Associations between Racing Thoroughbred Movement Asymmetries and Racing and Training Direction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Data Collection
2.3. Data Processing
2.4. Statistical Analyses
3. Results
3.1. Number of Left and Right Asymmetrical Horses
3.2. Magnitude of Left and Right Asymmetrical Movement Symmetries
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lam, K.H.; Parkin, T.D.H.; Riggs, C.M.; Morgan, K.L. Descriptive analysis of retirement of Thoroughbred racehorses due to tendon injuries at the Hong Kong Jockey Club (1992–2004). Equine Vet. J. 2007, 39, 143–148. [Google Scholar] [CrossRef] [PubMed]
- McGreevy, P.D.; Rogers, L.J. Motor and sensory laterality in thoroughbred horses. Appl. Anim. Behav. Sci. 2005, 92, 337–352. [Google Scholar] [CrossRef]
- McGreevy, P.D.; Thomson, P.C. Differences in motor laterality between breeds of performance horse. Appl. Anim. Behav. Sci. 2006, 99, 183–190. [Google Scholar] [CrossRef]
- Chateau, H.; Camus, M.; Holden-Douilly, L.; Falala, S.; Ravary, B.; Vergari, C.; Lepley, J.; Denoix, J.M.; Pourcelot, P.; Crevier-Denoix, N. Kinetics of the forelimb in horses circling on different ground surfaces at the trot. Vet. J. 2013, 198, e20–e26. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, S.J.; Licka, T.; Polman, R. The difference in kinematics of horses walking, trotting and cantering on a flat and banked 10 m circle. Equine Vet. J. 2011, 43, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Stubbs, N.C.; Kaiser, L.J.; Brown, L.E.A.; Clayton, H.M. Effect of trotting speed and circle radius on movement symmetry in horses during lunging on a soft surface. Am. J. Vet. Res. 2012, 73, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Starke, S.D.; Willems, E.; May, S.A.; Pfau, T. Vertical head and trunk movement adaptations of sound horses trotting in a circle on a hard surface. Vet. J. 2012, 193, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, A.M.; Serra Bragança, F.M.; Swagemakers, J.H.; Weeren, P.R.; Roepstorff, L. Variation in gait parameters used for objective lameness assessment in sound horses at the trot on the straight line and the lunge. Equine Vet. J. 2019, 51, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Serra Bragança, F.M.; Rhodin, M.; van Weeren, P.R. On the brink of daily clinical application of objective gait analysis: What evidence do we have so far from studies using an induced lameness model? Vet. J. 2018, 234, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Cully, P.; Nielsen, B.; Lancaster, B.; Martin, J.; McGreevy, P. The laterality of the gallop gait in Thoroughbred racehorses. PLoS ONE 2018, 13, e0198545. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda Caviedes, M.F.; Forbes, B.S.; Pfau, T. Repeatability of gait analysis measurements in Thoroughbreds in training. Equine Vet. J. 2017, 50, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Reilly, P. How low can we go? Influence of sample rate on equine pelvic displacement calculated from inertial sensor data. Equine Vet. J. 2020, 53, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Witte, T.H.; Wilson, A.M. A method for deriving displacement data during cyclical movement using an inertial sensor. J. Exp. Biol. 2005, 208 Pt 13, 2503–2514. [Google Scholar] [CrossRef] [PubMed]
- Warner, S.M.; Koch, T.O.; Pfau, T. Inertial sensors for assessment of back movement in horses during locomotion over ground. Equine Vet. J. 2010, 42 (Suppl. S3), 417–424. [Google Scholar] [CrossRef]
- Starke, S.D.; Witte, T.H.; May, S.A.; Pfau, T. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit. J. Biomech. 2012, 45, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Martig, S.; Chen, W.; Lee, P.V.S.; Whitton, R.C. Bone fatigue and its implications for injuries in racehorses. Equine Vet. J. 2014, 46, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Keegan, K.G.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Dent, E.V.; Kellerman, T.E.; Wilson, D.A.; Reed, S.K. Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses. Am. J. Vet. Res. 2011, 72, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Morrice-West, A.V.; Hitchens, P.L.; Walmsley, E.A.; Tasker, K.; Lim, S.L.; Smith, A.D.; Whitton, R.C. Relationship between Thoroughbred workloads in racing and the fatigue life of equine subchondral bone. Sci. Rep. 2022, 12, 11528. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.P.; Reed, S.K.; Schoonover, M.J.; Whitfield, C.T.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Keegan, K.G. Associations of force plate and body-mounted inertial sensor measurements for identification of hind limb lameness in horses. Am. J. Vet. Res. 2016, 77, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Keegan, K.G.; MacAllister, C.G.; Wilson, D.A.; Gedon, C.A.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F. Comparison of an inertial sensor system with a stationary force plate for evaluation of horses with bilateral forelimb lameness. Am. J. Vet. Res. 2012, 73, 368–374. [Google Scholar] [CrossRef]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; Lacarrubba, A.; Rasch, M. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation. Equine Vet. J. 2012, 44, 652–656. [Google Scholar] [CrossRef]
- Parkes, R.S.V.; Pfau, T.; Weller, R.; Witte, T.H. The effect of curve running on distal limb kinematics in the Thoroughbred racehorse. PLoS ONE 2020, 15, e0244105. [Google Scholar] [CrossRef] [PubMed]
- Bonnaerens, S.; Fiers, P.; Galle, S.; Derie, R.; Aerts, P.; Frederick, E.; Kaneko, Y.; Derave, W.; De Clercq, D.; Segers, V. Relationship between duty factor and external forces in slow recreational runners. BMJ Open Sport Exerc. Med. 2021, 7, e000996. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.M.; Maloiy, G.M.O.; Hunter, B.; Jayes, A.S.; Nturibi, J. Mechanical stresses in fast locomotion of buffalo (Syncews coffer) and elephant (Loxodonta africana). J. Zool. 1979, 189, 135–144. [Google Scholar] [CrossRef]
- Witte, T.H.; Knill, K.; Wilson, M. Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus). J. Exp. Biol. 2004, 207 Pt 21, 3639–3648. [Google Scholar] [CrossRef] [PubMed]
- Parkes RS, V.; Weller, R.; Pfau, T.; Witte, T.H. The effect of training on stride duration in a cohort of two-year-old and three-year-old thoroughbred racehorses. Animals 2019, 9, 466. [Google Scholar] [CrossRef]
- Firth, E.C. The response of bone, articular cartilage and tendon to exercise in the horse. J. Anat. 2006, 208, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Malekipour, F.; Whitton, R.C.; Lee, P.V.S. Distribution of mechanical strain in equine distal metacarpal subchondral bone: A microCT-based finite element model. Med. Nov. Technol. Devices 2020, 6, 100036. [Google Scholar] [CrossRef]
- Smith, R.K.W.; Goodship, A.E. The Effect of Early Training and the Adaptation and Conditioning of Skeletal Tissues. Vet. Clin. N. Am. Equine Pract. 2008, 24, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Castejon-Riber, C.; Riber, C.; Rubio, M.D.; Agüera, E.; Muñoz, A. Objectives, Principles, and Methods of Strength Training for Horses. J. Equine Vet. Sci. 2017, 56, 93–103. [Google Scholar] [CrossRef]
- Greve, L.; Dyson, S. What can we learn from visual and objective assessment of non-lame and lame horses in straight lines, on the lunge and ridden? Equine Vet. Educ. 2020, 32, 479–491. [Google Scholar] [CrossRef]
- Johnson, K.A.; Muir, P.; Nicoll, R.G.; Roush, J.K. Asymmetric adaptive modeling of central tarsal bones in racing greyhounds. Bone 2000, 27, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Malekipour, F.; Hitchens, P.L.; Whitton, R.C.; Vee-Sin Lee, P. Effects of in vivo fatigue-induced microdamage on local subchondral bone strains. J. Mech. Behav. Biomed. Mater. 2022, 136, 105491. [Google Scholar] [CrossRef] [PubMed]
- Farmer, K.; Krueger, K.; Byrne, R.W. Visual laterality in the domestic horse (Equus caballus) interacting with humans. Anim. Cogn. 2010, 13, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Lucidi, P.; Bacco, G.; Sticco, M.; Mazzoleni, G.; Benvenuti, M.; Bernabò, N.; Trentini, R. Assessment of motor laterality in foals and young horses (Equus caballus) through an analysis of derailment at trot. Physiol. Behav. 2013, 109, 8–13. [Google Scholar] [CrossRef]
- Williams, D.E.; Norris, B.J. Laterality in stride pattern preferences in racehorses. Anim. Behav. 2007, 74, 941–950. [Google Scholar] [CrossRef]
- Bloom, F.; Draper, S.; Bennet, E.; Marlin, D.; Williams, J. Risk factors for lameness elimination in British endurance riding. Equine Vet. J. 2023, 55, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Bragança, F.M.S.; Brommer, H.; Van Den Belt, A.J.M.; Maree, J.T.M.; Van Weeren, P.R.; Van Oldruitenborgh-Oosterbaan, M.M.S. Subjective and objective evaluations of horses for fit-to-compete or unfit-to-compete judgement. Vet. J. 2020, 257, 105454. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, M.D.; Gerber, V.; Dolf, G.; Burger, D.; Flammer, S.A.; Ramseyer, A. Quantitative Gait Analysis Before and After a Cross-country Test in a Population of Elite Eventing Horses. J. Equine Vet. Sci. 2022, 117, 104077. [Google Scholar] [CrossRef] [PubMed]
- Macaire, C.; Hanne-Poujade, S.; De Azevedo, E.; Denoix, J.-M.; Coudry, V.; Jacquet, S.; Bertoni, L.; Tallaj, A.; Audigié, F.; Hatrisse, C.; et al. Investigation of Thresholds for Asymmetry Indices to Represent the Visual Assessment of Single Limb Lameness by Expert Veterinarians on Horses Trotting in a Straight Line. Animals 2022, 12, 3498. [Google Scholar] [CrossRef] [PubMed]
- Dalin, G.; Drevemo, S.; Fredricson, I.; Jonsson, K.; Nilsson, G. Ergonomic aspects of locomotor asymmetry in standardbred horses trotting through turns. An investigation with special reference to the fetlock joint, using high-speed cinematography and thermography. Acta Vet. Scandinavica. Suppl. 1973, 44, 111–139. [Google Scholar]
- Kallerud, A.S.; Hernlund, E.; Byström, A.; Persson-Sjodin, E.; Rhodin, M.; Hendrickson, E.H.; Fjordbakk, C.T. Non-banked curved tracks influence movement symmetry in two-year-old Standardbred trotters. Equine Vet. J. 2021, 53, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, M.; Côrte, F.; Brass, K.; Gallio, M.; Dau, S.; Pozzobon, R.; Lopes, M.; Lopes, L. Impact or push-off lameness presentation is not altered by the type of track surface where horses are trotted. Arq. Bras. Med. Vet. Zootec. 2015, 67, 1475–1482. [Google Scholar] [CrossRef]
- Bergh, M.S.; Piras, A.; Samii, V.F.; Weisbrode, S.E.; Johnson, K.A. Fractures in regions of adaptive modeling and remodeling of central tarsal bones in racing Greyhounds. Am. J. Vet. Res. 2012, 73, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Pearce, G.; May-Davis, S.; Greaves, D. Femoral asymmetry in the Thoroughbred racehorse. Aust. Vet. J. 2005, 83, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Dow, S.M.; Leendertz, J.A.; Silver, I.A.; Goodship, A.E. Identification of Subclinical Tendon Injury From Ground Reaction Force Analysis. Equine Vet. J. 1991, 23, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.S.M.; Morrice-West, A.V.; Whitton, R.C.; Hitchens, P.L. Changes in Thoroughbred speed and stride characteristics over successive race starts and their association with musculoskeletal injury. Equine Vet. J. 2022, 55, 194–204. [Google Scholar] [CrossRef] [PubMed]
Track | Circumference (Meters) | Home Straight Maximum Camber | First Corner Maximum Camber | Second Corner Maximum Camber | Back Straight Maximum Camber |
---|---|---|---|---|---|
HKJC Turf | 1898 | 2.5% | 4% | 4% | 2.5% |
HKJC Large All Weather | 1558 | 2.5% | 3% | 3% | 2.5% |
HKJC Small All Weather | 1429 | 2.5% | 3% | 3% | 2.5% |
HKJC Happy Valley Turf | 1417 | 5% | 6.67% | 5% | 3.3% |
HKJC CRC Turf | 1952 | 1% | 4% | 5% | 1% |
HKJC CRC Small All Weather | 1728 | 1.5% | 3% | 3% | 1.5% |
HKJC CRC Large All Weather | 1592 | 1.5% | 3% | 3% | 1.5% |
STC Turf | 2000 | 2.5% | 6.5% | 6.0% | 2.5% |
STC Polytrack | 1550 | 2.5% | 4.5% | 4.5% | 2.5% |
STC Sand Track 1 | 1300 | 2.5% | 6.0% | 6.0% | 2.5.0% |
STC Sand Track 2 | 1650 | 1.5% | 2.5% | N/A | N/A |
Location | Variable | Whole Sample N = 307 | HKJC N = 151 | STC N = 156 | HKJC—STC | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean Diff. | 95% CI | ||
Pelvis | MinDiff | 0.7 | 6.7 | −0.3 | 6.2 | 1.6 | 7.1 | −2.0 * | −0.5 −3.5 |
MaxDiff | 0.1 | 7.7 | 0.2 | 7.4 | 0.0 | 8.0 | −0.2 | 1.9 −1.5 | |
UpDiff | 0.3 | 10.6 | −1.1 | 9.8 | 1.6 | 11.1 | −2.8 * | −0.4 −5.1 | |
HHD | 0.0 | 12.0 | 0.3 | 11.1 | −0.2 | 12.8 | 0.5 | 3.2 −2.2 | |
Poll | MinDiff | 0.8 | 9.8 | −0.7 | 10.4 | 2.3 | 8.9 | −3.0 * | −0.9 −5.2 |
MaxDiff | −0.1 | 8.4 | −0.4 | 8.4 | 0.2 | 8.4 | −0.6 | 1.3 −2.4 | |
UpDiff | 0.8 | 12.9 | −1.0 | 13.3 | 2.5 | 12.2 | −3.5 * | −0.6 −6.4 |
Location | Variable | # of Left Asymmetrical | # of Right Asymmetrical | ||||
---|---|---|---|---|---|---|---|
HKJC | STC | Diff. | HKJC | STC | Diff. | ||
Pelvis | MinDiff | 37 | 27 | 10 | 30 | 46 | −16 |
MaxDiff | 36 | 40 | −4 | 39 | 38 | 1 | |
UpDiff | 58 | 45 | 13 | 42 | 59 | −17 | |
HHD | 50 | 60 | −10 | 51 | 53 | −2 | |
Poll | MinDiff | 60 | 27 | 33 * | 43 | 57 | −14 |
MaxDiff | 51 | 34 | 17 * | 46 | 45 | 1 | |
UpDiff | 63 | 41 | 22 * | 51 | 64 | −13 |
Location | Variable | HKJC # of Asymmetrical | STC # of Asymmetrical | ||||
---|---|---|---|---|---|---|---|
Left | Right | Diff. | Left | Right | Diff. | ||
Pelvis | MinDiff | 37 | 30 | 7 | 27 | 46 | −19 * |
MaxDiff | 36 | 39 | −3 | 40 | 38 | 2 | |
UpDiff | 58 | 42 | 16 | 45 | 59 | −14 | |
HHD | 50 | 51 | −1 | 60 | 53 | 7 | |
Poll | MinDiff | 60 | 43 | 17 | 27 | 57 | −30 * |
MaxDiff | 51 | 46 | 5 | 34 | 45 | −11 | |
UpDiff | 63 | 51 | 12 | 41 | 64 | −23 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forbes, B.; Ho, W.; Parkes, R.S.V.; Sepulveda Caviedes, M.F.; Pfau, T.; Martel, D.R. Associations between Racing Thoroughbred Movement Asymmetries and Racing and Training Direction. Animals 2024, 14, 1086. https://doi.org/10.3390/ani14071086
Forbes B, Ho W, Parkes RSV, Sepulveda Caviedes MF, Pfau T, Martel DR. Associations between Racing Thoroughbred Movement Asymmetries and Racing and Training Direction. Animals. 2024; 14(7):1086. https://doi.org/10.3390/ani14071086
Chicago/Turabian StyleForbes, Bronte, Winnie Ho, Rebecca S. V. Parkes, Maria Fernanda Sepulveda Caviedes, Thilo Pfau, and Daniel R. Martel. 2024. "Associations between Racing Thoroughbred Movement Asymmetries and Racing and Training Direction" Animals 14, no. 7: 1086. https://doi.org/10.3390/ani14071086
APA StyleForbes, B., Ho, W., Parkes, R. S. V., Sepulveda Caviedes, M. F., Pfau, T., & Martel, D. R. (2024). Associations between Racing Thoroughbred Movement Asymmetries and Racing and Training Direction. Animals, 14(7), 1086. https://doi.org/10.3390/ani14071086