Infrared Thermography of Teat in French Dairy Alpine Goats: A Promising Tool to Study Animal–Machine Interaction during Milking but Not to Detect Mastitis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farms and Animals
2.2. Animal Recording
2.2.1. Milk Quality Measurements
2.2.2. Udder and Teat Shapes Scoring
2.2.3. IRT Recording
2.3. Statistical Analysis
3. Results
3.1. Effect of Milking on IRT
3.2. Udder Inflammation and Regression between IRT and Mean LogSCC
4. Discussion
4.1. Is IRT a Good Tool to Evaluate the Effects of Milking on the Teats?
4.2. Can an Unbalanced Udder Alter IRT Responses to Milking?
4.3. Is the IRT Able to Differentiate the Degree of Mastitis?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purohit, R.C.; Hudson, R.S.; Ridell, M.G.; Carson, R.L.; Wolfe, D.F.; Walker, D.F. Thermography of the bovine scrotum. Am. J. Vet. Res. 1985, 46, 2388–2392. [Google Scholar]
- Berry, R.J.; Kennedy, A.D.; Scott, S.L.; Kyle, B.L.; Schaefer, A.L. Daily variation in the udder surface temperature of dairy cows measured by infrared thermography: Potential for mastitis detection. Can. J. Anim. Sci. 2003, 8, 687–693. [Google Scholar] [CrossRef]
- Martins, R.F.S.; Paim, T.; Cardosa, C.; Dallago, B.S.L.; Melo, C.B.; Louvandini, H.C. Mastitis detection in sheep by infrared thermography. Res. Vet. Sci. 2013, 94, 722–724. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.L.; Schaefer, A.L.; Tong, A.K.W.; Lacasse, P. Use of infrared thermography for early detection of mastitis in dairy cows. Can. J. Anim. Sci. 2000, 80, 764–765. [Google Scholar]
- Hovinen, M.; Siivonen, J.; Taponen, S.; Hänninen, L.; Pastell, M.; Aisla, A.; Pyörälä, S. Detection of Clinical Mastitis with the Help of a Thermal Camera. J. Dairy Sci. 2008, 91, 4592–4598. [Google Scholar] [CrossRef]
- Metzner, M.; Sauter-Louis, C.; Seemueller, A.; Petzl, W.; Zerbe, H. Infrared thermography of the udder after experimentally induced Escherichia coli mastitis in cows. Vet. J. 2015, 204, 360–362. [Google Scholar] [CrossRef]
- Colak, A.; Polat, B.; Okumus, Z.; Kaya, M.; Yanmaz, L.; Hayirli, A. Early detection of mastitis using infrared thermography in dairy cows. J. Dairy Sci. 2008, 91, 4244–4248. [Google Scholar] [CrossRef]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bronzo, V.; Mitchell, M.; Dell’Orto, V.; Bontempo, V.; Cattaneo, D.; Savoini, G. First Evaluation of Infrared Thermography as a Tool for the Monitoring of Udder Health Status in Farms of Dairy Cows. Sensors 2018, 18, 862–873. [Google Scholar] [CrossRef]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Pushpadass Heartwin, A.; Sivaram, M.; Ramesha, K.P.; Das, D.N.; Kataktalware, M.A. Infrared thermal imaging of udder skin surface temperature variations to monitor udder health status in Bos indicus (Deoni) cows. Infrared Phys. Technol. 2018, 88, 239–244. [Google Scholar] [CrossRef]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Pushpadass Heartwin, A.; Kumaresan, A.; Lathwal, S.S.; Sivaram, M.; Das, D.N.; Ramesha, K.P.; Jayaprakash, G. Infrared thermography to monitor body and udder skin surface temperature differences in relation to subclinical and clinical mastitis condition in Karan Fries (Bos taurus × Bos indicus) crossbred cows. Ind. J. Anim. Sci. 2018, 88, 694–699. [Google Scholar] [CrossRef]
- Ayadi, M.; Samara, E.M.; Al-Haidary, A.A.; Aljumaah, R.S.; Alshaikh, M.A.; Caja, G. Thermographic study of the dairy camel (Camelus dromedarius) mammary gland before and after machine milking. In Proceedings of the 3rd Conference of the International Society of Camelid Research and Development, Al-Ain, Muscat, Sultanate of Oman, 29 January–1 February 2012; pp. 234–235. [Google Scholar]
- Pezeshki, A.; Stordeur, P.; Wallemacq, H.; Schynts, F.; Stevens, M.; Boutet, P.; Peelman, L.; Spiegeleer, B.; Duchateau, L.; Bureau, F.; et al. Variation of inflammatory dynamics and mediators in primiparous cows after intramammary challenge with Escherichia coli. Vet. Res. 2011, 42, 15–25. [Google Scholar] [CrossRef]
- Polat, B.; Colak, A.; Cengiz, M.; Yanmaz, L.E.; Oral, H.; Bastan, A.; Kaya, S.; Hayirli, A. Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. J. Dairy Sci. 2010, 93, 3525–3532. [Google Scholar] [CrossRef]
- Castro-Costa, A.; Caja, G.; Salama, A.A.K.; Rovai, M.; Flores, C.; Aguiló, J. Thermographic variation of the udder of dairy ewes in early lactation and following an Escherichia coli endotoxin intramammary challenge in late lactation. J. Dairy Sci. 2014, 97, 1377–1387. [Google Scholar] [CrossRef]
- Alejandro, M.; Romero, G.; Sabater, J.M.; Díaz, J.R. Infrared thermography as a tool to determine teat tissue changes caused by machine milking in Murciano-Granadina goats. Livest. Sci. 2014, 160, 178–185. [Google Scholar] [CrossRef]
- Pampariene, I.; Veikutis, V.; Oberauskas, V.; Zymantiene, J.; Zelvyte, R.; Stankevicius, A.; Marciulionyte, D.; Palevicius, P. Thermography based inflammation monitoring of udder state in dairy cows: Sensitivity and diagnostic priorities comparing with routine California mastitis test. J. Vib. Eng. 2016, 18, 511–521. [Google Scholar]
- Zeng, S.S.; Escobar, E.N.; Popham, T. Daily variations in somatic cell count, composition, and production of Alpine goat milk. Small Rum. Res. 1997, 26, 253–260. [Google Scholar] [CrossRef]
- Paape, M.J.; Capuco, A.V.; Contreras, A.; Marco, J.C. Milk somatic cells and lactation in small ruminants. J. Dairy Sci. 2001, 84, 237–244. [Google Scholar] [CrossRef]
- Bergonier, D.; De Cremoux, R.; Rupp, R.; Lagriffoul, G.; Berthelot, X. Mastitis of dairy small ruminants. Vet. Res. 2003, 34, 689–716. [Google Scholar] [CrossRef] [PubMed]
- Luengo, C.; Sanchez, A.; Corrales, J.C.; Contreras, A. Valoración de un tratamiento antibiotico de secado frente a mammitis sub-clínicas caprinas. In Proceedings of the Mamitis y calidad de leche, 16 Jornadas Nacionales y Internacionales del Grupo de Técnicos Especialistas en Mamitis y Calidad de Leche, Murcia, Spain, 18–19 October 1999; pp. 243–249. [Google Scholar]
- Moroni, P.; Cuccuru, C. Relationship between mammary gland infections and some milk immune parameters in Sardinian breed ewes. Small Rum. Res. 2001, 41, 1–7. [Google Scholar] [CrossRef]
- Koop, G.; van Werven, T.; Schuiling, H.J.; Nielen, M. The effect of subclinical mastitis on milk yield in dairy goats. J. Dairy Sci. 2010, 93, 5809–5817. [Google Scholar] [CrossRef]
- Marnet, P.G.; Komara, M. Management systems with extended milking intervals in ruminants: Regulation of production and quality of milk. J. Anim. Sci. 2008, 86, 47–56. [Google Scholar] [CrossRef]
- Marnet, P.G.; Dzidic, A.; Le Caro, L.; Hubert, A. Review of old and new approaches to evaluate milking impact and milking ability in goats. In Proceedings of the ADSA Annual Meeting, abstract # 123, Knoxville, TE, USA, 24–27 June 2018. [Google Scholar]
- McDougall, S.; Voermans, M. Influence of Estrus on Somatic Cell Count in Dairy Goats. J. Dairy Sci. 2002, 85, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.; Huau, C.; Caillat, H.; Fassier, T.; Bouvier, F.; Pampouille, E.; Clément, V.; Palhiere, I.; Larroque, H.; Tosser-Klopp, G.; et al. Divergent selection on milk somatic cell count in goats improves udder health and milk quality with no effect on nematode resistance. J. Dairy Sci. 2018, 102, 5242–5253. [Google Scholar] [CrossRef] [PubMed]
- Hamann, J.; Dück, M. Preliminary report on measurement of teat skin temperature using infrared thermography. Milchpraxis 1984, 22, 148–152. [Google Scholar]
- Isaksson, A.; Lind, O. Milking related changes in the surface temperature of the bovine teat skin. Act. Vet. Scan. 1994, 35, 435–438. [Google Scholar] [CrossRef]
- Paulrud, C.; Clausen, S.; Andersen, P.; Rasmussen, M. Infrared Thermography and ultrasonography to indirectly monitor the influence of liner type and overmilking on teat tissue recovery. Act. Vet. Scan. 2005, 46, 137–147. [Google Scholar] [CrossRef]
- Vegricht, J.; Machálek, A.; Ambrož, P.; Brehme, U.; Rose, S. Milking-Related changes of teat temperature caused by various milking machines. Res. Agric. Eng. 2007, 53, 121–125. [Google Scholar] [CrossRef]
- Kunc, P.; Knizhova, I.; Koubkova, M. The influence of milking with different vacuum and different design of liner on the change of teat surface temperature. Czech J. Anim. Sci. 1999, 44, 131–134. [Google Scholar]
- Stelletta, C.; Murgia, L.; Caria, M.; Gianesella, M.; Pazzona, A.; Morgante, M. Thermographic study of the ovine mammary gland during different working vacuum levels. Ital. J. Anim. Sci. 2007, 6, 600. [Google Scholar] [CrossRef]
- Le Caro, L. Effet de la Dépose Automatique Débitmétrique et de son Paramétrage sur la Traite de la Chèvre Alpine; Effet sur le Temps de Travail, la Quantité et la Qualité Du Lait, l’inflammation Mammaire et les Tissus du Trayon. Master’s Thesis, AGROCAMPUS OUEST, Sciences Agricoles, Rennes, France, 2014; 33p. Available online: https://dumas.ccsd.cnrs.fr/dumas-01086950 (accessed on 13 July 2021).
- Besier, J.; Bruckmaier, R.M. Vacuum levels and milk-flow-dependent vacuum drops affect machine milking performance and teat condition in dairy cows. J. Dairy Sci. 2016, 99, 3096–3102. [Google Scholar] [CrossRef]
- Hamann, J.; Mein, G.A.; Wetzel, S. Teat tissue reactions to milking: Effects of vacuum level. J. Dairy Sci. 1993, 76, 1040–1046. [Google Scholar] [CrossRef]
- Matthews, J.G. Chapter 13, Diseases of the mammary Gland. In Diseases of the Goat, 4th ed.; Blackwell Publishing, John Wiley and Sons Ltd.: Chichester, UK, 2016; pp. 185–203. [Google Scholar]
- de Cremoux, R.; Lagriffoul, G.; Allain, C.; Alaoui-Sossé, L.; Astruc, J.M.; Batut, E.; Bergonier, D.; Brun-Lafleur, L.; Clément, V.; Couzy, C.; et al. MAMOVICAP-Vers des outils innovants d’intervention et d’aide à la décision pour la maîtrise des mammites en élevage de petits ruminants laitiers. Innov. Agron. 2018, 63, 99–114. [Google Scholar]
- Legris, M.; El Jabri, M.; Alaoui-Sosse, L.; Doutart, E.; Clément, V.; Martin, P.; Marinot, C.; Marissal, H.; Poulet, J.L.; de Cremoux, R. Approche par modélisation appliquée aux cinétiques d’éjection du lait: Description des conditions de traite en tant que facteurs de risque des infections de la mamelle. In Proceedings of the 23th Rencontres Autour des Recherches sur les Ruminants, Paris, France, 7–8 December 2016. 376p. [Google Scholar]
- Clément, V.; Ceglowski, C.; de Cremoux, R.; Rupp, R. Etat des Lieux des Concentrations Cellulaires dans L’espèce Caprine, Projet MAMOVICAP. 2017. Available online: http://idele.fr/fileadmin/medias/Documents/Docs_UMT_PSR/1-_BilanCCS_Clement_presentation_du_7mars2017.pdf (accessed on 13 July 2021).
- Samara, E.M.; Ayadi, M.; Aljumaah, R.S. Feasibility of utilising an infrared-thermographic technique for early detection of subclinical mastitis in dairy camels (Camelus dromedarius). J. Dairy Res. 2014, 81, 38–45. [Google Scholar] [CrossRef]
- Celsus, A.C.; Celse, A.C. De Medicina; Traité de médecine de A.C. Celse: Traduction nouvelle par Védrènes, M; La Librairie De L’académie De Médecine, Masson: Paris, France, 1876; 806p. [Google Scholar]
- Contreras, A.; Sierra, D.; Sánchez, A.; Corrales, J.C.; Marco, J.C.; Paape, M.J.; Gonzalo, C. Mastitis in small ruminants. Small Rum. Res. 2007, 68, 145–153. [Google Scholar] [CrossRef]
- de Cremoux, R.; Poutrel, B.; Berny, F. Use of milk somatic cell counts (SCC) for presumptive diagnosis of intramammary infections in goats. In Proceedings of the Third IDF International Mastitis Seminar, Tel Aviv, Israel, 28 May–1 June 1995; pp. 90–91. [Google Scholar]
- Poutrel, B.; Lerondelle, C. Cell content of goat milk: California Mastitis Test, Coulter counter, and Fossomatic for predicting half infection. J. Dairy Sci. 1983, 66, 2575–2579. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Granado, R.; Sánchez-Rodríguez, M.; Arce, C.; Rodríguez-Estévez, V. Factors affecting somatic cell count in dairy goats: A review. Span. J. Agric. Res. 2014, 12, 133–150. [Google Scholar] [CrossRef]
Teat Areas | Temperature Difference 1 °C |
---|---|
Teat basis | −0.63 ± 0.05 b |
Teat barrel | −0.37 ± 0.05 c |
Teat end | −1.06 ± 0.05 a |
Total teat area | −0.61 ± 0.05 b |
Temperature Difference 1 °C | ||||
---|---|---|---|---|
Teat Areas | Teat Shapes | |||
Conical | Globular | Tubular Short | Tubular Long | |
Teat basis | −0.50 ± 0.09 b | −0.52 ± 0.09 b | −0.81 ± 0.09 b | −0.67 ± 0.14 b |
Teat barrel | −0.47 ± 0.09 b | −0.32 ± 0.09 b | −0.58 ± 0.09 c | −0.13 ± 0.14 c |
Teat end | −0.93 ± 0.09 a | −1.07 ± 0.09 a | −1.13 ± 0.09 a | −1.10 ± 0.14 a |
Total teat area | −0.62 ± 0.09 b | −0.53 ± 0.09 b | −0.79 ± 0.09 bc | −0.49 ± 0.14 bc |
Temperature Difference 1 °C | |||
---|---|---|---|
Teat Areas | Parity | ||
1 | 2 | ≥3 | |
Teat basis | −0.90 ± 0.10 Ab | −0.60 ± 0.09 ABb | −0.38 ± 0.08 Bb |
Teat barrel | −0.84 ± 0.10 Ab | −0.37 ± 0.09 Bc | 0.09 ± 0.09 Cc |
Teat end | −1.42 ± 0.10 Aa | −1.15 ± 0.09 Aa | −0.61 ± 0.08 Ba |
Total teat area | −0.99 ± 0.10 Ab | −0.62 ± 0.09 Ab | −0.21 ± 0.08 Bb |
Temperature Difference 1 °C | ||
---|---|---|
Teat Areas | Unbalanced | Balanced |
Teat basis | −0.62 ± 0.08 b | −0.63 ± 0.06 b |
Teat barrel | −0.31 ± 0.08 c | −0.44 ± 0.06 c |
Teat end | −1.10 ± 0.08 a | −1.02 ± 0.06 a |
Total teat area | −0.57 ± 0.08 b | −0.65 ± 0.06 b |
Mean Log SCC | ||||
---|---|---|---|---|
Teat Shapes | Conical | Globular | Tubular Short | Tubular Long |
5.75 ± 0.01 b | 5.80 ± 0.01 a | 5.70 ± 0.01 bc | 5.65 ± 0.02 c | |
Farms | 1 | 2 | 3 | |
5.57 ± 0.01 a | 5.61 ± 0.01 a | 5.99 ± 0.01 b | ||
Parity | 1 | 2 | ≥3 | |
5.46 ± 0.01 a | 5.72 ± 0.01 b | 5.98 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marnet, P.-G.; Velasquez, A.B.; Dzidic, A. Infrared Thermography of Teat in French Dairy Alpine Goats: A Promising Tool to Study Animal–Machine Interaction during Milking but Not to Detect Mastitis. Animals 2024, 14, 882. https://doi.org/10.3390/ani14060882
Marnet P-G, Velasquez AB, Dzidic A. Infrared Thermography of Teat in French Dairy Alpine Goats: A Promising Tool to Study Animal–Machine Interaction during Milking but Not to Detect Mastitis. Animals. 2024; 14(6):882. https://doi.org/10.3390/ani14060882
Chicago/Turabian StyleMarnet, Pierre-Guy, Alejandro B. Velasquez, and Alen Dzidic. 2024. "Infrared Thermography of Teat in French Dairy Alpine Goats: A Promising Tool to Study Animal–Machine Interaction during Milking but Not to Detect Mastitis" Animals 14, no. 6: 882. https://doi.org/10.3390/ani14060882
APA StyleMarnet, P.-G., Velasquez, A. B., & Dzidic, A. (2024). Infrared Thermography of Teat in French Dairy Alpine Goats: A Promising Tool to Study Animal–Machine Interaction during Milking but Not to Detect Mastitis. Animals, 14(6), 882. https://doi.org/10.3390/ani14060882