Supplementation of Arginine or N-Carbamylglutamate Affects Jejunum Development, Global Arginine Bioavailability Ratio, and Stress-Related Indices in Young Rex Rabbits
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diets and Feeding Procedures
2.3. Sample Collection and Indicator Measurement
2.4. RT-PCR to Detect the Relative Expression of the mRNA of Jejunal iNOS and HSP70 Genes
2.5. Data Analysis
3. Results
3.1. Jejunum Development in 36-Day-Old Rabbits
3.2. Serum NO Concentration and iNOS Activity in 36-Day-Old Young Rabbits
3.3. Jejunum NO Concentration, iNOS Activity, and Gene mRNA Expression in 36-Day-Old Rabbits
3.4. Serum Cortisol in 36-Day-Old Rabbits
3.5. Concentration and mRNA Expression of HSP70 in the Jejunum of 36-Day-Old Rabbits
3.6. GABR of Arginine in 36-Day-Old Rabbits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortun-Lamothe, L.; Boullier, S.A. Review on the Interactions between Gut Microflora and Digestive Mucosal Immunity. Possible Ways to Improve the Health of Rabbits. Livest. Sci. 2007, 107, 1–18. [Google Scholar] [CrossRef]
- Carabaño, R.; Badiola, I.; Chamorro, S.; García, J.; García-Ruiz, A.I.; García-Rebollar, P.; Gómez-Conde, M.S.; Gutiérrez, I.; Nicodemus, N.; Villamide, M.J.; et al. New Trends in Rabbit Feeding: Influence of Nutrition on intestinal health. Span. J. Agric. Res. 2008, 6 (Suppl. S1), 15–25. [Google Scholar] [CrossRef]
- Zemzmi, J.; Ródenas, L.; Blas, E.; Najar, T.; Pascua, J.J. Characterisation and in Vitro Evaluation of Fenugreek (Trigonella foenum-graecum) Seed Gum as a Potential Prebiotic in Growing Rabbit Nutrition. Animals 2020, 10, 1041. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ruan, Z.; Gao, Y.; Yin, Y.L.; Zhou, X.H.; Wang, L.; Geng, M.M.; Hou, Y.Q.; Wu, G.Y. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn- and soybean meal-based diet. Amino Acids 2010, 39, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.E.; Li, X.G.; Kong, X.F.; Yao, K.; Yin, Y.L. Effects of arginine on intestinal growth, tissue morphology and IL-2 gene expression in early weaned piglets. Chin. Agric. Sci. 2008, 41, 2783–2788. (In Chinese) [Google Scholar] [CrossRef]
- Sukhotnik, I.; Lerner, A.; Sabo, E.; Krausz, M.M.; Siplovich, L.; Coran, A.G.; Mogilner, J.; Shiloni, E. Effects of enteral arginine supplementation on the structural intestinal adaptation in a rat model of short bowel syndrome. Dig. Dis. Sci. 2003, 48, 1346–1351. [Google Scholar] [CrossRef]
- Gookin, J.L.; Rhoads, J.M.; Argenzion, R.A. Inducible nitric oxide synthase mediates early epithelial repair of porcine ileum. Am. J. Physiol.-Gastrointest. Liver Physiol. 2002, 283, G157–G168. [Google Scholar] [CrossRef]
- Popovic, P.J.; Zeh, H.J.; Ochoa, J.B. Arginine and immunity. J. Nutr. 2007, 137, 1681S–1686S. [Google Scholar] [CrossRef]
- Hlatky, R.; Goodman, J.C.; Valadka, A.B.; Robertson, C.S. Role of nitric oxide in cerebral blood flow abnormalities after traumatic brain injury. J. Cereb. Blood Flow Metab. 2003, 23, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Wang, Z.; Cho, L.; Brennan, D.M.; Hazen, S.L. Diminished global arginine bioavailability and increased arginine catabolism as metabolic profile of increased cardiovascular risk. J. Am. Coll. Cardiol. 2009, 53, 2061–2067. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Shrestha, K.; Wang, Z.; Troughton, R.W.; Klein, A.L.; Hazene, S.L. Diminished global arginine bioavailability as a metabolic defect in chronic systolic heart failure. J. Card. Fail. 2013, 19, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Sourij, H.; Meinitzer, A.; Pilz, S.; Grammer, T.B.; Winkelmann, B.R.; Boehm, B.O.; März, W. Arginine bioavailability ratios are associated with cardiovascular mortality in patients referred to coronary angiography. Atherosclerosis 2011, 218, 220–225. [Google Scholar] [CrossRef]
- Zhang, L.L.; Qin, F.; Pan, X.Q.; Wang, J.; Shao, L.; Liu, B.Y.; Pan, C.L.; Yang, J. Effects of N-carbamylglutamate or arginine on production performance of lactation doe and growth performance, antioxidant ability of weaning rabbit. Anim. Husb. Vet. Med. 2017, 49, 40–45. (In Chinese) [Google Scholar]
- NRC. Nutrition Requirements of Rabbits. Report of the Committee on Animal Nutrition; National Academy Press: Washington, DC, USA, 1977. [Google Scholar]
- Sukhotnik, I.; Mogilner, J.; Michael, M.K.; Michael, L.; Mark, H.; Arnold, G.C.; Eitan, S. Oral arginine reduces gut mucosal injury caused by lipopolysaccharide endotoxemia in rat. J. Surg. Res. 2004, 122, 256–262. [Google Scholar] [CrossRef]
- Bao, Q.L.; Liu, Y.S.; Zhang, W.L. Protective role of arginine in gut barrier dysfunction induced by total parenteral nutrition. J. Clin. Pediatr. 2007, 25, 504–507. (In Chinese) [Google Scholar]
- Sun, X.M. Effect of L-Arginine and N-Carbamylgluatmate on Small Intestinal Villi Development and Cecal Microbiota Composition of Young Rabbits. Ph.D. Thesis, Jilin University, Changchun, China, 2019. (In Chinese). [Google Scholar]
- Yin, J.; Ren, W.; Duan, J.; Wu, L.; Chen, S.; Li, T.J.; Yin, Y.L.; Wu, G.Y. Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids 2014, 46, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Guan, S.; Li, T.; Huang, R.L.; Wu, G.Y.; Zheng, R.; Yin, Y.L. Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br. J. Nutr. 2011, 105, 703–709. [Google Scholar] [CrossRef]
- Hu, S.D.; Li, X.L.; Rezaei, R.; Meininger, C.J.; McNeal, C.J.; Wu, G.Y. Safety of long-term dietary supplementation with L-arginine in pigs. Amino Acids 2015, 47, 925–936. [Google Scholar] [CrossRef]
- Andrade, M.E.R.; de Barros, P.A.V.; dos Reis Menta, P.L.D.; Costa, G.M.F.; Miranda, S.E.M.; Leocádio, P.C.L.; de Almeida-Leite, C.M.; de Vasconcelos Generoso, S.; Leite, J.I.A.; Cardoso, V.N. Arginine supplementation reduces colonic injury, inflammation and oxidative stress of DSS-induced colitis in mice. J. Funct. Foods 2019, 52, 360–369. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, D.; Zhou, X.Q.; Hu, Y.; Feng, L.; Liu, Y.; Jiang, W.D.; Zhao, Y. In vitro and in vivo protective effect of arginine against lipopolysaccharide induced inflammatory response in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish. Immunol. 2015, 42, 457–464. [Google Scholar] [CrossRef]
- Ren, S.M.; TAO, Y. Effect of Arginine on Intestinal Health of Weaner Piglets and related Mechanisms. Chin. J. Anim. Nutr. 2014, 26, 2035–2039. (In Chinese) [Google Scholar] [CrossRef]
- Xiao, L.; Cao, W.; Liu, G.M.; Fang, T.T.; Wu, X.J.; Jia, G.; Chen, X.L.; Zhao, H.; Wang, J.; Wu, C.M.; et al. Arginine, N-carbamylglutamate, and glutamine exert protective effects against oxidative stress in rat intestine. Anim. Nutr. 2016, 2, 242–248. [Google Scholar] [CrossRef]
- Schwahn, B.C.; Pieterse, L.; Bisset, W.M.; Galloway, P.G.; Robinson, P.H. Biochemical efficacy of N-carbamylglutamate in neonatal severe hyperammonaemia due to propionic acidaemia. Eur. J. Pediatr. 2010, 169, 133–134. [Google Scholar] [CrossRef]
- Ucar, S.K.; Coker, M.; Habif, S.; Saz, E.U.; Karapinar, B.; Ucar, H.; Kitis, O.; Duran, M. The first use of N-carbamylglutamate in a patient with decompensated maple syrup urine disease. Metab. Brain Dis. 2009, 24, 409–414. [Google Scholar] [CrossRef]
- Zeng, X.F.; Huang, Z.M.; Mao, X.B.; Wang, J.J.; Wu, G.Y.; Qiao, S.Y. N-carbamylglutamate enhances pregnancy outcome in rats through activation of the PI3K/PKB/mTOR signaling pathway. PLoS ONE 2012, 7, e41192. [Google Scholar] [CrossRef] [PubMed]
- Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino acids 2007, 33, 547–562. [Google Scholar] [CrossRef]
- Tan, B.; Yin, Y.; Liu, Z.; Li, X.; Xu, H.; Kong, X.; Huang, R.; Tang, W.; Shinzato, I.; Smith, S.B.; et al. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino acids 2009, 37, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Rhoads, J.M.; Satterfield, M.C.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef]
- Laszlo, F.; Whittle, B.J.; Moncada, S. Time-dependent enhancement or inhibition of endotoxin-induced vascular injury in rat intestine by nitric oxide synthase inhibitors. Br. J. Pharmacol. 1994, 111, 1309–1315. [Google Scholar] [CrossRef]
- Iyu, M.; Manukhina, E.B.; Mikoyan, V.D.; Kubrina, L.N.; Vanin, A.F. Nitric oxide is involved in heat-induced HSP70 accumulation. FEBS Lett. 1995, 370, 159–162. [Google Scholar] [CrossRef]
- Breineková, K.; Svoboda, M.; Smutná, M.; Vorlováet, L. Markers of acute stress in pigs. Physiol. Res. 2007, 56, 323–329. [Google Scholar] [CrossRef]
- Yu, M.Y.; Wang, L.L.; Ma, T.H.; Zhang, W.J.; Wang, Q.H.; Qin, L.M.; Teng, K.D.; Ma, Y.F. Effect of transport stress on behavior, serum corticosterone and nNOS expression in the SON of rats. J. China Agric. Univ. 2016, 21, 81–86. (In Chinese) [Google Scholar] [CrossRef]
- Costa, A.; Trainer, P.; Besser, M.; Grossman, A. Nitric oxide modulates the release of corticotropin-releasing hormone from the rat hypothalamus in vitro. Brain Res. 1993, 605, 187–192. [Google Scholar] [CrossRef]
- Liu, Q.T. Study on the Effect of Growth Performance, Serum Physio-Biochemical Indices and Immune Performance on Growing-Finishing Pigs by Adding Cysteamine and N-Carbamylglutamic. Ph.D. Thesis, Guangxi University, Nanning, China, 2015. (In Chinese). [Google Scholar]
- Zheng, P. The Study on Effects of Oxidative Stress and Mechanism on the Characteristics of Arginine Metabolism and Requirement in Piglets. Ph.D. Thesis, Sichuan Agricultural University, Chengdu, China, 2010. (In Chinese). [Google Scholar]
- David, J.C.; Grongnet, J.F.; Lalles, J.P. Weaning affects the expression of heat shock proteins in different regions of the gastrointestinal tract of piglets. J. Nutr. 2002, 132, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Otaka, M.; Odashima, M.; Watanabe, S. Role of heat shock proteins (molecular chaperones) in intestinal mucosal protection. Biochem. Biophys. Res. Commun. 2006, 348, 1–5. [Google Scholar] [CrossRef]
- Lenaerts, K.; Renes, J.; Bouwman, F.G.; Noben, J.-P.; Robben, J.; Smit, E.; Mariman, E.C. Arginine deficiency in preconfluent intestinal Caco-2 cells modulates expression of proteins involved in proliferation, apoptosis, and heat shock response. Proteomics 2007, 7, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bazer, F.W.; Gao, H.; Jobgen, W.J.; Johnson, G.A.; Li, P.; McKnight, J.R.; Satterfield, M.C.; Spencer, T.E.; Wu, G.Y. Amino acids and gaseous signaling. Amino Acids 2009, 37, 65–78. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Jiang, Z.; Zheng, C.; Zhou, G.; Yu, D.; Cao, T.; Wang, J.; Chen, F. Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 2010, 38, 95–102. [Google Scholar] [CrossRef]
- Jobgen, W.; Fu, W.J.; Gao, H.J.; Li, P.; Meininger, C.J.; Smith, S.B.; Spencer, T.E.; Wu, G.Y. High fat feeding and dietary L-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 2009, 37, 187–198. [Google Scholar] [CrossRef]
- Ali-Sisto, T.; Tolmunen, T.; Viinamäki, H.; Mäntyselkä, P.; Valkonen-Korhonen, M.; Koivumaa-Honkanen, H.; Honkalampi, K.; Ruusunen, A.; Nandania, J.; Velagapudi, V.; et al. Global arginine bioavailability ratio is decreased in patients with major depressive disorder. J. Affect. Disord. 2018, 229, 141–145. [Google Scholar] [CrossRef]
- Bersani, F.S.; Wolkowitz, O.M.; Lindqvist, D.; Yehuda, R.; Flory, J.; Bierer, L.M.; Makotine, I.; Abu-Amara, D.; Coy, M.; Reus, V.I.; et al. Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation. Brain Behav. Immun. 2016, 52, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Wiśniewski, J.; Fleszar, M.G.; Bednarz-Misa, I.; Bronowicka-Szydełko, A.; Gacka, M.; Masłowski, L.; Kędzior, K.; Witkiewicz, W.; Gamian, A. Metabolites of the nitric oxide (NO) pathway are altered and indicative of reduced NO and arginine bioavailability in patients with cardiometabolic diseases complicated with chronic wounds of lower Extremities: Targeted Metabolomics Approach (LC-MS/MS). Oxidative Med. Cell. Longev. 2019, 2019, 5965721. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Masaki, N.; Adachi, T. Decreased arginine bioavailability in patients with coronary artery disease in an outpatient setting. Vasc. Fail. 2020, 3, 31–36. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Rate (%) | Nutrient Levels | |
---|---|---|---|
Corn | 22.0 | Digestible energy (DE; MJ/kg) 2 | 10.17 |
Wheat bran | 20.9 | Crude protein (CP; %) | 16.19 |
Soybean meal | 10.8 | Crude fiber (CF; %) | 11.57 |
Rapeseed meal | 3.0 | Crude fat (EE; %) | 3.65 |
Salt | 0.3 | Calcium (Ca; %) | 1.54 |
Chrysanthemum powder | 38 | Effective phosphorus (AP; %) | 0.40 |
Premix 1 | 5.0 | Lys (%) | 0.96 |
Met + Cys (%) | 0.47 | ||
Total | 100 | Arg (%) | 0.82 |
Target Genes | Accession No. | Primer Sequence | Product Length |
---|---|---|---|
β-actin | NW_003159504.1 | F: 5′-GGCTACAGCTTCACCACCAC-3′ | 496 bp |
R: 5′-ACTCCTGCTTGCTGATCCAC-3′ | |||
iNOS | NC_013687.1 | F: 5′- GCTACACTTCCAACGCAACA-3′ | 161 bp |
R: 5′- GCGGCTGGACTTCTCACTAT-3′ | |||
HSP70 | NC_013671.1 | F:5′-GAGTGAGGAGAGGCGTCAGT-3′ | 199 bp |
R:5′-GTTCTCACACAGGTCGGACA-3′ |
Item | Con Group | 0.3% Arg Group | 0.6% Arg Group | 0.03% NCG Group | 0.06% NCG Group |
---|---|---|---|---|---|
Villus height (μm) | 351.67 ± 12.25 c | 419.27 ± 11.22 b | 461.33 ± 9.16 a | 418.17 ± 13.31 b | 433.14 ± 10.58 ab |
Crypt depth (μm) | 80.81 ± 3.61 a | 80.70 ± 2.21 a | 68.80 ± 3.03 b | 78.72 ± 2.10 a | 70.53 ± 2.96 b |
Villus height/Crypt depth (V/C) | 4.42 ± 0.0.18 c | 5.26 ± 0.20 b | 6.95 ± 0.43 a | 5.36 ± 0.21 b | 6.35 ± 0.34 a |
Item | Con Group | 0.3% Arg Group | 0.6% Arg Group | 0.03% NCG Group | 0.06% NCG Group |
---|---|---|---|---|---|
NO (μ mol/L) | 19.59 ± 2.31 b | 32.28 ± 1.01 a | 30.27 ± 1.25 a | 30.03 ± 1.02 a | 32.29 ± 4.76 a |
iNOS (U/mL) | 9.85 ± 0.63 b | 13.25 ± 1.27 a | 13.65 ± 1.81 a | 13.65 ± 1.91 a | 15.94 ± 0.21 a |
Item | Con Group | 0.3% Arg Group | 0.6% Arg Group | 0.03% NCG Group | 0.06% NCG Group |
---|---|---|---|---|---|
NO (μ mol/gprot) | 0.32 ± 0.04 | 0.32 ± 0.09 | 0.41 ± 0.02 | 0.37 ± 0.03 | 0.42 ± 0.03 |
iNOS (U/mgprot) | 0.80 ± 0.05 b | 1.06 ± 0.23 ab | 1.58 ± 0.13 a | 1.33 ± 0.19 ab | 1.50 ± 0.18 a |
Item | Con Group | 0.3% Arg Group | 0.6% Arg Group | 0.03% NCG Group | 0.06% NCG Group |
---|---|---|---|---|---|
Cit (nmol/mL) | 27.18 ± 2.47 | 23.63 ± 2.19 | 25.95 ± 3.25 | 25.45 ± 1.38 | 23.99 ± 1.32 |
Orn (nmol/mL) | 261.13 ± 13.93 ab | 230.48 ± 10.40 b | 226.78 ± 12.14 b | 251.43 ± 12.96 ab | 272.19 ± 6.88 a |
Arg (nmol/mL) | 188.28 ± 11.45 | 179.04 ± 16.80 | 191.52 ± 7.04 | 199.89 ± 7.42 | 205.15 ± 3.11 |
BABR | 0.65 ± 0.01 | 0.71 ± 0.09 | 0.76 ± 0.03 | 0.73 ± 0.03 | 0.69 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, F.; Zhang, L.; Shao, L.; Li, J.; Yang, J.; Zhai, P.; Zhang, X. Supplementation of Arginine or N-Carbamylglutamate Affects Jejunum Development, Global Arginine Bioavailability Ratio, and Stress-Related Indices in Young Rex Rabbits. Animals 2025, 15, 1354. https://doi.org/10.3390/ani15101354
Qin F, Zhang L, Shao L, Li J, Yang J, Zhai P, Zhang X. Supplementation of Arginine or N-Carbamylglutamate Affects Jejunum Development, Global Arginine Bioavailability Ratio, and Stress-Related Indices in Young Rex Rabbits. Animals. 2025; 15(10):1354. https://doi.org/10.3390/ani15101354
Chicago/Turabian StyleQin, Feng, Linlin Zhang, Le Shao, Jian Li, Jie Yang, Pin Zhai, and Xia Zhang. 2025. "Supplementation of Arginine or N-Carbamylglutamate Affects Jejunum Development, Global Arginine Bioavailability Ratio, and Stress-Related Indices in Young Rex Rabbits" Animals 15, no. 10: 1354. https://doi.org/10.3390/ani15101354
APA StyleQin, F., Zhang, L., Shao, L., Li, J., Yang, J., Zhai, P., & Zhang, X. (2025). Supplementation of Arginine or N-Carbamylglutamate Affects Jejunum Development, Global Arginine Bioavailability Ratio, and Stress-Related Indices in Young Rex Rabbits. Animals, 15(10), 1354. https://doi.org/10.3390/ani15101354