The Interactive Impacts of Corn Particle Size and Conditioning Temperature on Performance, Carcass Traits, and Intestinal Morphology of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Processing
2.2. Diets and Bird Management
2.3. Sample and Data Collection
2.3.1. Growth Performance
2.3.2. Carcass Traits
2.3.3. Jejunum Morphology
2.3.4. Immune Responses
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Relative Length of the Small Intestine and Jejunum Morphology
3.3. Immune Responses
3.4. Carcass Traits
4. Discussion
4.1. Growth Performance
4.2. Carcass Traits
4.3. Immune Responses
4.4. Relative Length of the Small Intestine and Jejunum Morphology
4.5. Gizzard pH
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowieson, A.J. Factors that affect the nutritional value of maize for broilers. Anim. Feed Sci. Technol. 2005, 119, 293–305. [Google Scholar] [CrossRef]
- Putra, A.; Ismail, D.; Lubis, N. Technology of animal feed processing (fermentation and silage) in bilah hulu village, labuhan batu regency. J. Technol. Transf. 2018, 1, 41–47. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Zaefarian, F.; Hunt, H.; Anwar, M.N.; Thomas, D.G.; Ravindran, V. Wheat particle size, insoluble fibre sources and whole wheat feeding influence gizzard musculature and nutrient utilisation to different extents in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Stark, C.R.; Ferket, P.R.; Williams, C.M.; Pacheco, W.J.; Brake, J. Effect of dietary coarsely ground corn on broiler live performance, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and digesta particle size distribution and retention time. Poult. Sci. 2015, 94, 53–60. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B.; Olaisen, V. Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. Br. Poult. Sci. 2002, 43, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G.; Thomas, D.G. Feed particle size: Implications on the digestion and performance of poultry. World’s Poult. Sci. J. 2007, 63, 439–455. [Google Scholar] [CrossRef]
- Duke, G.E. Recent studies on regulation of gastric motility in turkeys. Poult. Sci. 1992, 71, 1–8. [Google Scholar] [CrossRef]
- Silversides, F.; Bedford, M. Effect of pelleting temperature on the recovery and efficacy of a xylanase enzyme in wheat-based diets. Poult. Sci. 1999, 78, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Rockville, ML, USA, 2006. [Google Scholar]
- Baker, S.; Herrman, T. Evaluating Particle Size. In MF-2051 Feed Manufacturing; Department of Grain Science and Industry, Kansas State University: Manhattan, KS, USA, 2002. [Google Scholar]
- Aviagen. Ross 308 Broiler. Performance Objectives. Available online: https://www.winmixsoft.com/files/info/Ross-308-Broiler-PO-2018-EN.pdf (accessed on 1 May 2022).
- Ross 308. Ross 308 Broiler: Nutrition Specification, 2019; Ross Breeders Ltd.: Newbridge, UK, 2019. [Google Scholar]
- Nain, S.; Renema, R.A.; Zuidhof, M.J.; Korver, D.R. Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poult. Sci. 2012, 91, 888–898. [Google Scholar] [CrossRef]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef]
- Tsiagbe, V.K.; Cook, M.E.; Harper, A.E.; Sunde, M.L. Enhanced immune responses in broiler chicks fed methionine-supplemented diets. Poult. Sci. 1987, 66, 1147–1154. [Google Scholar] [CrossRef]
- Meijer, A.; Bosman, A.; van de Kamp, E.E.; Wilbrink, B.; van Beest Holle, M.D.R.; Koopmans, M. Measurement of antibodies to avian influenza virus A (H7N7) in humans by hemagglutination inhibition test. J. Virol. Methods 2006, 132, 113–120. [Google Scholar] [CrossRef]
- SAS Institute. SAS® Qualification Tools User’s Guid; Version 9.2; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Goodband, R.D.; Tokach, M.D.; Nelssen, J.L. The effects of diet particle size on animal performance. In MF-2050 Feed Manufacturing; Department of Grain Science and Industry, Kansas State University: Manhattan, KS, USA, 2002. [Google Scholar]
- Koch, K. Hammermills and rollermills. In MF-2048 Feed Manufacturing; Department of Grain Science and Industry, Kansas State University: Manhattan, KS, USA, 1996. [Google Scholar]
- Nir, I.; Hillel, R.; Ptichi, I.; Shefet, G. Effect of particle size on performance: 3. Grinding pelleting interactions. Poult. Sci. 1995, 74, 771–783. [Google Scholar] [CrossRef]
- Ge, C.; Li, J.; Duan, H.; Yu, J.; Yu, Z.; Sun, J.; Qin, Y. Effects of different diet particle size combinations on growth performance of broilers in early and later periods. Chin. J. Anim. Nutr. 2017, 29, 4342–4348. [Google Scholar]
- Nir, I.; Shefet, G.; Aaroni, Y. Effect of particle size on performance.: 1. Corn. Poult. Sci. 1994, 73, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Chewning, C.G.; Stark, C.R.; Brake, J. Effects of particle size and feed form on broiler performance. J. Appl. Poult. Res. 2012, 21, 830–837. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Wester, T.J.; Ravindran, G.; Thomas, D.V. Influence of conditioning temperature on performance, apparent metabolisable energy, ileal digestibility of starch and nitrogen and the quality of pellets, in broiler starters fed maize-and sorghum-based diets. Anim. Feed Sci. Technol. 2010, 162, 106–115. [Google Scholar] [CrossRef]
- Selle, P.H.; Liu, S.Y.; Cai, J.; Cowieson, A.J. Steam-pelleting temperatures, grain variety, feed form and protease supplementation of mediumly ground, sorghum-based broiler diets: Influences on growth performance, relative gizzard weights, nutrient utilisation, starch and nitrogen digestibility. Anim. Prod. Sci. 2013, 53, 378–387. [Google Scholar] [CrossRef]
- Netto, M.T.; Massuquetto, A.; Krabbe, E.L.; Surek, D.; Oliveira, S.G.; Maiorka, A. Effect of conditioning temperature on pellet quality, diet digestibility, and broiler performance. J. Appl. Poult. Res. 2019, 28, 963–973. [Google Scholar] [CrossRef]
- Abdollahi, M.; Ravindran, V.; Wester, T.; Ravindran, G.; Thomas, D. Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize-and wheat-based diets. Br. Poult. Sci. 2010, 51, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Lundblad, K.K.; Issa, S.; Hancock, J.D.; Behnke, K.C.; McKinney, L.J.; Alavi, S.; Prestløkken, E.; Fledderus, J.; Sørensen, M. Effects of steam conditioning at low and high temperature, expander conditioning and extruder processing prior to pelleting on growth performance and nutrient digestibility in nursery pigs and broiler chickens. Anim. Feed Sci. Technol. 2011, 169, 208–217. [Google Scholar] [CrossRef]
- Loar, R.E., II; Wamsley, K.G.S.; Evans, A.; Moritz, J.S.; Corzo, A. Effects of varying conditioning temperature and mixer-added fat on feed manufacturing efficiency, 28-to 42-day broiler performance, early skeletal effect, and true amino acid digestibility. J. Appl. Poult. Res. 2014, 23, 444–455. [Google Scholar] [CrossRef]
- Creswell, D.; Bedford, M. High pelleting temperatures reduce broiler performance. Proc. Aust. Poult. Sci. Symp. 2006, 20, 1–6. [Google Scholar]
- Yan, L.; An, S.; Lv, Z.Z.; Choct, M.; Zhou, G.L.; Li, Y.; Zhuo, J.S.; Wang, Z.G.; Lai, J.L.; Lv, M.B.; et al. Effects of corn particle size on growth performance, gastrointestinal development, carcass indices and intestinal microbiota of broilers. Poult. Sci. 2022, 101, 102205. [Google Scholar] [CrossRef]
- Rezaeipour, V.; Gazani, S. Effects of feed form and feed particle size with dietary L-threonine supplementation on performance, carcass characteristics and blood biochemical parameters of broiler chickens. J. Anim. Sci. Technol. 2014, 56, 1–5. [Google Scholar] [CrossRef]
- Massuquetto, A.; Durau, J.F.; Barrilli, L.N.E.; Dos Santos RO, F.; Krabbe, E.L.; Maiorka, A. Thermal processing of corn and physical form of broiler diets. Poult. Sci. 2020, 99, 3188–3195. [Google Scholar] [CrossRef]
- Lv, M.; Yan, L.; Wang, Z.; An, S.; Wu, M.; Lv, Z. Effects of feed form and feed particle size on growth performance, carcass characteristics and digestive tract development of broilers. Anim. Nutr. 2015, 1, 252–256. [Google Scholar] [CrossRef]
- Unni, D.R.; Chacko, B.; Narayanankutty, K. Effect of feed particle size on slaughter parameters in broiler chicken. Int. J. Sci. Res. 2014, 3, 491–493. [Google Scholar] [CrossRef]
- Rueda, M.; Rubio, A.A.; Starkey, C.W.; Mussini, F.; Pacheco, W.J. Effect of conditioning temperature on pellet quality, performance, nutrient digestibility, and processing yield of broilers. J. Appl. Poult. Res. 2022, 31, 100235. [Google Scholar] [CrossRef]
- Cutlip, S.E.; Hott, J.M.; Buchanan, N.P.; Rack, A.L.; Latshaw, J.D.; Moritz, J.S. The effect of steam-conditioning practices on pellet quality and growing broiler nutritional value. J. Appl. Poult. Res. 2008, 17, 249–261. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Mills, A. Role of feed processing on gut health and function in pigs and poultry: Conundrum of optimal particle size and hydrothermal regimens. Front. Vet. Sci. 2019, 6, 19. [Google Scholar] [CrossRef]
- Korver, D.R. Overview of the immune dynamics of the digestive system. J. Appl. Poult. Res. 2006, 15, 123–135. [Google Scholar] [CrossRef]
- Barrow, P.A. Probiotics for chickens. In Probiotics: The Scientific Basis; Springer Science+Business Media, B.V.: Edinburgh, UK, 1992; pp. 255–257. [Google Scholar]
- Yang, Y.; Iji, P.A.; Choct, M. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World’s Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B.; Choct, M. Role of insoluble fiber on gizzard activity in layers. J. Appl. Poult. Res. 2005, 14, 38–46. [Google Scholar] [CrossRef]
- Choct, M. Managing gut health through nutrition. Br. Poult. Sci. 2009, 50, 9–15. [Google Scholar] [CrossRef]
- Svihus, B. The gizzard: Function, influence of diet structure and effects on nutrient availability. World’s Poult. Sci. J. 2011, 67, 207–224. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Zaefarian, F.; Ravindran, V. Maximising the benefits of pelleting diets for modern broilers. Anim. Prod. Sci. 2019, 59, 2023–2028. [Google Scholar] [CrossRef]
- Svihus, B.; Hetland, H.; Choct, M.; Sundby, F. Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground and whole wheat. Br. Poult. Sci. 2002, 43, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Denbow, D.M. Gastrointestinal anatomy and physiology. In Sturkie’s Avian Physiology; Academic Press: Cambridge, MA, USA, 2015; pp. 337–366. [Google Scholar]
- Shires, A.; Thompson, J.R.; Turner, B.V.; Kennedy, P.M.; Goh, Y.K. Rate of passage of corn-canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens. Poult. Sci. 1987, 66, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Almirall, M.; Esteve-Garcia, E. Rate of passage of barley diets with chromium oxide: Influence of age and poultry strain and effect of β-glucanase supplementation. Poult. Sci. 1994, 73, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Hetland, H.; Svihus, B. Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br. Poult. Sci. 2001, 42, 354–361. [Google Scholar] [CrossRef]
- Sell, J.L.; Eastwood, J.A.; Mateos, G.G. Influence of supplemental fat on diet metabolisable energy and ingest a transit time in laying hens. Nutr. Rep. Int. 1983, 28, 487–495. [Google Scholar]
- Hetland, H.; Choct, M.; Svihus, B. Role of insoluble non-starch polysaccharides in poultry nutrition. World’s Poult. Sci. J. 2004, 60, 415–422. [Google Scholar] [CrossRef]
- Ghobadi, Z.; Karimi, A. Effect of feed processing and enzyme supplementation of wheat-based diets on performance of broiler chicks. J. Appl. Anim. Res. 2012, 40, 260–266. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Wester, T.J.; Ravindran, G.; Thomas, D.V. Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet. Anim. Feed Sci. Technol. 2011, 168, 88–99. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Ravindran, V.; Svihus, B. Influence of grain type and feed form on performance, apparent metabolisable energy and ileal digestibility of nitrogen, starch, fat, calcium and phosphorus in broiler starters. Anim. Feed Sci. Technol. 2013, 186, 193–203. [Google Scholar] [CrossRef]
- Zang, J.J.; Piao, X.S.; Huang, D.S.; Wang, J.J.; Ma, X.; Ma, Y.X. Effects of feed particle size and feed form on growth performance, nutrient metabolizability and intestinal morphology in broiler chickens. Asian-Australas J. Anim. Sci. 2009, 22, 107–112. [Google Scholar] [CrossRef]
- Naderinejad, S.; Zaefarian, F.; Abdollahi, M.R.; Hassanabadi, A.; Kermanshahi, H.; Ravindran, V. Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Anim. Feed Sci. Technol. 2016, 215, 92–104. [Google Scholar] [CrossRef]
- Svihus, B. Function of the digestive system. J. Appl. Poul. Res. 2014, 23, 306–314. [Google Scholar] [CrossRef]
- Svihus, B.; Choct, M.; Classen, H.L. Function and nutritional roles of the avian caeca: A review. World’s Poult. Sci. J. 2013, 69, 249–264. [Google Scholar] [CrossRef]
- Perera, W.N.U.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Ravindran, V. High steam-conditioning temperature during the pelleting process impairs growth performance and nutrient utilization in broiler starters fed barley-based diets, regardless of carbohydrase supplementation. Poult. Sci. 2021, 100, 101166. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Starter (0–10 Days) | Grower (11–24 Days) | Finisher (25–42 Days) |
---|---|---|---|
Corn (7.80% CP) | 48.90 | 52.64 | 57.74 |
Soybean meal (43.88% CP) | 42.75 | 38.74 | 33.31 |
Soybean oil | 4.50 | 5.20 | 5.81 |
Dicalcium phosphate | 1.13 | 0.92 | 0.75 |
Calcium carbonate | 1.07 | 0.99 | 0.92 |
Common salt | 0.33 | 0.33 | 0.33 |
Sodium bicarbonate | 0.15 | 0.13 | 0.13 |
Mineral premix a | 0.25 | 0.25 | 0.25 |
Vitamin premix a | 0.25 | 0.25 | 0.25 |
DL-Methionine | 0.33 | 0.28 | 0.26 |
L- Lysine HCL | 0.21 | 0.16 | 0.16 |
L- Threonine | 0.07 | 0.05 | 0.03 |
Choline Chloride | 0.05 | 0.05 | 0.05 |
Phytase (1000 FTU/kg) | 0.01 | 0.01 | 0.01 |
Calculated chemical composition | |||
Apparent metabolizable energy (kcal/kg) | 3000 | 3100 | 3200 |
Crude protein (%) | 23.00 | 21.50 | 19.50 |
Calcium (%) | 0.96 | 0.87 | 0.79 |
Available phosphorus (%) | 0.48 | 0.435 | 0.395 |
Potassium (%) | 0.98 | 0.92 | 0.83 |
Chlorine (%) | 0.25 | 0.25 | 0.24 |
Sodium (%) | 0.18 | 0.18 | 0.18 |
Digestible Lysine (%) | 1.28 | 1.15 | 1.03 |
Digestible Methionine (%) | 0.63 | 0.57 | 0.53 |
Digestible Methionine + Cystine (%) | 0.95 | 0.87 | 0.80 |
Digestible Threonine (%) | 0.86 | 0.77 | 0.72 |
Digestible Tryptophan (%) | 0.25 | 0.24 | 0.21 |
Digestible Arginine (%) | 1.52 | 1.42 | 1.26 |
Digestible Isoleucine (%) | 0.92 | 0.86 | 0.77 |
Digestible Leucine (%) | 1.77 | 1.68 | 1.55 |
Digestible Valine (%) | 0.98 | 0.93 | 0.84 |
Treatments | Starter (1–10 Days) | Grower (11–24 Days) | Finisher (25–42 Days) | Total (1–42 Days) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PS * | CT (°C) | ADFI 1 (g/Bird/d) | ADWG 2 (g/Bird/d) | FCR 3 (g/g) | ADFI (g/Bird/d) | ADWG (g/Bird/d) | FCR (g/g) | ADFI (g/Bird/d) | ADWG (g/Bird/d) | FCR (g/g) | ADFI (g/Bird/d) | ADWG (g/Bird/d) | FCR (g/g) |
F | - | 30.9 | 22.7 a | 1.360 b | 73.7 | 47.6 | 1.552 | 142 | 89.5 | 1.592 b | 89.1 | 57.3 a | 1.554 b |
C | - | 29.7 | 20.8 b | 1.433 a | 74.8 | 47.4 | 1.582 | 143 | 87.8 | 1.638 a | 89.8 | 56.1 b | 1.600 a |
SEM | - | 0.404 | 0.358 | 0.0187 | 0.642 | 0.564 | 0.0205 | 0.850 | 0.823 | 0.0137 | 0.495 | 0.395 | 0.0116 |
- | U | 29.5 | 20.6 b | 1.439 a | 73.4 | 45.0 b | 1.634 a | 142 | 89.0 | 1.602 ab | 88.7 | 55.7 b | 1.594 |
- | 75 | 30.4 | 22.4 a | 1.354 b | 75.0 | 48.2 a | 1.555 b | 142 | 89.7 | 1.593 b | 89.7 | 57.6 a | 1.557 |
- | 90 | 31.0 | 22.2 a | 1.396 ab | 74.5 | 49.3 a | 1.512 b | 143 | 87.2 | 1.649 a | 89.9 | 56.9 ab | 1.580 |
SEM | 0.494 | 0.439 | 0.0229 | 0.787 | 0.691 | 0.0252 | 1.041 | 1.009 | 0.0168 | 0.607 | 0.484 | 0.0142 | |
F | U | 30.4 | 21.5 | 1.414 | 73.3 | 44.8 | 1.640 | 141 | 90.4 | 1.567 | 88.6 | 56.4 | 1.571 |
75 | 31.2 | 23.5 | 1.325 | 73.9 | 48.3 | 1.528 | 142 | 91.2 | 1.562 | 89.3 | 58.4 | 1.527 | |
90 | 31.0 | 23.1 | 1.341 | 74.0 | 49.7 | 1.488 | 143 | 86.9 | 1.647 | 89.4 | 57.1 | 1.564 | |
C | U | 28.7 | 19.6 | 1.464 | 73.4 | 45.2 | 1.628 | 143 | 87.5 | 1.637 | 88.8 | 54.9 | 1.618 |
75 | 29.6 | 21.4 | 1.383 | 76.1 | 48.1 | 1.581 | 143 | 88.3 | 1.624 | 90.1 | 56.7 | 1.588 | |
90 | 30.9 | 21.4 | 1.452 | 75.0 | 48.8 | 1.536 | 144 | 87.6 | 1.652 | 90.4 | 56.6 | 1.595 | |
SEM | 0.699 | 0.621 | 0.0323 | 1.113 | 0.977 | 0.0356 | 1.472 | 1.427 | 0.0237 | 0.858 | 0.685 | 0.0200 | |
p Value | |||||||||||||
PS | 0.064 | <0.001 | 0.010 | 0.236 | 0.758 | 0.341 | 0.250 | 0.152 | 0.026 | 0.321 | 0.039 | 0.009 | |
CT (°C) | 0.146 | 0.010 | 0.048 | 0.351 | <0.001 | 0.007 | 0.617 | 0.226 | 0.057 | 0.362 | 0.031 | 0.204 | |
PS × CT (°C) | 0.477 | 0.973 | 0.601 | 0.634 | 0.809 | 0.604 | 0.969 | 0.382 | 0.343 | 0.901 | 0.641 | 0.776 |
PS * | CT (°C) | Slaughtered Body Weight (g) | Carcass Yield | Breast | Thigh | Abdominal Fat | Gizzard | Liver | Pancreas | Heart | Gizzard pH |
---|---|---|---|---|---|---|---|---|---|---|---|
% of Live Weight | |||||||||||
F | - | 2522 a | 67.8 | 26.2 | 20.1 | 2.036 b | 1.033 | 1.906 | 0.2215 | 0.459 | 3.978 |
C | - | 2472 b | 67.5 | 25.7 | 20.3 | 2.412 a | 1.171 | 1.852 | 0.2002 | 0.479 | 3.125 |
SEM | - | 16.8 | 0.28 | 0.34 | 0.27 | 0.1065 | 0.0219 | 0.0568 | 0.0047 | 0.0167 | 0.0640 |
- | U | 2455 | 67.6 | 25.7 | 20.4 | 2.142 | 1.230 | 1.949 | 0.2318 | 0.479 | 3.623 |
- | 75 | 2524 | 67.9 | 26.2 | 20.1 | 2.180 | 1.061 | 1.783 | 0.2072 | 0.454 | 3.513 |
- | 90 | 2512 | 67.4 | 25.9 | 20.0 | 2.320 | 1.016 | 1.904 | 0.1936 | 0.475 | 3.517 |
- | SEM | 20.6 | 0.34 | 0.42 | 0.33 | 0.1304 | 0.0268 | 0.0696 | 0.0058 | 0.0205 | 0.0784 |
F | U | 2492 | 67.3 b | 26.0 | 20.0 | 1.950 | 1.132 bc | 2.170 a | 0.2378 a | 0.454 | 4.060 a |
75 | 2562 | 68.9 a | 26.3 | 20.6 | 1.975 | 1.071 bcd | 1.813 ab | 0.2415 a | 0.457 | 3.740 ab | |
90 | 2512 | 67.1 b | 26.3 | 19.6 | 2.184 | 0.897 d | 1.733 ab | 0.1853 b | 0.467 | 4.135 a | |
C | U | 2418 | 67.9 ab | 25.5 | 20.8 | 2.335 | 1.328 a | 1.728 b | 0.2258 ab | 0.504 | 3.187 bc |
75 | 2485 | 67.7 ab | 26.1 | 19.6 | 2.455 | 1.051 cd | 1.832 ab | 0.1728 b | 0.451 | 3.287 bc | |
90 | 2513 | 66.8 b | 25.5 | 20.5 | 2.456 | 1.135 bc | 1.995 ab | 0.2019 ab | 0.483 | 2.900 c | |
SEM | 29.2 | 0.49 | 0.60 | 0.47 | 0.1844 | 0.0379 | 0.0984 | 0.0082 | 0.0289 | 0.1109 | |
p Value | |||||||||||
PS | 0.045 | 0.471 | 0.371 | 0.568 | 0.042 | <0.001 | 0.554 | 0.010 | 0.455 | <0.001 | |
CT | 0.060 | 0.705 | 0.780 | 0.731 | 0.692 | <0.001 | 0.317 | 0.002 | 0.718 | 0.610 | |
PS × CT | 0.337 | 0.034 | 0.927 | 0.190 | 0.889 | 0.014 | 0.022 | <0.001 | 0.697 | 0.019 |
PS * | CT (°C) | Primary Responses | Secondary Responses | ND Titer | ||||
---|---|---|---|---|---|---|---|---|
Ig T | IgG | IgM | Ig T | IgG | IgM | |||
F | - | 4.533 | 1.866 | 2.666 | 5.666 | 2.733 | 2.933 | 6.666 |
C | - | 5.066 | 1.933 | 3.133 | 6.333 | 3.066 | 3.266 | 7.066 |
SEM | - | 0.3000 | 0.1944 | 0.2963 | 0.3073 | 0.3448 | 0.2186 | 0.3055 |
- | U | 4.300 b | 1.700 | 2.600 b | 5.200 b | 2.600 | 2.600 b | 6.800 |
- | 75 | 5.500 a | 1.900 | 3.600 a | 6.600 a | 2.800 | 3.800 a | 7.100 |
- | 90 | 4.600 ab | 2.100 | 2.500 b | 6.200 ab | 3.300 | 2.900 b | 6.700 |
- | SEM | 0.3674 | 0.2380 | 0.3629 | 0.3764 | 0.4223 | 0.2677 | 0.3742 |
F | U | 4.000 | 1.600 | 2.400 | 5.000 | 2.400 | 2.600 | 6.400 |
75 | 5.400 | 2.000 | 3.400 | 6.200 | 3.000 | 3.200 | 6.600 | |
90 | 4.200 | 2.000 | 2.200 | 5.800 | 2.800 | 3.000 | 7.000 | |
C | U | 4.600 | 1.800 | 2.800 | 5.400 | 2.800 | 2.600 | 7.200 |
75 | 5.600 | 1.800 | 3.800 | 7.000 | 2.600 | 4.400 | 7.600 | |
90 | 5.000 | 2.200 | 2.800 | 6.600 | 3.800 | 2.800 | 6.400 | |
SEM | 0.5196 | 0.3367 | 0.5132 | 0.5323 | 0.5972 | 0.3786 | 0.5292 | |
p Value | ||||||||
PS | 0.220 | 0.810 | 0.276 | 0.138 | 0.500 | 0.291 | 0.363 | |
CT(°C) | <0.01 | 0.503 | <0.01 | <0.01 | 0.492 | <0.01 | 0.736 | |
PS × CT(°C) | 0.842 | 0.792 | 0.975 | 0.910 | 0.510 | 0.157 | 0.276 |
PS * | CT (°C) | Duodenum | Jejunum | Ileum | Total Small Intestine | Cecum | Villus Height (µm) | Villus Width (µm) | Villus Height/Crypt Depth | Crypt Depth (µm) | Muscle Thickness (µm) | Absorption Surface Area (µm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm/kg Body Weight) | ||||||||||||
F | - | 12.6 | 30.9 | 31.0 | 75.3 | 7.89 | 1080 | 100.4 b | 12.77 | 87.8 | 134 | 344,090 |
C | - | 13.3 | 29.4 | 31.0 | 73.1 | 7.93 | 833 | 117.4 a | 8.55 | 105.1 | 150 | 306,872 |
SEM | - | 0.392 | 0.546 | 0.810 | 1.500 | 0.1550 | 34.0 | 4.95 | 0.710 | 5.34 | 6.0 | 17,340 |
- | U | 14.2 a | 32.7 a | 31.4 | 78.4 a | 8.46 a | 918 | 99.4 b | 10.10 | 98.2 | 166 | 284,167 |
- | 75 | 12.0 b | 27.8 b | 30.2 | 70.1 b | 7.40 b | 986 | 113.5 a | 10.18 | 106.3 | 133 | 348,582 |
- | 90 | 12.7 ab | 29.9 ab | 31.3 | 74.0 ab | 7.87 ab | 965 | 113.8 a | 11.71 | 84.8 | 128 | 343,695 |
- | SEM | 0.480 | 0.668 | 0.992 | 1.837 | 0.1899 | 41.6 | 6.06 | 0.870 | 6.54 | 7.3 | 21,237 |
F | U | 13.9 | 32.6 | 30.0 | 76.6 | 8.67 a | 937 b | 88.3 | 12.11 a | 79.1 b | 116 c | 257,873 c |
75 | 11.9 | 25.7 | 30.0 | 67.7 | 6.91 b | 1244 a | 110.0 | 14.05 a | 94.5 ab | 156 b | 430,018 a | |
90 | 12.0 | 30.1 | 32.8 | 75.0 | 8.11 ab | 1057 ab | 102.8 | 12.15 a | 89.8 ab | 129 bc | 344,379 b | |
C | U | 14.5 | 32.9 | 32.7 | 80.2 | 8.25 ab | 899 ab | 110.6 | 8.09 b | 117.4 a | 215 a | 310,459 bc |
75 | 12.0 | 30.0 | 30.4 | 72.5 | 7.90 ab | 728 c | 116.9 | 6.31 b | 118.0 a | 109 c | 267,145 bc | |
90 | 13.4 | 29.8 | 29.8 | 73.1 | 7.64 ab | 872 bc | 124.7 | 11.27 a | 79.9 b | 127 bc | 343,009 b | |
SEM | 0.680 | 0.945 | 1.403 | 2.598 | 0.2685 | 58.9 | 8.57 | 1.231 | 9.26 | 10.4 | 30,034 | |
p Value | ||||||||||||
PS | 0.279 | 0.099 | 0.995 | 0.366 | 0.891 | <0.001 | 0.001 | <0.001 | 0.002 | 0.008 | 0.036 | |
CT (°C) | 0.027 | 0.0008 | 0.697 | 0.034 | <0.01 | 0.263 | 0.032 | 0.124 | 0.006 | <0.001 | 0.005 | |
PS × CT (°C) | 0.68 | 0.086 | 0.208 | 0.481 | 0.042 | <0.001 | 0.357 | 0.001 | 0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemi-Aghgonbad, A.; Olyayee, M.; Janmohammadi, H.; Abdollahi, M.R.; Kianfar, R. The Interactive Impacts of Corn Particle Size and Conditioning Temperature on Performance, Carcass Traits, and Intestinal Morphology of Broiler Chickens. Animals 2024, 14, 818. https://doi.org/10.3390/ani14050818
Ghasemi-Aghgonbad A, Olyayee M, Janmohammadi H, Abdollahi MR, Kianfar R. The Interactive Impacts of Corn Particle Size and Conditioning Temperature on Performance, Carcass Traits, and Intestinal Morphology of Broiler Chickens. Animals. 2024; 14(5):818. https://doi.org/10.3390/ani14050818
Chicago/Turabian StyleGhasemi-Aghgonbad, Asadollah, Majid Olyayee, Hossein Janmohammadi, Mohammad Reza Abdollahi, and Ruhollah Kianfar. 2024. "The Interactive Impacts of Corn Particle Size and Conditioning Temperature on Performance, Carcass Traits, and Intestinal Morphology of Broiler Chickens" Animals 14, no. 5: 818. https://doi.org/10.3390/ani14050818
APA StyleGhasemi-Aghgonbad, A., Olyayee, M., Janmohammadi, H., Abdollahi, M. R., & Kianfar, R. (2024). The Interactive Impacts of Corn Particle Size and Conditioning Temperature on Performance, Carcass Traits, and Intestinal Morphology of Broiler Chickens. Animals, 14(5), 818. https://doi.org/10.3390/ani14050818