Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methane Production in the Livestock Industry
Methane Emission Sources in Livestock Operations
3. Need for Accurate Methane Estimation Methods
3.1. Need for Accurate Methane Emission Estimation (Animal Background)
3.2. Need for Accurate Methane Emission Estimation (Policy Background)
4. Estimation Methods for Methane Emissions from Ruminants
4.1. Traditional Approaches for Methane Emission Estimation
4.2. Direct Measurement Techniques
4.2.1. Respiration Chambers
4.2.2. Sulfur Hexafluoride (SF6) Tracer Technique
4.2.3. GreenFeed
4.2.4. Sniffer Technique
4.3. Indirect Estimation Approaches
4.3.1. Model Approach to Estimation of Methane Emissions from Ruminants
4.3.2. Incorporating Regional Variables for Developing Accurate Methane Estimation Models
4.4. Challenges and Considerations for Methane Estimation in Ruminants
Year | Equation 1 | r2 | Reference |
---|---|---|---|
2003 | Methane (MJ/d) | [67] | |
(1): = 5.93 (SE 1.60) + 0.92 (SE 0.08) × DMI (kg/d) | 0.60 | ||
(2): = 8.25 (SE 1.63) + 0.07 (SE 0.007) MEI (MJ/d) | 0.55 | ||
(3): = 7.30 (SE 1.58) + 13.13 (SE 3.41) N (kg/d) + 2.04 (SE 0.41) ADF (kg/d) + 0.33 (SE 0.18) Starch (kg/d) | 0.57 | ||
(4): = 1.06 (SE 2.41) + 10.27 (SE 3.59) Dietary forage proportion + 0.87 (SE 0.074) DMI | 0.61 | ||
2007 | Beef cattle | [56] | |
(1): CH4 (MJ/d) = 2.94 (±1.16) + 0.0585 (±0.0201) × ME intake (MJ/d) + 1.44 (±0.331) × ADF (kg/d) − 4.16 (±1.93) × lignin (kg/d) | 0.85 | ||
(2): CH4 (MJ/d) = 0.183 (±1.85) + 0.0433 (±0.0170) × ME intake (MJ/d) + 0.647 (±0.244) × NDF (kg/d) + 0.0372 (±0.0186) × forage (%) | 0.74 | ||
Dairy | |||
(1): CH4 (MJ/d) = 2.16 (±1.62) + 0.493 (±0.192) × DMI (kg/d) − 1.36 (±0.631) × ADF (kg/d) + 1.97 (±0.561) × NDF (kg/d) | 0.63 | ||
(2): CH4 (MJ/d) = 1.64 (±1.56) + 0.396 (±0.0170) × ME intake (MJ/d) + 1.45 (±0.521) × NDF (kg/d) | 0.59 | ||
Combined | |||
(1): CH4 (MJ/d) = 3.69 (±0.993) + 0.543 (±0.132) × DMI (kg/d) + 0.698 (±0.247) × NDF (kg/d) − 3.26 (±1.56) × lignin (kg/d) | 0.71 | ||
(2): CH4 (MJ/d) = 3.41 (±0.973) + 0.520 (±0.120) × DMI (kg/d) − 0.996 (±0.447) × ADF (kg/d) + 1.15 (±0.321) × NDF (kg/d) | 0.67 | ||
2013 | CH4 production (MJ/d) | [68] | |
(1): = 1.36 (±0.10) × DMI − 0.125 (±0.039) × FA − 0.02 (±0.012) × CP + 0.017 (±0.005) × NDF | 0.77 | ||
(2): = 1.23 (±0.08) × DMI − 0.145 (±0.039) × FA + 0.012 (±0.005) × NDF | 0.75 | ||
(3): = 1.39 (±0.06) × DMI − 0.091 (±0.036) × FA | 0.70 | ||
(4): = 1.26 (±0.03) × DMI | 0.66 | ||
(5): = 738 (±54) × DMI_BW − 0.145 (±0.044) × FA + 0.013 (±0.005) × NDF | 0.68 | ||
(6): = 0.0026 (±0.0004) × rdNDF + 0.0020 (±0.0004) × rdstarch + 0.0032 (±0.0004) × rdrestCHO | 0.59 | ||
2013 | (1): CH4-E/GE (kJ/MJ) = −0.6 (±12.76) − 0.70 (±0.072) × DMIBW (g/kg) + 0.076 (±0.0118) × OMDm (g/kg) − 0.13 (±0.020) × EE (g/kg of DM) + 0.046 (±0.0097) × NDF (g/kg of DM) + 0.044 (±0.0094) × NFC (g/kg of DM) | RMSE (3.26 kJ/MJ) | [68] |
(2): CH4 (L/d) = −64.0 (±35.0) + 26.0 (±1.02) × DM intake (kg/d) − 0.61 (±0.132) × DMI2 (centered) + 0.25 (±0.051) × OMDm (g/kg) − 66.4 (±8.22) × EE intake (kg of DM/d) − 45.0 (±23.50) × NFC/(NDF + NFC) | RMSE (21.1 L/d) | ||
(3): CH4-E/GE = 0.96 (±0.103) × predicted CH4-E/GE + 2.3 (±7.05) | RMSE (3.38 kJ/MJ) | ||
2014 | Holstein cattle | [69] | |
6 months old | |||
(1): CH4 (g/day−1) = 0.341(0.128) BW (kg) + 30.7(22.7) | 0.26 | ||
(2): CH4 (g/day−1) = 26.0(4.22) DM intake (kg day−1) − 11.1(17.2) | 0.67 | ||
(3): CH4-E (MJ day−1) = 0.765(0.0112) GE intake (MJ day−1) − 0.660(0.868) | 0.72 | ||
12 months old | |||
(1): CH4 (g day−1) = 0.319(0.0983) BW (kg) + 57.0(31.6) | 0.34 | ||
(2): CH4 (g day−1) = 16.7(2.14) DM intake (kg day−1) + 47.2(14.4) | 0.76 | ||
(3): CH4-E (MJ day−1) = 0.048(0.0054) GE intake (MJ day−1) + 2.53(0.721) | 0.80 | ||
18 months old | |||
(1): 0.234(0.122) BW (kg) + 59.5(60.3) | 0.12 | ||
(2): 14.1(4.68) DM intake (kg day−1) + 73.3(34.0) | 0.30 | ||
(3): 0.032(0.0121) GE intake (MJ day−1) + 4.89(1.84) | 0.24 | ||
22 months old | |||
(1): 0.275(0.0675) BW (kg) + 32.0(38.4) | 0.45 | ||
(2): 13.3(4.28) DM intake (kg day−1) + 79.4(35.2) | 0.31 | ||
(3): 0.032(0.0127) GE intake (MJ day−1) + 5.15(2.10) | 0.22 | ||
2016 | Enteric methane emissions (EME; MJ/day) | [58] | |
(1): = 0.242 (×0.073) + 0.0511 (×0.0073) × digestible energy intake | 0.83 | ||
(2): = −1.04 (±0.271) + 2.21 (±0.395) × neutral detergent fiber intake × 2.42 (±1.10) × ether extract (EE) intake + 1.456 (±0.323) × non-fiber carbohydrate intake + 0.0208 (±0.0039) × OM digestibility at maintenance level of feeding (OMDm) − 0.513 (±0.137) × feeding level (FL) | 0.82 | ||
(3): = −0.885 (±0.154) + 0.809 (±0.0867) × dry matter intake − 0.397 (±0.0494) × FL + 0.0198 (±0.0022) × OMDm + 2.04 (±0.234) × acid detergent fiber intake −8.54 (±0.548) × EE intake | 0.88 | ||
(4): = 1.721 (±0.151) × {1 − exp(−0.0721 (±0.0092) × metabolizable energy intake)} | 0.79 | ||
2016 | Single linear prediction of methane emissions from nonpregnant nonlactating dairy cows | [70] | |
CH4 (methane emissions) (kg/d) | |||
(1): = 50.67(14.03) + 19.95(2.16) DMI (kg/d) | 0.67 | ||
(2): = 50.85(13.52) + 21.63(2.28) OMI (kg/d) | 0.68 | ||
(3): = 73.15(16.01) + 20.56(3.10) DDMI (kg/d) | 0.61 | ||
(4): = 63.19(15.31) + 23.78(3.15) DOMI (kg/d) | 0.62 | ||
CH4-E (methane energy output) (MJ/d) | |||
(1): = 2.727(0.807) + 0.061(0.007) GEI (kg/d) | 0.68 | ||
(2): = 4.341(0.887) + 0.060(0.009) DEI (kg/d) | 0.63 | ||
(3): = 6.110(0.805) + 0.047(0.010) MEI (kg/d) | 0.62 | ||
2020 | CH4 emissions (g/day) | [65] | |
(1): = 0.44 (±0.02) × BW | 0.63 | ||
(2): = 213 (±21.0) + 6.26 (±0.85) × milk | 0.57 | ||
(3): = 117 (±7.97) + 36.1 (±12.1) × ADG | 0.14 | ||
(4): = 19.4 (±7.25) + 16.7 (±1.09) × DMI | 0.78 | ||
(5): = 63.8 (±11.6) + 0.96 (±0.07) × GEI (for dairy cattle) 63.8 (±11.6) + 0.72 (±0.10) × GEI (for mature cattle) | 0.79 | ||
(6): = 68.1 (±13.5) + 12.4 (±1.99) × DMI − 0.53 (±0.26) × EE | 0.63 | ||
(7): = 111 (±18.6) + 23.0 (±2.35) × dDMI − 31.3 (±9.41) × FL − 0.08 (±0.04) × NFC | 0.78 | ||
(8): = 17.0 (±0.99) × DMI + 0.03 (±0.01) × NDF | 0.81 | ||
(9): = 18.1 (±1.23) × DMI + 0.33 (±0.15) × Forage − 0.30 (±0.20) × dOM | 0.80 |
5. One of the Methods for Increasing the Accuracy of Methane Emissions Models for Ruminants: AI Technology
5.1. The Role of AI Technologies in Advancing Methane Emission Estimation
5.2. Data Collection and Processing Techniques
5.3. Pre-Processing and Normalization of Methane Emission Data
5.4. Model Performance Evaluation and Interpretation
5.5. Artificial Neural Networks (ANN) for Complex Estimation
5.6. Model Creation and Architecture
5.7. Hyperparameter Tuning and Training
5.8. Model Validation and Weight Analysis
5.9. Benefits and Challenges of AI-Based Approaches
6. Implications and Future Directions
6.1. Advancing On-Farm Methane Emission Monitoring Technologies
6.2. Integration of AI and IoT for Real-Time Methane Emission Monitoring
6.3. Policy Recommendations for Promoting Methane Reduction in the Livestock Industry
7. Conclusions
7.1. Summary of Key Findings
7.2. Potential Benefits of Accurate Methane Emission Estimation
7.3. Outlook for Future Research and Application
7.4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, S.; Fischer, M.L.; Breunig, H.; Marklein, A.R.; Hopkins, F.M.; Biraud, S.C. Artificial intelligence approach for estimating dairy methane emissions. Environ. Sci. Technol. 2022, 56, 4849–4858. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O.; Abdalla, A.L.; Álvarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; De Camillis, C. Quantification of methane emitted by ruminants: A review of methods. J. Anim. Sci. 2022, 100, skac197. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; p. 2. [Google Scholar]
- Rogelj, J.; Shindell, D.; Jiang, K.; Fifita, S.; Forster, P.; Ginzburg, V.; Handa, C.; Kheshgi, H.; Kobayashi, S.; Kriegler, E. Mitigation pathways compatible with 1.5 °C in the context of sustainable development. In Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; pp. 93–174. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019; U.S. EPA: Washington, DC, USA, 2021.
- FAO. Emissions from Agriculture and Forest Land. In Global, Regional and Country Trends 1990–2019; FAO: Rome, Italy, 2021. [Google Scholar]
- Huhtanen, P.; Ramin, M.; Cabezas-Garcia, E. Effects of ruminal digesta retention time on methane emissions: A modelling approach. Anim. Prod. Sci. 2016, 56, 501–506. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Caro, D.; Davis, S.J.; Bastianoni, S.; Caldeira, K. Global and Regional Trends in Greenhouse Gas Emissions from Livestock. Clim. Chang. 2014, 126, 203–216. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Yadav, B.; Singh, G.; Wankar, A.; Dutta, N.; Chaturvedi, V.; Verma, M.R. Effect of simulated heat stress on digestibility, methane emission and metabolic adaptability in crossbred cattle. Asian-Australas. J. Anim. Sci. 2016, 29, 1585. [Google Scholar] [CrossRef]
- Jonker, A.; Antwi, C.; Gunter, S.; Hristov, A.; Martin, C.; Minneé, E.; Renand, G.; Waghorn, G. Chapter 3: The ‘GreenFeed’ Automated Methane Measurement System to Determine Enteric Methane Emissions from Ruminants; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020; Volume 12, pp. 17–32. [Google Scholar]
- Wu, D.; Zhang, J.; Zhao, Y.; Wang, Z.; Li, G. Measurement of methane emissions from individual dairy cows using the GreenFeed system. J. Dairy Sci. 2018, 101, 10479–10488. [Google Scholar]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.; Weeks, H.; Zimmerman, P.R.; Harper, M.T.; Hristova, R.A.; Zimmerman, R.S.; Branco, A.F. The use of an automated system (GreenFeed) to monitor enteric methane and carbon dioxide emissions from ruminant animals. J. Vis. Exp. 2015, 103, e52904. [Google Scholar]
- Kobayashi, N.; Hou, F.; Tsunekawa, A.; Yan, T.; Tegegne, F.; Tassew, A.; Mekuriaw, Y.; Mekuriaw, S.; Hunegnaw, B.; Mekonnen, W. Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows. Anim. Biosci. 2021, 34, 1415. [Google Scholar] [CrossRef]
- Zhao, Y.; Nan, X.; Yang, L.; Zheng, S.; Jiang, L.; Xiong, B. A review of enteric methane emission measurement techniques in ruminants. Animals 2020, 10, 1004. [Google Scholar] [CrossRef]
- Goopy, J.P.; Chang, C.; Tomkins, N. A Comparison of Methodologies for Measuring Methane Emissions from Ruminants; Springer: Berlin/Heidelberg, Germany, 2016; pp. 97–117. [Google Scholar]
- Houghton, J.T.; Meiro, L.G. (Eds.) Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Stamenković, L.J.; Antanasijević, D.; Ristić, M.; Perić-Grujić, A.; Pocajt, V. Modeling of methane emissions using the artificial neural network approach. J. Serbian Chem. Soc. 2015, 80, 421–433. [Google Scholar] [CrossRef]
- Keller, C.A.; Evans, M.J. Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10. Geosci. Model Dev. 2019, 12, 1209–1225. [Google Scholar] [CrossRef]
- Toyao, T.; Suzuki, K.; Kikuchi, S.; Takakusagi, S.; Shimizu, K.; Takigawa, I. Toward effective utilization of methane: Machine learning prediction of adsorption energies on metal alloys. J. Phys. Chem. C 2018, 122, 8315–8326. [Google Scholar] [CrossRef]
- Donadia, A.B.; Torres, R.N.S.; da Silva, H.M.; Soares, S.R.; Hoshide, A.K.; de Oliveira, A.S. Factors Affecting Enteric Emission Methane and Predictive Models for Dairy Cows. Animals 2023, 13, 1857. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.; Eckard, R.; Moate, P.; Yan, T. Modelling the Effect of Diet Composition on Enteric Methane Emissions across Sheep, Beef Cattle and Dairy Cows. Animals 2016, 6, 54. [Google Scholar] [CrossRef]
- Van Breukelen, A.E.; Aldridge, M.N.; Veerkamp, R.F.; Koning, L.; Sebek, L.B.; de Haas, Y. Heritability and Genetic Correlations between Enteric Methane Production and Concentration Recorded by GreenFeed and Sniffers on Dairy Cows. J. Dairy Sci. 2023, 106, 4121–4132. [Google Scholar] [CrossRef]
- Bell, M.J.; Saunders, N.; Wilcox, R.H.; Homer, E.M.; Goodman, J.R.; Craigon, J.; Garnsworthy, P.C. Methane Emissions among Individual Dairy Cows during Milking Quantified by Eructation Peaks or Ratio with Carbon Dioxide. J. Dairy Sci. 2014, 97, 6536–6546. [Google Scholar] [CrossRef] [PubMed]
- Garnsworthy, P.; Craigon, J.; Hernandez-Medrano, J.; Saunders, N. Variation among individual dairy cows in methane measurements made on farm during milking. J. Dairy Sci. 2012, 95, 3181–3189. [Google Scholar] [CrossRef]
- Garnsworthy, P.; Craigon, J.; Hernandez-Medrano, J.; Saunders, N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J. Dairy Sci. 2012, 95, 3166–3180. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef] [PubMed]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Hayama, Japan, 2006. [Google Scholar]
- Han, C.S.; Lotfi Ghahroud, M.; Park, M.J.; Ghassemi Nejad, J. A new blockchain investment and energy certificate platform. Cogent Eng. 2023, 10, 2260226. [Google Scholar] [CrossRef]
- Woo, J.; Fatima, R.; Kibert, C.J.; Newman, R.E.; Tian, Y.; Srinivasan, R.S. Applying blockchain technology for building energy performance measurement, reporting, and verification (MRV) and the carbon credit market: A review of the literature. Build. Environ. 2021, 205, 108199. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mauzerall, D.L. Likely substantial underestimation of reported methane emissions from United Kingdom upstream oil and gas activities. Energy Environ. Sci. 2023, 16, 295–304. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Difford, G.F.; Bell, M.J.; Bayat, A.R.; Huhtanen, P.; Kuhla, B.; Lassen, J.; Peiren, N.; Pszczola, M.; Sorg, D. Comparison of methods to measure methane for use in genetic evaluation of dairy cattle. Animals 2019, 9, 837. [Google Scholar] [CrossRef]
- Storm, I.M.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef] [PubMed]
- Van Gastelen, S.; Dijkstra, J.; Bannink, A. Are Dietary Strategies to Mitigate Enteric Methane Emission Equally Effective across Dairy Cattle, Beef Cattle, and Sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef]
- Hill, J.; McSweeney, C.; Wright, A.-D.G.; Bishop-Hurley, G.; Kalantar-zadeh, K. Measuring Methane Production from Ruminants. Trends Biotechnol. 2016, 34, 26–35. [Google Scholar] [CrossRef]
- Yan, T.; Porter, M.; Mayne, C. Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animals 2009, 3, 1455–1462. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane Emissions from Cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla-Pech, C.I.V.; Gordo, D.; Difford, G.F.; Løvendahl, P.; Lassen, J. Multitrait Genomic Prediction of Methane Emissions in Danish Holstein Cattle. J. Dairy Sci. 2020, 103, 9195–9206. [Google Scholar] [CrossRef]
- Global Research Alliance. Technical Manual on Respiration Chamber Design; Pinares-Patiño, C.S., Waghorn, G., Eds.; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2018. Available online: https://globalresearchalliance.org/wp-content/uploads/2018/02/LRG-Manual-Facility-BestPract-Sept-2018.pdf (accessed on 28 March 2020).
- Pinares-Patiño, C.S.; Lassey, K.R.; Martin, R.J.; Molano, G.; Fernandez, M.; MacLean, S.; Sandoval, E.; Luo, D.; Clark, H. Assessment of the Sulphur Hexafluoride (SF6) Tracer Technique Using Respiration Chambers for Estimation of Methane Emissions from Sheep. Anim. Feed. Sci. Technol. 2011, 166–167, 201–209. [Google Scholar] [CrossRef]
- Benchaar, C.; Pomar, C.; Chiquette, J. Evaluation of Dietary Strategies to Reduce Methane Production in Ruminants: A Modelling Approach. Can. J. Anim. Sci. 2001, 81, 563–574. [Google Scholar] [CrossRef]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of Methane Emissions from Ruminant Livestock Using a Sulfur Hexafluoride Tracer Technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Pinares-Patiño, C.S.; Clark, H. Reliability of the Sulfur Hexafluoride Tracer Technique for Methane Emission Measurement from Individual Animals: An Overview. Aust. J. Exp. Agric. 2008, 48, 223. [Google Scholar] [CrossRef]
- Muñoz, C.; Yan, T.; Wills, D.A.; Murray, S.; Gordon, A.W. Comparison of the Sulfur Hexafluoride Tracer and Respiration Chamber Techniques for Estimating Methane Emissions and Correction for Rectum Methane Output from Dairy Cows. J. Dairy Sci. 2012, 95, 3139–3148. [Google Scholar] [CrossRef] [PubMed]
- Jonker, A.; Molano, G.; Antwi, C.; Waghorn, G.C. Enteric Methane and Carbon Dioxide Emissions Measured Using Respiration Chambers, the Sulfur Hexafluoride Tracer Technique, and a GreenFeed Head-Chamber System from Beef Heifers Fed Alfalfa Silage at Three Allowances and Four Feeding Frequencies. J. Anim. Sci. 2016, 94, 4326–4337. [Google Scholar] [CrossRef] [PubMed]
- McGinn, S.M.; Beauchemin, K.A.; Iwaasa, A.D.; McAllister, T.A. Assessment of the Sulfur Hexafluoride (SF) Tracer Technique for Measuring Enteric Methane Emissions from Cattle. J. Environ. Qual. 2006, 35, 1686. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.J.; Waghorn, G.C.; Hegarty, R.S. The GreenFeed System for Measurement of Enteric Methane Emission from Cattle. Anim. Prod. Sci. 2016, 56, 181. [Google Scholar] [CrossRef]
- Alemu, A.W.; Vyas, D.; Manafiazar, G.; Basarab, J.A.; Beauchemin, K.A. Enteric Methane Emissions from Low- and High-Residual Feed Intake Beef Heifers Measured Using GreenFeed and Respiration Chamber Techniques. J. Anim. Sci. 2017, 95, 3727–3737. [Google Scholar] [CrossRef]
- McGinn, S.M.; Coulombe, J.-F.; Beauchemin, K.A. Technical Note: Validation of the GreenFeed System for Measuring Enteric Gas Emissions from Cattle. J. Anim. Sci. 2021, 99, skab046. [Google Scholar] [CrossRef]
- Jonker, A.; Scobie, D.; Dynes, R.; Edwards, G.; De Klein, C.; Hague, H.; McAuliffe, R.; Taylor, A.; Knight, T.; Waghorn, G. Feeding Diets with Fodder Beet Decreased Methane Emissions from Dry and Lactating Dairy Cows in Grazing Systems. Anim. Prod. Sci. 2017, 57, 1445. [Google Scholar] [CrossRef]
- Hammond, K.J.; Humphries, D.J.; Crompton, L.A.; Green, C.; Reynolds, C.K. Methane Emissions from Cattle: Estimates from Short-Term Measurements Using a GreenFeed System Compared with Measurements Obtained Using Respiration Chambers or Sulphur Hexafluoride Tracer. Anim. Feed. Sci. Technol. 2015, 203, 41–52. [Google Scholar] [CrossRef]
- Manzanilla-Pech, C.; Gordo, D.M.; Difford, G.; Pryce, J.; Schenkel, F.; Wegmann, S.; Miglior, F.; Chud, T.; Moate, P.; Williams, S. Breeding for reduced methane emission and feed-efficient Holstein cows: An international response. J. Dairy Sci. 2021, 104, 8983–9001. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.; Kebreab, E.; Odongo, N.; Beauchemin, K.; McGinn, S.; Nkrumah, J.; Moore, S.; Christopherson, R.; Murdoch, G.; McBride, B. Modeling methane production from beef cattle using linear and nonlinear approaches. J. Anim. Sci. 2009, 87, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.; Bannink, A.; France, J.; Kebreab, E.; Dijkstra, J. Evaluation of enteric methane prediction equations for dairy cows used in whole farm models. Glob. Chang. Biol. 2010, 16, 3246–3256. [Google Scholar] [CrossRef]
- Patra, A.K.; Lalhriatpuii, M. Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agric. Ecosyst. Environ. 2016, 215, 89–99. [Google Scholar] [CrossRef]
- Patra, A.; Lalhriatpuii, M.; Debnath, B. Predicting enteric methane emission in sheep using linear and non-linear statistical models from dietary variables. Anim. Prod. Sci. 2016, 56, 574–584. [Google Scholar] [CrossRef]
- Kebreab, E.; Johnson, K.; Archibeque, S.; Pape, D.; Wirth, T. Model for estimating enteric methane emissions from United States dairy and feedlot cattle. J. Anim. Sci. 2008, 86, 2738–2748. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Kebreab, E.; Hristov, A.N.; Oh, J.; Arndt, C.; Bannink, A.; Bayat, A.R.; Brito, A.F.; Boland, T.; Casper, D. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob. Chang. Biol. 2018, 24, 3368–3389. [Google Scholar] [CrossRef]
- March, M.; Haskell, M.; Chagunda, M.; Langford, F.; Roberts, D. Current trends in British dairy management regimens. J. Dairy Sci. 2014, 97, 7985–7994. [Google Scholar] [CrossRef]
- Gislon, G.; Bava, L.; Colombini, S.; Zucali, M.; Crovetto, G.; Sandrucci, A. Looking for high-production and sustainable diets for lactating cows: A survey in Italy. J. Dairy Sci. 2020, 103, 4863–4873. [Google Scholar] [CrossRef]
- Charmley, E.; Williams, S.R.O.; Moate, P.J.; Hegarty, R.S.; Herd, R.M.; Oddy, V.H.; Reyenga, P.; Staunton, K.M.; Anderson, A.; Hannah, M.C. A Universal Equation to Predict Methane Production of Forage-Fed Cattle in Australia. Anim. Prod. Sci. 2015, 56, 169–180. [Google Scholar] [CrossRef]
- Benaouda, M.; González-Ronquillo, M.; Appuhamy, J.A.D.R.N.; Kebreab, E.; Molina, L.T.; Herrera-Camacho, J.; Ku-Vera, J.C.; Ángeles-Hernández, J.C.; Castelán-Ortega, O.A. Development of mathematical models to predict enteric methane emission by cattle in Latin America. Livest. Sci. 2020, 241, 104177. [Google Scholar] [CrossRef]
- Appuhamy, J.A.D.R.N.; France, J.; Kebreab, E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob. Chang. Biol. 2016, 22, 3039–3056. [Google Scholar] [CrossRef]
- Mills, J.A.N.; Kebreab, E.; Crompton, L.A.; France, J. The Mitscherlich Equation: An Alternative to Linear Models of Methane Emissions from Cattle. Proc. Br. Soc. Anim. Sci. 2003, 2003, 135. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Volden, H.; Åkerlind, M.; Brask, M.; Louise, A.; Storlien, T.M.; Bertilsson, J. A Prediction Equation for Enteric Methane Emission from Dairy Cows for Use in NorFor. Acta Agric. Scand. Sect. A Anim. Sci. 2013, 63, 126–130. [Google Scholar] [CrossRef]
- Jiao, H.P.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of Concentrate Feed Level on Methane Emissions from Grazing Dairy Cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef] [PubMed]
- Stergiadis, S.; Zou, C.; Chen, X.; Allen, M.; Wills, D.; Yan, T. Equations to Predict Methane Emissions from Cows Fed at Maintenance Energy Level in Pasture-Based Systems. Agric. Ecosyst. Environ. 2016, 220, 8–20. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Liu, Y.; Esan, O.C.; Pan, Z.; An, L. Machine learning for advanced energy materials. Energy AI 2021, 3, 100049. [Google Scholar] [CrossRef]
- Cottle, D.J.; Eckard, R.J. Global Beef Cattle Methane Emissions: Yield Prediction by Cluster and Meta-Analyses. Anim. Prod. Sci. 2018, 58, 2167. [Google Scholar] [CrossRef]
- Giger-Reverdin, S.; Sauvant, D. Methane production in sheep in relation to concentrate feed composition from bibliographic data. Cah. Options Méditerranéennes 2000, 52, 43–46. [Google Scholar]
- Basarab, J.; Okine, E.; Baron, V.; Marx, T.; Ramsey, P.; Ziegler, K.; Lyle, K. Methane emissions from enteric fermentation in Alberta’s beef cattle population. Can. J. Anim. Sci. 2005, 85, 501–512. [Google Scholar] [CrossRef]
- Park, K.Y.; Jo, Y.; Lee, J.C.; Lee, H.G. Evaluation of Nutritional Value of Ulva Sp. And Sargassum Horneri as Potential Eco-Friendly Ruminants Feed. Algal Res. 2022, 65, 102706. [Google Scholar] [CrossRef]
- Kim, Y.R.; Park, K.Y.; Ghassemi Nejad, J.; Yoon, W.J.; Kim, S.C.; Lee, J.S.; Lee, H.G. Rumen Methane Abatement by Phlorotannin Derivatives (Phlorofucofuroeckol-A, Dieckol, and 8,8′-Bieckol) and Its Relationship with the Hydroxyl Group and Ether Linkage. Anim. Feed. Sci. Technol. 2022, 293, 115468. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed. Sci. Technol. 2011, 166, 308–320. [Google Scholar] [CrossRef]
- Marklein, A.R.; Meyer, D.; Fischer, M.L.; Jeong, S.; Rafiq, T.; Carr, M.; Hopkins, F.M. Facility-Scale Inventory of Dairy Methane Emissions in California: Implications for Mitigation. Earth Syst. Sci. Data 2021, 13, 1151–1166. [Google Scholar] [CrossRef]
- Hegarty, R.S. Reducing Rumen Methane Emissions through Elimination of Rumen Protozoa. Aust. J. Agric. Res. 1999, 50, 1321. [Google Scholar] [CrossRef]
- Escobar-Bahamondes, P.; Oba, M.; Beauchemin, K. Universally Applicable Methane Prediction Equations for Beef Cattle Fed High- or Low-Forage Diets. Can. J. Anim. Sci. 2016, 97, 83–94. [Google Scholar] [CrossRef]
- Benaouda, M.; Martin, C.; Li, X.; Kebreab, E.; Hristov, A.N.; Yu, Z.; Yáñez-Ruiz, D.R.; Reynolds, C.K.; Crompton, L.A.; Dijkstra, J.; et al. Evaluation of the Performance of Existing Mathematical Models Predicting Enteric Methane Emissions from Ruminants: Animal Categories and Dietary Mitigation Strategies. Anim. Feed. Sci. Technol. 2019, 255, 114207. [Google Scholar] [CrossRef]
- Altshuler, Y.; Chebach, T.C.; Cohen, S.M. From Microbes to Methane: AI-Based Predictive Modeling of Feed Additive Efficacy in Dairy Cows. arXiv 2023, arXiv:2311.12901. [Google Scholar]
- Kiat, P.E.; Malek, M.A.; Shamsuddin, S.M. Artificial intelligence projection model for methane emission from livestock in Sarawak. Sains Malays. 2019, 48, 1325–1332. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Hajnal, É.; Kovács, L.; Vakulya, G. Dairy Cattle Rumen Bolus Developments with Special Regard to the Applicable Artificial Intelligence (AI) Methods. Sensors 2022, 22, 6812. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Erickson, G.E.; Xiong, Y. Individual Beef Cattle Identification Using Muzzle Images and Deep Learning Techniques. Animals 2022, 12, 1453. [Google Scholar] [CrossRef] [PubMed]
- Soyeurt, H.; Grelet, C.; McParland, S.; Calmels, M.; Coffey, M.P.; Tedde, A.; Delhez, P.; Dehareng, F.; Gengler, N. A Comparison of 4 Different Machine Learning Algorithms to Predict Lactoferrin Content in Bovine Milk from Mid-Infrared Spectra. J. Dairy Sci. 2020, 103, 11585–11596. [Google Scholar] [CrossRef]
- Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Lin, D.; Kenéz, A.; McArt, J.A.A.; Li, J. Transformer Neural Network to Predict and Interpret Pregnancy Loss from Activity Data in Holstein Dairy Cows. Comput. Electron. Agric. 2023, 205, 107638. [Google Scholar] [CrossRef]
- Gianola, D.; Okut, H.; Weigel, K.A.; Rosa, G.J.M. Predicting Complex Quantitative Traits with Bayesian Neural Networks: A Case Study with Jersey Cows and Wheat. BMC Genet. 2011, 12, 87. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghassemi Nejad, J.; Ju, M.-S.; Jo, J.-H.; Oh, K.-H.; Lee, Y.-S.; Lee, S.-D.; Kim, E.-J.; Roh, S.; Lee, H.-G. Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies. Animals 2024, 14, 435. https://doi.org/10.3390/ani14030435
Ghassemi Nejad J, Ju M-S, Jo J-H, Oh K-H, Lee Y-S, Lee S-D, Kim E-J, Roh S, Lee H-G. Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies. Animals. 2024; 14(3):435. https://doi.org/10.3390/ani14030435
Chicago/Turabian StyleGhassemi Nejad, Jalil, Mun-Su Ju, Jang-Hoon Jo, Kyung-Hwan Oh, Yoon-Seok Lee, Sung-Dae Lee, Eun-Joong Kim, Sanggun Roh, and Hong-Gu Lee. 2024. "Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies" Animals 14, no. 3: 435. https://doi.org/10.3390/ani14030435