Enhanced Hippocampus–Nidopallium Caudolaterale Interaction in Visual–Spatial Associative Learning of Pigeons
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Surgical Implantation of Electrodes and Data Acquisition
2.3. Behavioural Task
2.4. LFPs Processing and Analysis
- (1)
- Phase locking value (PLV)
- (2)
- Phase transfer entropy (PTE)
2.5. Statistical Analysis
3. Results
3.1. Behavioural Performance of Pigeons during the Visual–Spatial Associative Learning
3.2. The Interaction between the Hp and NCL of Pigeons in the Visual–Spatial Associative Task
3.3. The Dynamics of Hp–NCL Interaction during the Visual-Spatial Associative Learning
3.4. The Enhanced Hp–NCL Interaction Predicts the Correct Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, W.A. Integrating associative learning signals across the brain. Hippocampus 2007, 17, 842–850. [Google Scholar] [CrossRef]
- Clarke, A.; Roberts, B.M.; Ranganath, C. Neural oscillations during conditional associative learning. NeuroImage 2018, 174, 485–493. [Google Scholar] [CrossRef]
- Takehara-Nishiuchi, K.; Maal-Bared, G.; Morrissey, M.D. Increased Entorhinal-Prefrontal Theta Synchronization Parallels Decreased Entorhinal-Hippocampal Theta Synchronization during Learning and Consolidation of Associative Memory. Front. Behav. Neurosci. 2011, 5, 90. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.T.; Li, B.M. Neuronal representation of audio-place associations in the medial prefrontal cortex of rats. Mol. Brain 2015, 8, 56. [Google Scholar] [CrossRef]
- Browning, P.G.; Easton, A.; Buckley, M.J.; Gaffan, D. The role of prefrontal cortex in object-in-place learning in monkeys. Eur. J. Neurosci. 2005, 22, 3281–3291. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Furlong, T.M.; Stratton, P.G.; Lee, C.C.Y.; Xu, L.; Merlin, S.; Nolan, C.; Arabzadeh, E.; Marek, R.; Sah, P. Hippocampus-Prefrontal Coupling Regulates Recognition Memory for Novelty Discrimination. J. Neurosci. 2021, 41, 9617–9632. [Google Scholar] [CrossRef] [PubMed]
- Wirth, S.; Yanike, M.; Frank, L.M.; Smith, A.C.; Brown, E.N.; Suzuki, W.A. Single neurons in the monkey hippocampus and learning of new associations. Science 2003, 300, 1578–1581. [Google Scholar] [CrossRef]
- Allen, T.A.; Fortin, N.J. The evolution of episodic memory. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. 2), 10379–10386. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, Y.; Rolls, E.T.; Cahusac, P.M.; Niki, H.; Feigenbaum, J.D. Activity of hippocampal formation neurons in the monkey related to a conditional spatial response task. J. Neurophysiol. 1989, 61, 669–678. [Google Scholar] [CrossRef]
- Corrigan, B.W.; Gulli, R.A.; Doucet, G.; Roussy, M.; Luna, R.; Pradeepan, K.S.; Sachs, A.J.; Martinez-Trujillo, J.C. Distinct neural codes in primate hippocampus and lateral prefrontal cortex during associative learning in virtual environments. Neuron 2022, 110, 2155–2169.e4. [Google Scholar] [CrossRef]
- Brincat, S.L.; Miller, E.K. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning. J. Neurosci. 2016, 36, 9739–9754. [Google Scholar] [CrossRef]
- Symanski, C.A.; Bladon, J.H.; Kullberg, E.T.; Miller, P.; Jadhav, S.P. Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making. Elife 2022, 11, e79545. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, H. Prefrontal–hippocampal interactions in episodic memory. Nat. Rev. Neurosci. 2017, 18, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Holland, R.A. The role of visual landmarks in the avian familiar area map. J. Exp. Biol. 2003, 206, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Beason, R.C.; Wiltschko, W. Cues indicating location in pigeon navigation. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2015, 201, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Gagliardo, A.; Pollonara, E.; Coppola, V.J.; Santos, C.D.; Wikelski, M.; Bingman, V.P. Evidence for perceptual neglect of environmental features in hippocampal-lesioned pigeons during homing. Eur. J. Neurosci. 2014, 40, 3102–3110. [Google Scholar] [CrossRef] [PubMed]
- Bingman, V.P.; MacDougall-Shackleton, S.A. The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some reflection on compasses and migratory restlessness). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2017, 203, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Bingman, V.P.; Gagliardo, A. A different perspective on avian hippocampus function: Visual-spatial perception. Learn. Behav. 2023. [Google Scholar] [CrossRef] [PubMed]
- Atoji, Y.; Wild, J.M. Anatomy of the avian hippocampal formation. Rev. Neurosci. 2006, 17, 3–15. [Google Scholar] [CrossRef]
- Székely, A.D. The avian hippocampal formation: Subdivisions and connectivity. Behav. Brain Res. 1999, 98, 219–225. [Google Scholar] [CrossRef]
- Gupta, S.; Maurya, R.; Saxena, M.; Sen, J. Defining structural homology between the mammalian and avian hippocampus through conserved gene expression patterns observed in the chick embryo. Dev. Biol. 2012, 366, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Morandi-Raikova, A.; Mayer, U. Spatial cognition and the avian hippocampus: Research in domestic chicks. Front. Psychol. 2022, 13, 1005726. [Google Scholar] [CrossRef] [PubMed]
- Herold, C.; Coppola, V.J.; Bingman, V.P. The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature’s foremost navigators. Hippocampus 2015, 25, 1193–1211. [Google Scholar] [CrossRef] [PubMed]
- White, A.R.; Strasser, R.; Bingman, V.P. Hippocampus lesions impair landmark array spatial learning in homing pigeons: A laboratory study. Neurobiol. Learn. Mem. 2002, 78, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Kahn, M.C.; Bingman, V.P. Avian hippocampal role in space and content memory. Eur. J. Neurosci. 2009, 30, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Good, M. The effects of hippocampal-area parahippocampalis lesions on discrimination learning in the pigeon. Behav. Brain Res. 1987, 26, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Hough, G.E.; Bingman, V.P. Rotation of visual landmark cues influences the spatial response profile of hippocampal neurons in freely-moving homing pigeons. Behav. Brain Res. 2008, 187, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Fan, J.T.; Cheng, S.G.; Yang, L.F.; Yang, L.; Wang, L.F.; Shang, Z.G.; Wan, H. Enhanced Hippocampus-Nidopallium Caudolaterale Connectivity during Route Formation in Goal-Directed Spatial Learning of Pigeons. Animals 2021, 11, 2003. [Google Scholar] [CrossRef]
- Güntürkün, O. The avian ‘prefrontal cortex’ and cognition. Curr. Opin. Neurobiol. 2005, 15, 686–693. [Google Scholar] [CrossRef]
- Güntürkün, O. The convergent evolution of neural substrates for cognition. Psychol. Res. 2012, 76, 212–219. [Google Scholar] [CrossRef]
- Veit, L.; Pidpruzhnykova, G.; Nieder, A. Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proc. Natl. Acad. Sci. USA 2015, 112, 15208–15213. [Google Scholar] [CrossRef] [PubMed]
- Moll, F.W.; Nieder, A. Cross-Modal Associative Mnemonic Signals in Crow Endbrain Neurons. Curr. Biol. 2015, 25, 2196–2201. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, M.; Bingman, V.P.; Shimizu, T.; Wild, M.; Güntürkün, O. Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 2013, 7, 89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Nie, J.; Yang, L.; Liu, X.; Shang, Z.; Wan, H. Hippocampus-nidopallium caudolaterale interactions exist in the goal-directed behavior of pigeon. Brain Res. Bull. 2019, 153, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Karten, H.J.; Hodos, W. A Stereotaxic Atlas of the Brain of the Pigeon (Columba Livia); The Johns Hopkins University Press: Baltimore, MD, USA, 1967. [Google Scholar]
- Kelly, J.W.; Siewiorek, D.P.; Smailagic, A.; Wang, W. Automated filtering of common-mode artifacts in multichannel physiological recordings. IEEE Trans. Biomed. Eng. 2013, 60, 2760–2770. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef]
- Brincat, S.L.; Miller, E.K. Frequency-specific hippocampal-prefrontal interactions during associative learning. Nat. Neurosci. 2015, 18, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, A.; Tewarie, P.; Van Dellen, E.; Yu, M.; Carbo, E.W.; Douw, L.; Gouw, A.A.; Van Straaten, E.C.; Stam, C.J. Direction of information flow in large-scale resting-state networks is frequency-dependent. Proc. Natl. Acad. Sci. USA 2016, 113, 3867–3872. [Google Scholar] [CrossRef]
- Gattas, S.; Larson, M.S.; Mnatsakanyan, L.; Sen-Gupta, I.; Vadera, S.; Swindlehurst, A.L.; Rapp, P.E.; Lin, J.J.; Yassa, M.A. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. Nat. Commun. 2023, 14, 8505. [Google Scholar] [CrossRef]
- Das, A.; Menon, V. Asymmetric Frequency-Specific Feedforward and Feedback Information Flow between Hippocampus and Prefrontal Cortex during Verbal Memory Encoding and Recall. J. Neurosci. 2021, 41, 8427–8440. [Google Scholar] [CrossRef]
- Voytek, B.; D’Esposito, M.; Crone, N.; Knight, R.T. A method for event-related phase/amplitude coupling. Neuroimage 2013, 64, 416–424. [Google Scholar] [CrossRef]
- Jones, M.W.; Wilson, M.A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005, 3, e402. [Google Scholar] [CrossRef]
- Shin, J.D.; Jadhav, S.P. Multiple modes of hippocampal-prefrontal interactions in memory-guided behavior. Curr. Opin. Neurobiol. 2016, 40, 161–169. [Google Scholar] [CrossRef]
- Kim, J.; Delcasso, S.; Lee, I. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex. J. Neurosci. 2011, 31, 16991–17006. [Google Scholar] [CrossRef]
- Spellman, T.; Rigotti, M.; Ahmari, S.E.; Fusi, S.; Gogos, J.A.; Gordon, J.A. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature 2015, 522, 309–314. [Google Scholar] [CrossRef]
- Zielinski, M.C.; Shin, J.D.; Jadhav, S.P. Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex. J. Neurosci. 2019, 39, 4550–4565. [Google Scholar] [CrossRef] [PubMed]
- Place, R.; Farovik, A.; Brockmann, M.; Eichenbaum, H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat. Neurosci. 2016, 19, 992–994. [Google Scholar] [CrossRef]
- Mölle, M.; Born, J. Hippocampus whispering in deep sleep to prefrontal cortex—For good memories? Neuron 2009, 61, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Rattenborg, N.C.; Martinez-Gonzalez, D.; Roth, T.C.; Pravosudov, V.V. Hippocampal memory consolidation during sleep: A comparison of mammals and birds. Biol. Rev. 2011, 86, 658–691. [Google Scholar] [CrossRef]
- Zhu, J.-Y.; Li, M.-M.; Zhang, Z.-H.; Liu, G.; Wan, H. Performance baseline of phase transfer entropy methods for detecting animal brain area interactions. Entropy 2023, 25, 994. [Google Scholar] [CrossRef] [PubMed]
- Wollstadt, P.; Martinez-Zarzuela, M.; Vicente, R.; Diaz-Pernas, F.J.; Wibral, M. Efficient transfer entropy analysis of non-stationary neural time series. PLoS ONE 2014, 9, e102833. [Google Scholar] [CrossRef] [PubMed]
Groups | −0.4–0 s | −0.2–0.2 s | 0–0.4 s | 0.2–0.6 s | 0.4–0.8 s | df |
---|---|---|---|---|---|---|
p/tstat | p/tstat | p/tstat | p/tstat | p/tstat | ||
G1 | ****/3.8765 | ****/4.9466 | ****/4.0944 | n.s./1.9217 | n.s./0.5177 | 480 |
G2 | n.s./1.8414 | ****/4.2550 | ****/6.3351 | ****/5.8486 | ****/3.9008 | 705 |
G3 | n.s./0.0355 | n.s./1.1855 | ****/3.4135 | ****/4.3204 | */2.3957 | 255 |
Group | −0.4–0 s | −0.2–0.2 s | 0–0.4 s | 0.2–0.6 s | 0.4–0.8 s | Sample Size |
---|---|---|---|---|---|---|
G1 | n.s. | *** | ** | n.s. | n.s. | 60 |
G2 | n.s. | n.s. | **** | ** | n.s. | 90 |
G3 | n.s. | n.s. | * | ** | n.s. | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.-Y.; Zhang, Z.-H.; Liu, G.; Wan, H. Enhanced Hippocampus–Nidopallium Caudolaterale Interaction in Visual–Spatial Associative Learning of Pigeons. Animals 2024, 14, 456. https://doi.org/10.3390/ani14030456
Zhu J-Y, Zhang Z-H, Liu G, Wan H. Enhanced Hippocampus–Nidopallium Caudolaterale Interaction in Visual–Spatial Associative Learning of Pigeons. Animals. 2024; 14(3):456. https://doi.org/10.3390/ani14030456
Chicago/Turabian StyleZhu, Jun-Yao, Zhi-Heng Zhang, Gang Liu, and Hong Wan. 2024. "Enhanced Hippocampus–Nidopallium Caudolaterale Interaction in Visual–Spatial Associative Learning of Pigeons" Animals 14, no. 3: 456. https://doi.org/10.3390/ani14030456
APA StyleZhu, J.-Y., Zhang, Z.-H., Liu, G., & Wan, H. (2024). Enhanced Hippocampus–Nidopallium Caudolaterale Interaction in Visual–Spatial Associative Learning of Pigeons. Animals, 14(3), 456. https://doi.org/10.3390/ani14030456