter, E.; Martin, D.P.; et al. African horse sickness caused by genome reassortment and reversion to virulence of live, attenuated vaccine viruses, South Africa, 2004–2014. Emerg. Infect. Dis. 2016, 22, 2087–2096. [Google Scholar] [CrossRef]
- MacLachlan, N.J.; Guthrie, A.J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 2010, 41, 35. [Google Scholar] [CrossRef]
- Venter, G.J.; Paweska, J.T. Virus recovery rates for wild-type and live-attenuated vaccine strains of African horse sickness virus serotype 7 in orally infected South African Culicoides species. Med. Vet. Entomol. 2007, 21, 377–383. [Google Scholar] [CrossRef] [PubMed]
- World Organization for Animal Health. Principles and methods of validation of diagnostic assays for infectious diseases. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Ch. 1.1.6; World Organization for Animal Health: Paris, France, 2018; Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION.pdf (accessed on 9 March 2025).
- Kunanusont, N.; Taesuji, M.; Kulthonggate, U.; Rattanamas, K.; Mamom, T.; Thongsri, K.; Phannithi, T.; Ruenphet, S. Longitudinal humoral immune response and maternal immunity in horses after a single live-attenuated vaccination against African horse sickness during the disease outbreak in Thailand. Vet. World. 2023, 16, 1690–1694. [Google Scholar] [CrossRef] [PubMed]
- Taesuji, M.; Rattanamas, K.; Kulthonggate, U.; Mamom, T.; Ruenphet, S. Sensitivity and specificity for African horse sickness antibodies detection using monovalent and polyvalent vaccine antigen-based dot blotting. Vet. World. 2022, 15, 2760–2763. [Google Scholar] [CrossRef] [PubMed]
- Crowther, J.R. The ELISA Guidebook; Humana Press: Totowa, NJ, USA, 2001; 421p. [Google Scholar]
- World Organization for Animal Health. African Horse Sickness (Infection with Africann Horse Sickness Virus); Ch. 3.6.1; World Organization for Animal Health: Paris, France, 2025; Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.06.01_AHS.pdf (accessed on 20 March 2025).
- World Organization for Animal Health. Application for Official Recognition by the OIE of Free Status for African Horse Sickness; Ch. 1.7.; World Organization for Animal Health: Paris, France, 2021; Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_selfdeclaration_AHS.pdf (accessed on 22 March 2025).
- Durán-Ferrer, M.; Agüero, M.; Zientara, S.; Beck, C.; Lecollinet, S.; Sailleau, C.; Smith, S.; Potgieter, C.; Rueda, P.; Sastre, P.; et al. Assessment of reproducibility of a VP7 Blocking ELISA diagnostic test for African horse sickness. Transbound. Emerg. Dis. 2019, 66, 83–90. [Google Scholar] [CrossRef]
Serum | 1:100 | 1:200 | 1:400 | 1:800 | 1:1600 | 1:3200 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antigen | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1:20 | A | 0.76 | 0.79 | 0.57 | 0.36 | 0.36 | 0.36 | 0.25 | 0.26 | 0.16 | 0.17 | 0.15 | 0.15 |
B | 0.83 | 0.83 | 0.62 | 0.65 | 0.42 | 0.40 | 0.30 | 0.30 | 0.20 | 0.22 | 0.17 | 0.18 | |
1:40 | C | 0.73 | 0.74 | 0.55 | 0.56 | 0.40 | 0.38 | 0.28 | 0.28 | 0.18 | 0.17 | 0.14 | 0.16 |
D | 0.71 | 0.73 | 0.56 | 0.56 | 0.38 | 0.36 | 0.28 | 0.29 | 0.18 | 0.21 | 0.15 | 0.16 | |
1:80 | E | 0.68 | 0.70 | 0.55 | 0.53 | 0.37 | 0.37 | 0.27 | 0.27 | 0.18 | 0.18 | 0.13 | 0.15 |
F | 0.68 | 0.70 | 0.53 | 0.53 | 0.37 | 0.40 | 0.28 | 0.32 | 0.20 | 0.26 | 0.17 | 0.18 | |
1:160 | G | 0.66 | 0.70 | 0.54 | 0.55 | 0.36 | 0.37 | 0.26 | 0.25 | 0.15 | 0.16 | 0.10 | 0.12 |
H | 0.67 | 0.72 | 0.56 | 0.56 | 0.40 | 0.42 | 0.31 | 0.35 | 0.22 | 0.28 | 0.21 | 0.21 |
Serum | 1:100 | 1:200 | 1:400 | 1:800 | 1:1600 | 1:3200 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antigen | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1:20 | A | 1.48 | 1.46 | 1.20 | 1.19 | 0.90 | 0.90 | 0.65 | 0.62 | 0.38 | 0.34 | 0.23 | 0.23 |
B | 1.42 | 1.49 | 1.24 | 1.25 | 0.96 | 1.02 | 0.68 | 0.68 | 0.42 | 0.40 | 0.26 | 0.29 | |
1:40 | C | 1.35 | 1.35 | 1.10 | 1.09 | 0.82 | 0.80 | 0.55 | 0.55 | 0.37 | 0.37 | 0.24 | 0.24 |
D | 1.30 | 1.28 | 1.05 | 1.03 | 0.81 | 0.81 | 0.56 | 0.56 | 0.36 | 0.37 | 0.23 | 0.24 | |
1:80 | E | 1.20 | 1.09 | 0.91 | 0.88 | 0.66 | 0.65 | 0.67 | 0.46 | 0.30 | 0.29 | 0.20 | 0.22 |
F | 1.21 | 1.07 | 0.88 | 0.90 | 0.65 | 0.66 | 0.49 | 0.56 | 0.34 | 0.35 | 0.23 | 0.22 | |
1:160 | G | 0.97 | 0.87 | 0.90 | 0.70 | 0.50 | 0.49 | 0.35 | 0.34 | 0.22 | 0.21 | 0.14 | 0.13 |
H | 0.99 | 0.96 | 0.77 | 0.74 | 0.55 | 0.56 | 0.42 | 0.50 | 0.32 | 0.33 | 0.22 | 0.23 |
Indirect ELISA (Monovalent) | Indirect ELISA (Polyvalent) | ||||
---|---|---|---|---|---|
Positive | Negative | Positive | Negative | ||
bELISA | Positive | 83 | 11 | 82 | 12 |
Negative | 31 | 63 | 15 | 79 |
Indirect ELISA Monovalent | Indirect ELISA Polyvalent | |
---|---|---|
Sensitivity (%) | 88.30 | 87.23 |
Specificity (%) | 67.02 | 84.04 |
Assay Type | Replicates Tested | CV (%) | Notes |
---|---|---|---|
Intra-assay (Monovalent antigen) | Duplicate samples within the same plate | 5.2% | Consistency within a single experiment |
Intra-assay (Polyvalent antigen) | Duplicate samples within the same plate | 4.8% | Consistency within a single experiment |
Inter-assay (Monovalent antigen) | Same samples, different days | 6.3% | Reproducibility across multiple experiments |
Inter-assay (Polyvalent antigen) | Same samples, different days | 5.9% | Reproducibility across multiple experiments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punyadarsaniya, D.; Taesuji, M.; Rattanamas, K.; Ruenphet, S. Establishment of an In-House Indirect Enzyme-Linked Immunosorbent Assay to Detect Antibodies Against African Horse Sickness Based on Monovalent and Polyvalent Live Attenuated Vaccines During the First Outbreak in Thailand. Animals 2025, 15, 1433. https://doi.org/10.3390/ani15101433
Punyadarsaniya D, Taesuji M, Rattanamas K, Ruenphet S. Establishment of an In-House Indirect Enzyme-Linked Immunosorbent Assay to Detect Antibodies Against African Horse Sickness Based on Monovalent and Polyvalent Live Attenuated Vaccines During the First Outbreak in Thailand. Animals. 2025; 15(10):1433. https://doi.org/10.3390/ani15101433
Chicago/Turabian StylePunyadarsaniya, Darsaniya, Machimaporn Taesuji, Khate Rattanamas, and Sakchai Ruenphet. 2025. "Establishment of an In-House Indirect Enzyme-Linked Immunosorbent Assay to Detect Antibodies Against African Horse Sickness Based on Monovalent and Polyvalent Live Attenuated Vaccines During the First Outbreak in Thailand" Animals 15, no. 10: 1433. https://doi.org/10.3390/ani15101433
APA StylePunyadarsaniya, D., Taesuji, M., Rattanamas, K., & Ruenphet, S. (2025). Establishment of an In-House Indirect Enzyme-Linked Immunosorbent Assay to Detect Antibodies Against African Horse Sickness Based on Monovalent and Polyvalent Live Attenuated Vaccines During the First Outbreak in Thailand. Animals, 15(10), 1433. https://doi.org/10.3390/ani15101433