Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress
Abstract
Simple Summary
Abstract
1. Introduction
2. Neurobiological Response to Heat Stress
3. Physiological Responses to Mitigate Heat Stress
4. Productive and Physiological Consequences of Heat Stress
5. Infrared Thermography as a Tool to Assess Thermostability in Farm Animals
Thermal Windows Used to Assess Thermostability of Animals
6. Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chala, M.E.; Cherukuri, V.R.; Lemma, F.; Rama, P.J.; Suhas, S.J. Global Warming: Genesis, Facts and Impacts on Livestock Farming and Mitigation Strategies. Int. J. Agric. Innov. Res. 2015, 3, 1494–1503. [Google Scholar]
- Angilletta, M.J.; Youngblood, J.P.; Neel, L.K.; VandenBrooks, J.M. The Neuroscience of Adaptive Thermoregulation. Neurosci. Lett. 2019, 692, 127–136. [Google Scholar] [CrossRef]
- Unger, S.D.; Rollins, M.A.; Thompson, C.M. Hot- or Cold-Blooded? A Laboratory Activity That Uses Accessible Technology to Investigate Thermoregulation in Animals. Am. Biol. Teach. 2020, 82, 227–233. [Google Scholar] [CrossRef]
- Coria-Avila, G.A.; Herrera-Covarrubias, D.; García, L.I.; Toledo, R.; Hernández, M.E.; Paredes-Ramos, P.; Corona-Morales, A.A.; Manzo, J. Neurobiology of Maternal Behavior in Nonhuman Mammals: Acceptance, Recognition, Motivation, and Rejection. Animals 2022, 12, 3589. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D.; la Fuente, V.C.; et al. Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- McCafferty, D.J.; Pandraud, G.; Gilles, J.; Fabra-Puchol, M.; Henry, P.-Y. Animal Thermoregulation: A Review of Insulation, Physiology and Behaviour Relevant to Temperature Control in Buildings. Bioinspir. Biomim. 2017, 13, 011001. [Google Scholar] [CrossRef]
- Montgomery, H.; Haughey, S.A.; Elliott, C.T. Recent Food Safety and Fraud Issues within the Dairy Supply Chain (2015–2019). Glob. Food Sec. 2020, 26, 100447. [Google Scholar] [CrossRef]
- Das, K.S.; Singh, J.K.; Singh, G.; Upadhyay, R.C.; Malik, R.; Oberoi, P.S. Heat Stress Alleviation in Lactating Buffaloes: Effect on Physiological Response, Metabolic Hormone, Milk Production and Composition. Indian J. Anim. Sci. 2014, 84, 275–280. [Google Scholar] [CrossRef]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J.C. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Ko, J.C.; Krimins, R.A. Thermoregulation. In Zoo Animal and Wildlife Immobilization and Anesthesia; Wiley: Hoboken, NJ, USA, 2014; pp. 65–68. [Google Scholar]
- Gourdine, J.L.; Rauw, W.M.; Gilbert, H.; Poullet, N. The Genetics of Thermoregulation in Pigs: A Review. Front. Vet. Sci. 2021, 8, 770480. [Google Scholar] [CrossRef]
- Cymbaluk, N.F.; Christison, G.I. Environmental Effects on Thermoregulation and Nutrition of Horses. Vet. Clin. N. Am. Equine Pract. 1990, 6, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Martínez-Burnes, J.; Casas-Alvarado, A.; Gómez-Prado, J.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Jacome-Romero, J.; Rodríguez-González, D.; Pereira, A.M.F. Clinical Usefulness of Infrared Thermography to Detect Sick Animals: Frequent and Current Cases. CABI Rev. 2022, 2022, 202217040. [Google Scholar] [CrossRef]
- Marques, J.I.; Leite, P.G.; Lopes Neto, J.P.; Furtado, D.A.; de M. Lopes, F.F. Estimation of rectal temperature of goats based on surface temperature. Eng. Agríc. 2021, 41, 591–598. [Google Scholar] [CrossRef]
- Bartolomé, E.; Azcona, F.; Cañete-Aranda, M.; Perdomo-González, D.I.; Ribes-Pons, J.; Terán, E.M. Testing Eye Temperature Assessed with Infrared Thermography to Evaluate Stress in Meat Goats Raised in a Semi-Intensive Farming System: A Pilot Study. Arch. Anim. Breed. 2019, 62, 199–204. [Google Scholar] [CrossRef]
- Weissenböck, N.M.; Weiss, C.M.; Schwammer, H.M.; Kratochvil, H. Thermal Windows on the Body Surface of African Elephants (Loxodonta Africana) Studied by Infrared Thermography. J. Therm. Biol. 2010, 35, 182–188. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; de Mira Geraldo, A.; Martínez-Burnes, J.; Gómez, J.; Hernández-Ávalos, I.; Casas, A.; Domínguez, A.; José, N.; Bertoni, A.; et al. Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals 2021, 11, 3472. [Google Scholar] [CrossRef]
- Piccione, G.; Giannetto, C.; Fazio, F.; Giudice, E. Accuracy of Auricular Temperature Determination as Body Temperature Index and Its Daily Rhythmicity in Healthy Dog. Biol. Rhythm Res. 2011, 42, 437–443. [Google Scholar] [CrossRef]
- Kapcak, A.B.; Dogan, E. Short Communication: Correlation of Thermographic Ocular and Auricular Temperatures with Rectal Temperature in Anesthetized Dogs. Vet. Med. Int. 2023, 2023, 9939580. [Google Scholar] [CrossRef]
- Giannetto, C.; Di Pietro, S.; Falcone, A.; Pennisi, M.; Giudice, E.; Piccione, G.; Acri, G. Thermographic Ocular Temperature Correlated with Rectal Temperature in Cats. J. Therm. Biol. 2021, 102, 103104. [Google Scholar] [CrossRef]
- Arfuso, F.; Acri, G.; Piccione, G.; Sansotta, C.; Fazio, F.; Giudice, E.; Giannetto, C. Eye Surface Infrared Thermography Usefulness as a Noninvasive Method of Measuring Stress Response in Sheep during Shearing: Correlations with Serum Cortisol and Rectal Temperature Values. Physiol. Behav. 2022, 250, 113781. [Google Scholar] [CrossRef]
- Aragona, F.; Di Pietro, S.; Arfuso, F.; Fazio, F.; Piccione, G.; Giudice, E.; Giannetto, C. Correlation between Ocular and Rectal Temperature with Intra Ocular Pressure in Horse during Exercise. Animals 2022, 12, 1850. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical Applications and Factors Involved in Validating Thermal Windows Used in Infrared Thermography in Cattle and River Buffalo to Assess Health and Productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.S.E.; Badreldin, A.L.; Shafei, M.M. Skin Structure of Egyptian Buffaloes and Cattle with Particular Reference to Sweat Glands. J. Agric. Sci. 1955, 46, 19–30. [Google Scholar] [CrossRef]
- Abdul Raheem, H.M.; Elias, A.M.; Ahmed, N.S. The Correction Factor of Hair Density in the Skin of Buffalo. Iraqi J. Vet. Sci. 2006, 20, 101–106. [Google Scholar] [CrossRef]
- Debbarma, D.; Uppal, V.; Bansal, N.; Gupta, A. Histomorphometrical Study on Regional Variation in Distribution of Sweat Glands in Buffalo Skin. Dermatol. Res. Pract. 2018, 2018, 5345390. [Google Scholar] [CrossRef]
- Taylor, R.E. Adaptation to the Environment. In Scientific Farm Animal Production; Macmillan Publishing Company: New York, NY, USA, 1992; pp. 326–332. [Google Scholar]
- Aggarwal, A.; Upadhyay, R. Thermoregulation. In Heat Stress and Animal Productivity; Springer: Delhi, India, 2013; pp. 1–25. [Google Scholar]
- Schaefer, A.L.L.; Ominski, K.; Thompson, S.; Crow, G.; Bench, C.; Colyn, J.; Rodas-Gonzalez, A.; Maharjan, D.; Bollum, R.; Cook, N.J.J.; et al. Energy Utilization in Cattle with Steady State and Non-Steady State Methods: The Importance of Thermal Neutrality. Heliyon 2018, 4, e00843. [Google Scholar] [CrossRef]
- Ramón, M.; Díaz, C.; Pérez-Guzman, M.D.; Carabaño, M.J. Effect of Exposure to Adverse Climatic Conditions on Production in Manchega Dairy Sheep. J. Dairy Sci. 2016, 99, 5764–5779. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Graham, N.M.; Wainman, F.W. Environmental Temperature, Energy Metabolism and Heat Regulation in Sheep. III. The Metabolism and Thermal Exchanges of Sheep with Fleeces. J. Agric. Sci. 1959, 52, 41–49. [Google Scholar] [CrossRef]
- Napolitano, F.; De Rosa, G.; Chay-Canul, A.; Álvarez-Macías, A.; Pereira, A.M.F.; Bragaglio, A.; Mora-Medina, P.; Rodríguez-González, D.; García-Herrera, R.; Hernández-Ávalos, I.; et al. The Challenge of Global Warming in Water Buffalo Farming: Physiological and Behavioral Aspects and Strategies to Face Heat Stress. Animals 2023, 13, 3103. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Habeeb, A.; Ravikanth, R.P.; Ghezzi, M.D.; Napolitano, F.; Lendez, P.; Cuibus, A.; Ceriani, C.; Sarubbi, J.; Braghieri, A.; et al. Chapter 32. Water Buffalo Thermoregulation: Neurobiological Mechanisms, Microcirculatory Changes, and Practical Applications of Infrared Thermography. In El Búfalo de Agua en las Américas. Comportamiento y Productividad, 4th ed.; Napolitano, F., Mota-Rojas, D., Orihuela, A., Braghieri, A., Hufana-Duran, D., Strappini, A., Pereira, A.M., Ghezzi, M., Guerrero-Legarreta, I., Martínez-Burnes, J., Eds.; B.M. Editores: Mexico City, Mexico, 2023; pp. 864–888. [Google Scholar]
- Robinson, J.B.; Ames, D.R.; Milliken, G.A. Heat Production of Cattle Acclimated to Cold, Thermoneutrality and Heat When Exposed to Thermoneutrality and Heat Stress. J. Anim. Sci. 1986, 62, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Ghezzi, M.D.; Pereira, A.M.F.; Martínez-Burnes, J.; Napolitano, F.; Orihuela, A.; Domínguez, A.; Lezama, K.; Casas, A.; Rodríguez, D.; et al. El búfalo de agua recién nacido y sus mecanismos de compensación térmica. In El Búfalo de Agua en las Américas. Comportamiento y Productividad, 4th ed.; Napolitano, F., Mota-Rojas, D., Orihuela, A., Braghieri, A., Hufana-Duran, D., Strappini, A., Pereira, A.M., Ghezzi, M., Guerrero-Legarreta, I., Martínez-Burnes, J., Eds.; B.M. Editores: Mexico City, Mexico, 2023; pp. 552–593. [Google Scholar]
- Hine, R. A Dictionary of Biology, 8th ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Kovács, L.; Kézér, F.L.; Póti, P.; Boros, N.; Nagy, K. Short Communication: Upper Critical Temperature-Humidity Index for Dairy Calves Based on Physiological Stress Variables. J. Dairy Sci. 2020, 103, 2707–2710. [Google Scholar] [CrossRef]
- Foroushani, S.; Amon, T. Thermodynamic Assessment of Heat Stress in Dairy Cattle: Lessons from Human Biometeorology. Int. J. Biometeorol. 2022, 66, 1811–1827. [Google Scholar] [CrossRef]
- Lezama-García, K.; Mota-Rojas, D.; Pereira, A.M.F.; Martínez-Burnes, J.; Ghezzi, M.; Domínguez, A.; Gómez, J.; de Mira Geraldo, A.; Lendez, P.; Hernández-Ávalos, I.; et al. Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals 2022, 12, 106. [Google Scholar] [CrossRef]
- McKinley, M.J.; Martelli, D.; Pennington, G.L.; Trevaks, D.; McAllen, R.M. Integrating Competing Demands of Osmoregulatory and Thermoregulatory Homeostasis. Physiology 2018, 33, 170–181. [Google Scholar] [CrossRef]
- Morrison, S.F.; Nakamura, K. Central Mechanisms for Thermoregulation. Annu. Rev. Physiol. 2019, 81, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Wetsel, W.C. Sensing Hot and Cold with TRP Channels. Int. J. Hyperth. 2011, 27, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Benham, C.D.; Gunthorpe, M.J.; Davis, J.B. TRPV Channels as Temperature Sensors. Cell Calcium 2003, 33, 479–487. [Google Scholar] [CrossRef]
- Verduzco-Mendoza, A.; Bueno-Nava, A.; Wang, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Casas, A.; Domínguez, A.; Mota-Rojas, D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals 2021, 11, 3448. [Google Scholar] [CrossRef]
- Sokolova, I. Temperature Regulation. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 633–639. [Google Scholar]
- Sanin, L.Y.; Cabrera, A.M.Z.; Morales, A.M.T. Adaptive Responses to Thermal Stress in Mammals. Rev. Med. Vet. 2016, 31, 121–135. [Google Scholar]
- Romanovsky, A.A. Skin Temperature: Its Role in Thermoregulation. Acta Physiol. 2014, 210, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, D.; Guerrero-Legarreta, I.; Cruz Monterrosa, R.G.; Napolitano, F.; Gonçalves-Titto, C.; El-Aziz, A.H.A.; Hernández- Ávalos, I.; Casas-Alvarado, A.; Oliva- Domínguez, A.; Mota-Rojas, D. Assessment of Thermal Changes in Water Buffalo Mobilized from the Paddock and Transported by Short Journeys. Front. Vet. Sci. 2023, 12, 1184577. [Google Scholar] [CrossRef]
- Abdoun, K.A.; Samara, E.M.; Okab, A.B.; Al-haidary, A.A. Regional and Circadian Variations of Sweating Rate and Body Surface Temperature in Camels (Camelus Dromedarius). Anim. Sci. J. 2012, 83, 556–561. [Google Scholar] [CrossRef]
- Dela Ricci, G.; Silva-Miranda, K.O.; Titto, C.G. Infrared Thermography as a Non-Invasive Method for the Evaluation of Heat Stress in Pigs Kept in Pens Free of Cages in the Maternity. Comput. Electron. Agric. 2019, 157, 403–409. [Google Scholar] [CrossRef]
- Gómez-Prado, J.; Pereira, A.M.F.; Wang, D.; Villanueva-García, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation Mechanisms and Perspectives for Validating Thermal Windows in Pigs with Hypothermia and Hyperthermia: An Overview. Front. Vet. Sci. 2022, 9, 1023294. [Google Scholar] [CrossRef]
- Yahiro, T.; Kataoka, N.; Nakamura, Y.; Nakamura, K. The Lateral Parabrachial Nucleus, but Not the Thalamus, Mediates Thermosensory Pathways for Behavioural Thermoregulation. Sci. Rep. 2017, 7, 5031. [Google Scholar] [CrossRef]
- Scarpellini, C.D.S.; Cristina-Silva, C.; Biancardi, V.; Gargaglioni, L.H.; Almeida, M.C.; Bícego, K.C. Hypothalamic TRPV4 Channels Participate in the Medial Preoptic Activation of Warmth-Defence Responses in Wistar Male Rats. Pflügers Arch. Eur. J. Physiol. 2019, 471, 1191–1203. [Google Scholar] [CrossRef]
- Abbott, S.B.G.; Saper, C.B. Role of the Median Preoptic Nucleus in the Autonomic Response to Heat-Exposure. Temperature 2018, 5, 4–6. [Google Scholar] [CrossRef]
- McAllen, R.M.; McKinley, M.J. Efferent Thermoregulatory Pathways Regulating Cutaneous Blood Flow and Sweating. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 305–316. [Google Scholar]
- Alba, B.K.; Castellani, J.W.; Charkoudian, N. Cold-induced Cutaneous Vasoconstriction in Humans: Function, Dysfunction and the Distinctly Counterproductive. Exp. Physiol. 2019, 104, 1202–1214. [Google Scholar] [CrossRef]
- Ootsuka, Y.; Tanaka, M. Control of Cutaneous Blood Flow by Central Nervous System. Temperature 2015, 2, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Rodríguez, L.F.; Titto, C.G.; de Bruni, G.A.; Froge, G.A.; Fuloni, M.F.; Payan-Carrera, R.; Henrique, F.L.; Geraldo, A.C.A.P.D.M.; Pereira, A.M.F. Effect of Solar Radiation on Thermoregulatory Responses of Santa Inês Sheep and Their Crosses with Wool and Hair Dorper Sheep. Small Rumin. Res. 2021, 202, 106470. [Google Scholar] [CrossRef]
- Gupta, M.; Mondal, T. Heat Stress and Thermoregulatory Responses of Goats: A Review. Biol. Rhythm Res. 2021, 52, 407–433. [Google Scholar] [CrossRef]
- Thau, L.; Gandhi, J.; Sharma, S. Physiology, Cortisol; StatPearls Publishing: Boca Raton, FL, USA, 2022. [Google Scholar]
- Mohankumar, S.M.J.; Balasubramanian, P.; Dharmaraj, M.; Mohankumar, P.S. Neuroendocrine Regulation of Adaptive Mechanisms in Livestock. In Environmental Stress and Amelioration in Livestock Production; Springer: Berlin/Heidelberg, Germany, 2012; Volume 9783642292, pp. 263–298. [Google Scholar]
- Ghassemi Nejad, J.; Lohakare, J.D.; Son, J.K.; Kwon, E.G.; West, J.W.; Sung, K.I. Wool Cortisol Is a Better Indicator of Stress than Blood Cortisol in Ewes Exposed to Heat Stress and Water Restriction. Animal 2014, 8, 128–132. [Google Scholar] [CrossRef]
- Lopes Neto, J.P.; Marques, J.I.; Furtado, D.A.; Lopes, F.F.M.; Borges, V.P.; Araújo, T.G.P. Pupillary Stress Index: A New Thermal Comfort Index for Crossbred Goats | Índice de Estresse Pupilar: Um Novo Índice de Conforto Térmico Para Caprinos Mestiços. Rev. Bras. Eng. Agric. Ambient. 2018, 22, 866–871. [Google Scholar] [CrossRef]
- Marques, J.I.; Lopes Neto, J.P.; do Nascimento, J.W.B.; Talieri, I.C.; de Medeiros, G.R.; Furtado, D.A. Pupillary Dilation as a Thermal Stress Indicator in Boer Crossbred Goats Maintained in a Climate Chamber. Small Rumin. Res. 2018, 158, 26–29. [Google Scholar] [CrossRef]
- Yamin, D.; Beena, V.; Ramnath, V.; Zarina, A.; Harikumar, S.; Venkatachalapathy, R.T.; Gleeja, V.L. Impact of Thermal Stress on Physiological, Behavioural and Biochemical Parameters in Native and Crossbred Goats. Small Rumin. Res. 2022, 216, 106794. [Google Scholar] [CrossRef]
- Nagashima, K. Central Mechanisms for Thermoregulation in a Hot Environment. Ind. Health 2006, 44, 359–367. [Google Scholar] [CrossRef]
- Monnig, A.A. Practical Acid-Base in Veterinary Patients. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1273–1286. [Google Scholar] [CrossRef] [PubMed]
- Hopper, K. Respiratory Acid–Base Disorders in the Critical Care Unit. Vet. Clin. N. Am. Small Anim. Pract. 2017, 47, 351–357. [Google Scholar] [CrossRef]
- Ratnakaran, A.P.; Sejian, V.; Jose, V.S.; Vaswani, S.; Bagath, M.; Krishnan, G.; Beena, V.; Devi, P.I.; Varma, G.; Bhatta, R. Behavioral Responses to Livestock Adaptation to Heat Stress Challenges. Asian J. Anim. Sci. 2016, 11, 1–13. [Google Scholar] [CrossRef]
- Herbut, P.; Hoffmann, G.; Angrecka, S.; Godyń, D.; Vieira, F.M.C.; Adamczyk, K.; Kupczyński, R. The Effects of Heat Stress on the Behaviour of Dairy Cows—A Review. Ann. Anim. Sci. 2021, 21, 385–402. [Google Scholar] [CrossRef]
- Kamal, R.; Dutt, T.; Patel, M.; Dey, A.; Bharti, P.K.; Chandran, P.C. Heat Stress and Effect of Shade Materials on Hormonal and Behavior Response of Dairy Cattle: A Review. Trop. Anim. Health Prod. 2018, 50, 701–706. [Google Scholar] [CrossRef]
- Taylor, D.; Brown, W.; Price, I.; Trotter, M.; Lamb, D.; Hinch, G. Gps Tracking of Sheep To Investigate Shelter and Shade Use. In Proceedings of the 10th International Conference Precision Agriculture, Denver, CO, USA, 18–20 July 2010; pp. 247–248. [Google Scholar]
- Knight, M.I.; Linden, N.P.; Butler, K.L.; Rice, M.; Ponnampalam, E.N.; Behrendt, R.; Jongman, E.C. The Effect of Shade on Sheep Grazing Pasture during Summer Conditions. J. Vet. Behav. 2023, 64, 16–24. [Google Scholar] [CrossRef]
- Bertoni, A.; Mota-Rojas, D.; Álvarez-Macias, A.; Mora-Medina, P.; Guerrero-Legarreta, I.; Morales-Canela, A.; Gómez-Prado, J.; José-Pérez, N.; Martínez-Burnes, J. Scientific Findings Related to Changes in Vascular Microcirculation Using Infrared Thermography in the River Buffalo. J. Anim. Behav. Biometeorol. 2020, 8, 288–297. [Google Scholar] [CrossRef]
- Bonneau, M.; Poullet, N.; Beramice, D.; Dantec, L.; Canario, L.; Gourdine, J.-L. Behavior Comparison During Chronic Heat Stress in Large White and Creole Pigs Using Image-Analysis. Front. Anim. Sci. 2021, 2, 784376. [Google Scholar] [CrossRef]
- Li, F.K.; Yang, Y.; Jenna, K.; Xia, C.H.; Lv, S.J.; Wei, W.H. Effect of Heat Stress on the Behavioral and Physiological Patterns of Small-Tail Han Sheep Housed Indoors. Trop. Anim. Health Prod. 2018, 50, 1893–1901. [Google Scholar] [CrossRef]
- Berihulay, H.; Abied, A.; He, X.; Jiang, L.; Ma, Y. Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Gómez-Prado, J.; Carvajal-de la Fuente, V.; Ghezzi, M.; Boscato-Funes, L.; Barrios-García, H.; Torres-Bernal, F.; Casas-Alvarado, A.; et al. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals 2021, 11, 2316. [Google Scholar] [CrossRef]
- Srangi, S. Adaptability of Goats to Heat Stress: A Review. Pharma. Innov. J. 2018, 7, 1114–1126. [Google Scholar]
- Hirayama, T.; Katoh, K. Effects of Heat Exposure and Restricted Feeding on Behavior, Digestibility and Growth Hormone Secretion in Goats. Asian-Australas. J. Anim. Sci. 2004, 17, 655–658. [Google Scholar] [CrossRef]
- Popoola, M.A.; Bolarinwa, M.O.; Yahaya, M.O.; Adebisi, G.L.; Saka, A.A. Thermal Comfort Effects on Physiological Adaptations and Growth Performance of West African Dwarf Goats Raised in Nigeria. Eur. Sci. J. 2014, 3, 275–382. [Google Scholar]
- Lima, A.R.C.; Silveira, R.M.F.; Castro, M.S.M.; De Vecchi, L.B.; da Fernandes, M.H.M.R.; Resende, K.T. de Relationship between Thermal Environment, Thermoregulatory Responses and Energy Metabolism in Goats: A Comprehensive Review. J. Therm. Biol. 2022, 109, 103324. [Google Scholar] [CrossRef] [PubMed]
- Al-Dawood, A. Towards Heat Stress Management in Small Ruminants—A Review. Ann. Anim. Sci. 2017, 17, 59–88. [Google Scholar] [CrossRef]
- Pragna, P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Soren, N.M.; Beena, V.; Bhatta, R. Comparative Assessment of Growth Performance of Three Different Indigenous Goat Breeds Exposed to Summer Heat Stress. J. Anim. Physiol. Anim. Nutr. 2018, 102, 825–836. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of Heat Stress on Health and Performance of Dairy Animals: A Review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef]
- Bouraoui, R.; Lahmar, M.; Majdoub, A.; Djemali, M.; Belyea, R. The Relationship of Temperature-Humidity Index with Milk Production of Dairy Cows in a Mediterranean Climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Spiers, D.E.; Spain, J.N.; Sampson, J.D.; Rhoads, R.P. Use of Physiological Parameters to Predict Milk Yield and Feed Intake in Heat-Stressed Dairy Cows. J. Therm. Biol. 2004, 29, 759–764. [Google Scholar] [CrossRef]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of Heat Stress on Energetic Metabolism in Lactating Holstein Cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef]
- Berman, A. Estimates of Heat Stress Relief Needs for Holstein Dairy Cows1. J. Anim. Sci. 2005, 83, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Gaafar, H.M.A.; Gendy, M.E.; Bassiouni, M.I.; Shamiah, S.M.; Halawa, A.A.; Hamd, M.A. Effect of Heat Stress on Performance of Dairy Friesian Cow’s Milk Production and Composition. Researcher 2011, 3, 85–93. [Google Scholar]
- Joksimovic-Todorovic, M.; Davidovic, V.; Hristov, S.; Stankovic, B. Effect of Heat Stress on Milk Production in Dairy Cows. Biotechnol. Anim. Husb. 2011, 27, 1017–1023. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R.P. Effects of Heat Stress on Postabsorptive Metabolism and Energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Ogi, A.; Villanueva-García, D.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Lendez, P.; Ghezzi, M. Thermal Imaging as a Method to Indirectly Assess Peripheral Vascular Integrity and Tissue Viability in Veterinary Medicine: Animal Models and Clinical Applications. Animals 2023, 14, 142. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Wang, D.D.-H.; Titto, C.G.; Martínez-Burnes, J.; Villanueva-García, D.; Lezama, K.; Domínguez, A.; Hernández-Avalos, I.; Mora-Medina, P.; Verduzco, A.; et al. Neonatal Infrared Thermography Images in the Hypothermic Ruminant Model: Anatomical-Morphological-Physiological Aspects and Mechanisms for Thermoregulation. Front. Vet. Sci. 2022, 9, 963205. [Google Scholar] [CrossRef]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in Newly Born Piglets: Mechanisms of Thermoregulation and Pathophysiology of Death. J. Anim. Behav. Biometeorol. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Peng, D.; Chen, S.; Li, G.; Chen, J.; Wang, J.; Gu, X. Infrared Thermography Measured Body Surface Temperature and Its Relationship with Rectal Temperature in Dairy Cows under Different Temperature-Humidity Indexes. Int. J. Biometeorol. 2019, 63, 327–336. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Martínez-Burnes, J.; Mora-Medina, P.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Gómez-Prado, J.; Mota-Rojas, D. Thermal and Circulatory Changes in Diverse Body Regions in Dogs and Cats Evaluated by Infrared Thermography. Animals 2022, 12, 789. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Ávalos, I.; Mora-Medina, P.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Reyes-Sotelo, B.; Martínez-Burnes, J. Advances in Infrared Thermography: Surgical Aspects, Vascular Changes, and Pain Monitoring in Veterinary Medicine. J. Therm. Biol. 2020, 92, 102664. [Google Scholar] [CrossRef]
- Mincu, M.; Nicolae, I.; Gavojdian, D. Infrared Thermography as a Non-Invasive Method for Evaluating Stress in Lactating Dairy Cows during Isolation Challenges. Front. Vet. Sci. 2023, 10, 1236668. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Verkerk, G.A.; Schaefer, A.L.; Colyn, J.J.; Stafford, K.J. Non-Invasive Measurement of Stress in Dairy Cows Using Infrared Thermography. Physiol. Behav. 2007, 92, 520–525. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.; Schaeder, A. Infrared Thermography and Heart Rate Variability for Non-Invasive Assessment of Animal Welfare. ANZCCART Hum. Sci. News 2008, 1, 1–6. [Google Scholar]
- Sutherland, M.A.; Worth, G.M.; Dowling, S.K.; Lowe, G.L.; Cave, V.M.; Stewart, M. Evaluation of Infrared Thermography as a Non-Invasive Method of Measuring the Autonomic Nervous Response in Sheep. PLoS ONE 2020, 15, e0233558. [Google Scholar] [CrossRef]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.; Webster, J. Eye Temperature and Heart Rate Variability of Calves Disbudded with or without Local Anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef]
- Lowe, G.; Sutherland, M.; Waas, J.; Schaefer, A.; Cox, N.; Stewart, M. Infrared Thermography—A Non-Invasive Method of Measuring Respiration Rate in Calves. Animals 2019, 9, 535. [Google Scholar] [CrossRef]
- Stewart, M.; Wilson, M.T.; Schaefer, A.L.; Huddart, F.; Sutherland, M.A. The Use of Infrared Thermography and Accelerometers for Remote Monitoring of Dairy Cow Health and Welfare. J. Dairy Sci. 2017, 100, 3893–3901. [Google Scholar] [CrossRef]
- Leroy Hahn, G. Environmental Management for Improved Livedstock Performance, Health and Well-Beging. Jpn. J. Livest. Manag. 1995, 30, 113–127. [Google Scholar]
- Nienaber, J.A.; Hahn, G.L. Livestock Production System Management Responses to Thermal Challenges. Int. J. Biometeorol. 2007, 52, 149–157. [Google Scholar] [CrossRef]
- Hoffmann, G.; Schmidt, M.; Ammon, C.; Rose-Meierhöfer, S.; Burfeind, O.; Heuwieser, W.; Berg, W. Monitoring the Body Temperature of Cows and Calves Using Video Recordings from an Infrared Thermography Camera. Vet. Res. Commun. 2013, 37, 91–99. [Google Scholar] [CrossRef]
- Sevegnani, K.B.; Fernandes, D.P.B.; Silva, S.H.M.-G. da Evaluation of Thermorregulatory Capacity of Dairy Buffaloes Using Infrared Thermography. Eng. Agrícola 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Algra, M.; de Keijzer, L.; Arndt, S.S.; van Eerdenburg, F.J.C.M.; Goerlich, V.C. Evaluation of the Thermal Response of the Horns in Dairy Cattle. Animals 2023, 13, 500. [Google Scholar] [CrossRef]
- Theusme, C.; Avendaño-Reyes, L.; Macías-Cruz, U.; Castañeda-Bustos, V.; García-Cueto, R.; Vicente-Pérez, R.; Mellado, M.; Meza-Herrera, C.; Vargas-Villamil, L. Prediction of Rectal Temperature in Holstein Heifers Using Infrared Thermography, Respiration Frequency, and Climatic Variables. Int. J. Biometeorol. 2022, 66, 2489–2500. [Google Scholar] [CrossRef]
- Karvatte, N.; Miyagi, E.S.; Carvalho de Oliveira, C.; Mastelaro, A.P.; de Aguiar Coelho, F.; Bayma, G.; Bungenstab, D.J.; Alves, F.V. Spatiotemporal Variations on Infrared Temperature as a Thermal Comfort Indicator for Cattle under Agroforestry Systems. J. Therm. Biol. 2021, 97, 102871. [Google Scholar] [CrossRef]
- Unruh, E.M.; Theurer, M.E.; White, B.J.; Larson, R.L.; Drouillard, J.S.; Schrag, N. Evaluation of Infrared Thermography as a Diagnostic Tool to Predict Heat Stress Events in Feedlot Cattle. Am. J. Vet. Res. 2017, 78, 771–777. [Google Scholar] [CrossRef]
- Vieira, R.A.; Dias, E.A.; Stumpf, M.T.; Pereira, G.R.; Barcellos, J.O.J.; Kolling, G.J.; McManus, C. Use of Thermography and Physiological Rate to Assess Heat Tolerance in Cattle Breeds. Trop. Anim. Health Prod. 2023, 55, 223. [Google Scholar] [CrossRef]
- Joy, A.; Taheri, S.; Dunshea, F.R.; Leury, B.J.; DiGiacomo, K.; Osei-Amponsah, R.; Brodie, G.; Chauhan, S.S. Non-Invasive Measure of Heat Stress in Sheep Using Machine Learning Techniques and Infrared Thermography. Small Rumin. Res. 2022, 207, 106592. [Google Scholar] [CrossRef]
- Kim, N.Y.; Moon, S.H.; Kim, S.J.; Kim, E.K.; Oh, M.; Tang, Y.; Jang, S.Y. Summer Season Temperature-Humidity Index Threshold for Infrared Thermography in Hanwoo (Bos Taurus Coreanae) Heifers. Asian-Australas. J. Anim. Sci. 2020, 33, 1691–1698. [Google Scholar] [CrossRef]
- Nomura, R.H.C.; de Freitas, I.B.; Guedes, R.L.; Araújo, F.F.; Mafra, A.C.D.N.; Ibañez, J.F.; Dornbusch, P.T. Thermographic Images from Healthy Knees between Dogs with Long and Short Hair. Ciência Rural. 2018, 48, 1–7. [Google Scholar] [CrossRef]
- Maśko, M.; Witkowska-Piłaszewicz, O.; Jasiński, T.; Domino, M. Thermal Features, Ambient Temperature and Hair Coat Lengths: Limitations of Infrared Imaging in Pregnant Primitive Breed Mares within a Year. Reprod. Domest. Anim. 2021, 56, 1315–1328. [Google Scholar] [CrossRef]
- Meisfjord Jørgensen, G.H.; Mejdell, C.M.; Bøe, K.E. Effects of Hair Coat Characteristics on Radiant Surface Temperature in Horses. J. Therm. Biol. 2020, 87, 102474. [Google Scholar] [CrossRef]
- Church, J.S.; Hegadoren, P.R.; Paetkau, M.J.; Miller, C.C.; Regev-Shoshani, G.; Schaefer, A.L.; Schwartzkopf-Genswein, K.S. Influence of Environmental Factors on Infrared Eye Temperature Measurements in Cattle. Res. Vet. Sci. 2014, 96, 220–226. [Google Scholar] [CrossRef]
- Sejian, V.; Shashank, C.G.; Silpa, M.V.; Madhusoodan, A.P.; Devaraj, C.; Koenig, S. Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle. Atmosphere 2022, 13, 1642. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezzi, M.D.; Napolitano, F.; Casas-Alvarado, A.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Pereira, A.M.F. Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals 2024, 14, 616. https://doi.org/10.3390/ani14040616
Ghezzi MD, Napolitano F, Casas-Alvarado A, Hernández-Ávalos I, Domínguez-Oliva A, Olmos-Hernández A, Pereira AMF. Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals. 2024; 14(4):616. https://doi.org/10.3390/ani14040616
Chicago/Turabian StyleGhezzi, Marcelo Daniel, Fabio Napolitano, Alejandro Casas-Alvarado, Ismael Hernández-Ávalos, Adriana Domínguez-Oliva, Adriana Olmos-Hernández, and Alfredo M. F. Pereira. 2024. "Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress" Animals 14, no. 4: 616. https://doi.org/10.3390/ani14040616
APA StyleGhezzi, M. D., Napolitano, F., Casas-Alvarado, A., Hernández-Ávalos, I., Domínguez-Oliva, A., Olmos-Hernández, A., & Pereira, A. M. F. (2024). Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals, 14(4), 616. https://doi.org/10.3390/ani14040616