Can Different Dietary Protein Sources Influence the Survival, Growth, and Physiology of 0+Marron (Cherax cainii) Exposed to Feed Deprivation?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulated Feed Used Before the Feed Deprivation Trial Commenced
2.2. Feed Deprivation Experimental Design
2.3. Sample Collection and Parameter Analysis
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Growth Performance and Survival
3.2. Immune Responses
3.3. Organosomatic Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caruso, G.; Denaro, M.G.; Caruso, R.; Mancari, F.; Genovese, L.; Maricchiolo, G. Response to short term starvation of growth, haematological, biochemical and non-specific immune parameters in European sea bass (Dicentrarchus labrax) and blackspot sea bream (Pagellus bogaraveo). Mar. Environ. Res. 2011, 72, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.L.; Obst, J.H. Effects of Starvation and Subsequent Refeeding on the Size and Nutrient Content of the Hepatopancreas of Cherax destructor (Decapoda: Parastacidae). J. Crust. Biol. 2000, 20, 431–441. [Google Scholar] [CrossRef]
- Sacristán, H.J.; Ansaldo, M.; Franco-Tadic, L.M.; Fernández Gimenez, A.V.; López Greco, L.S. Long-Term Starvation and Posterior Feeding Effects on Biochemical and Physiological Responses of Midgut Gland of Cherax quadricarinatus Juveniles (Parastacidae). PLoS ONE 2016, 11, e0150854. [Google Scholar] [CrossRef] [PubMed]
- Fotedar, R. Effect of Nutritional Deprivation and Delayed Feeding on Growth, Survival, Proximate Composition, and Condition Indices of Freshwater Crayfish Marron Cherax tenuimanus (Smith). In Proceedings of the Third World Fisheries Congress: Feeding the World with Fish in the Next Millenium—The Balance Between Production and Environment; American Fisheries Society: Bethesda, MD, USA, 2003; pp. 271–282. [Google Scholar]
- Fotedar, R. Effect of dietary protein and lipid source on the growth, survival, condition indices, and body composition of marron, Cherax tenuimanus (Smith). Aquaculture 2004, 230, 439–455. [Google Scholar] [CrossRef]
- Jussila, J. Comparison of Selected Condition Indices Between Intermolt and Post-Molt Marron, Cherax tenuimanus, of Different Feeding Status Raised Under Intensive Culture Conditions. J. Appl. Aquac. 1999, 9, 57–66. [Google Scholar] [CrossRef]
- van de Braak, C.B.T.; Faber, R.; Boon, J.H. Cellular and humoral characteristics of Penaeus monodon (Fabricius, 1798) haemolymph. Comp. Haematol. Int. 1996, 6, 194–203. [Google Scholar] [CrossRef]
- Sang, H.M.; Ky, L.T.; Fotedar, R. Dietary supplementation of mannan oligosaccharide improves the immune responses and survival of marron, Cherax tenuimanus (Smith, 1912) when challenged with different stressors. Fish Shellfish Immunol. 2009, 27, 341–348. [Google Scholar] [CrossRef]
- Foysal, M.J.; Fotedar, R.; Tay, A.C.Y.; Gupta, S.K. Effects of long-term starvation on health indices, gut microbiota and innate immune response of fresh water crayfish, marron (Cherax cainii, Austin 2002). Aquaculture 2020, 514, 734444. [Google Scholar] [CrossRef]
- Rosas, C.; Cooper, E.L.; Pascual, C.; Brito, R.; Gelabert, R.; Moreno, T.; Miranda, G.; Sánchez, A. Indicators of physiological and immunological status of Litopenaeus setiferus wild populations (Crustacea, Penaeidae). Mar. Biol. 2004, 145, 401–413. [Google Scholar] [CrossRef]
- Chao-yang, Z.; Xin, Z.; Xu-wen, B.; Gui-qin, W. Effects of starvation on digestive enzyme activities and some immune indexes in broodstock red swamp crawfish Procambarus clarkii. J. Dalian Fish. Univ. 2010, 25, 85–87. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, J.C.; Kuo, Y.H.; Chang, Y.H. Immunosuppression and immunomodulation of white shrimp at low salinity and under starvation. Fish Shellfish Immunol. 2013, 34, 1719–1720. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, J.C.; SN, C.M.; WZ, W.M.; AS, N.A.S.; Cheng, S.Y.; Hsu, C.H. Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding. Results Immunol. 2012, 2, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, C.; Tan, Q. Ontogenic changes in the digestive enzyme activities and the effect of different starvation duration on the digestive enzyme activities of larval red swamp crayfish (Procambarus clarkii). Aquac. Res. 2018, 49, 676–683. [Google Scholar] [CrossRef]
- Sacristán, H.J.; Nolasco-Soria, H.; López Greco, L.S. Effect of attractant stimuli, starvation period and food availability on digestive enzymes in the redclaw crayfish Cherax quadricarinatus (Parastacidae). Aquat. Biol. 2014, 23, 87–99. [Google Scholar] [CrossRef]
- Calvo, N.S.; Tropea, C.; Anger, K.; López Greco, L.S. Starvation resistance in juvenile freshwater crayfish. Aquat. Biol. 2012, 16, 287–297. [Google Scholar] [CrossRef]
- Chen, C.; Tan, Q.; Liu, M.; Wu, F.; Chen, J.; Xie, S. Effect of starvation on growth, histology and ultrastructure of digestive system of juvenile red swamp crayfish (Procambarus clarkii Girard). Iran. J. Fish. Sci. 2017, 16, 1214–1233. [Google Scholar]
- Gu, H.; Anderson, A.; Mather, P.; Capra, M. Effects of feeding level and starvation on growth and water and protein content in juvenile redclaw crayfish, Cherax quadricarinatus (von Martens). Mar. Freshw. Res. 1996, 47, 745–748. [Google Scholar] [CrossRef]
- Foysal, M.J.; Fotedar, R.; Tay, C.Y.; Gupta, S.K. Dietary supplementation of black soldier fly (Hermetica illucens) meal modulates gut microbiota, innate immune response and health status of marron (Cherax cainii, Austin 2002) fed poultry-by-product and fishmeal based diets. PeerJ 2019, 7, e6891. [Google Scholar] [CrossRef]
- Saputra, I.; Fotedar, R. The effect of defatted black soldier fly meal (Hermetia illucens) inclusion in the formulated diet on the growth, gene expression, and histopathology of juvenile lobster (Panulirus ornatus Fabricius, 1798). Aquac. Int. 2023, 32, 11–29. [Google Scholar] [CrossRef]
- Saoud, I.P.; Rodgers, L.J.; Davis, D.A.; Rouse, D.B. Replacement of fish meal with poultry by-product meal in practical diets for redclaw crayfish (Cherax quadricarinatus). Aquac. Nutr. 2008, 14, 139–142. [Google Scholar] [CrossRef]
- Yang, M.; Guo, X.; Chen, T.; Li, P.; Xiao, T.; Dai, Z.; Hu, Y. Effect of dietary replacement of fish meal by poultry by-product meal on the growth performance, immunity, and intestinal health of juvenile red swamp crayfish, Procambarus clarkii. Fish Shellfish Immunol. 2022, 131, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Chaklader, M.R.; Fotedar, R.; Howieson, J.; Siddik, M.A.B.; Foysal, M.J. The ameliorative effects of various fish protein hydrolysates in poultry by-product meal based diets on muscle quality, serum biochemistry and immunity in juvenile barramundi, Lates calcarifer. Fish Shellfish Immunol. 2020, 104, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.A.B.; Howieson, J.; Partridge, G.J.; Fotedar, R.; Gholipourkanani, H. Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, Lates calcarifer. Sci. Rep. 2018, 8, 15942. [Google Scholar] [CrossRef]
- Fuertes, J.B.; Celada, J.D.; Carral, J.M.; Sáez-Royuela, M.; González-Rodríguez, Á. Effects of dietary protein and different levels of replacement of fish meal by soybean meal in practical diets for juvenile crayfish (Pacifastacus leniusculus, Astacidae) from the onset of exogenous feeding. Aquaculture 2012, 364–365, 338–344. [Google Scholar] [CrossRef]
- Jones, P.L.; De Silva, S.S.; Mitchell, B.D. Effects of replacement of animal protein by soybean meal on growth and carcass composition in juvenile Australian freshwater crayfish. Aquac. Int. 1996, 4, 339–359. [Google Scholar] [CrossRef]
- Wan, J.-j.; Shen, M.-f.; Tang, J.-q.; Lin, H.; Yan, W.-h.; Li, J.-j.; Zhu, L. Effects of soybean meal processing treatments on growth performance, nutrient digestibility, nitrogen and phosphorus excretion in red swamp crayfish, Procambarus clarkii. Aquac. Int. 2017, 25, 543–554. [Google Scholar] [CrossRef]
- Yang, Q.; Tan, B.; Dong, X.; Chi, S.; Liu, H. Effect of replacing fish meal with extruded soybean meal on growth, feed utilization and apparent nutrient digestibility of juvenile white shrimp (Litopenaeus vannamei). J. Ocean Univ. China 2015, 14, 865–872. [Google Scholar] [CrossRef]
- Saputra, I.; Fotedar, R. Growth Performance of Smooth Marron (Cherax cainii) Fed Different Dietary Protein Sources. J. Aquac. Fish Health 2021, 10, 56–65. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Zhang, C.; Song, K.; Yuan, X. Effects of supplementing low-molecular-weight fish hydrolysate in high soybean meal diets on growth, antioxidant activity and non-specific immune response of Pacific white shrimp (Litopenaeus vannamei). Turk. J. Fish. Aquat. Sci. 2018, 18, 717–727. [Google Scholar] [CrossRef]
- Surendra, K.C.; Tomberlin, J.K.; van Huis, A.; Cammack, J.A.; Heckmann, L.-H.L.; Khanal, S.K. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Manag. 2020, 117, 58–80. [Google Scholar] [CrossRef]
- Cummins, V.C.; Rawles, S.D.; Thompson, K.R.; Velasquez, A.; Kobayashi, Y.; Hager, J.; Webster, C.D. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2017, 473, 337–344. [Google Scholar] [CrossRef]
- Hu, J.; Wang, G.; Huang, W.; Zhao, H.; Mo, W.; Huang, Y. Effects of fish meal replacement by black soldier fly (Hermetia illucens) larvae meal on growth performance, body composition, serum biochemical indexes and antioxidant ability of juvenile Litopenaeus vannamei. Chin. J. Anim. Nutr. 2019, 31, 5292–5300. [Google Scholar]
- Richardson, A.; Dantas-Lima, J.; Lefranc, M.; Walraven, M. Effect of a Black Soldier Fly Ingredient on the Growth Performance and Disease Resistance of Juvenile Pacific White Shrimp (Litopenaeus vannamei). Animals 2021, 11, 1450. [Google Scholar] [CrossRef] [PubMed]
- Foysal, M.J.; Dao, T.T.T.; Fotedar, R.; Gupta, S.K.; Tay, A.; Chaklader, M.R. Sources of protein diet differentially stimulate the gut and water microbiota under freshwater crayfish, marron (Cherax cainii, Austin 2002) culture. Environ. Microbiol. Rep. 2022, 14, 286–298. [Google Scholar] [CrossRef]
- Eroldoğan, O.T.; Elsabagh, M.; Sevgili, H.; Glencross, B.; Paolucci, M.; Kumlu, M.; Kınay, E.; Evliyaoğlu, E.; Yılmaz, H.A.; Sarıipek, M. Use of Poultry By-product and Plant Protein Sources in Diets of Redclaw Crayfish (Cherax quadricarinatus). Turk. J. Fish. Aquat. Sci. 2022, 22, TRJFAS21188. [Google Scholar] [CrossRef]
- Fuertes, J.B.; Celada, J.D.; Carral, J.M.; Sáez-Royuela, M.; González-Rodríguez, Á. Replacement of fish meal with poultry by-product meal in practical diets for juvenile crayfish (Pacifastacus leniusculus Dana, Astacidae) from the onset of exogenous feeding. Aquaculture 2013, 404–405, 22–27. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Fotedar, R.; Chaklader, M.R.; Foysal, M.J.; Nahar, A.; Howieson, J. Fermented Animal Source Protein as Substitution of Fishmeal on Intestinal Microbiota, Immune-Related Cytokines and Resistance to Vibrio mimicus in Freshwater Crayfish (Cherax cainii). Front. Physiol. 2020, 10, 1635. [Google Scholar] [CrossRef]
- Nik Sin, N.N.; Mustafa, S.; Suyono; Shapawi, R. Efficient utilization of poultry by-product meal-based diets when fed to giant freshwater prawn, Macrobrachium rosenbergii. J. Appl. Aquac. 2021, 33, 53–72. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, S.; Lei, W.; Zhu, X.; Yang, Y. Effect of replacement of fish meal by meat and bone meal and poultry by-product meal in diets on the growth and immune response of Macrobrachium nipponense. Fish Shellfish Immunol. 2004, 17, 105–114. [Google Scholar] [CrossRef]
- Ospina-Salazar, G.H.; Ríos-Durán, M.G.; Toledo-Cuevas, E.M.; Martínez-Palacios, C.A. The effects of fish hydrolysate and soy protein isolate on the growth performance, body composition and digestibility of juvenile pike silverside, Chirostoma estor. Anim. Feed Sci. Technol. 2016, 220, 168–179. [Google Scholar] [CrossRef]
- Ho, T.C.W.; Li-Chan, E.C.Y.; Skura, B.J.; Higgs, D.A.; Dosanjh, B. Pacific hake (Merluccius productus Ayres, 1855) hydrolysates as feed attractants for juvenile Chinook salmon (Oncorhynchus tshawytscha Walbaum, 1792). Aquac. Res. 2014, 45, 1140–1152. [Google Scholar] [CrossRef]
- Bui, H.T.D.; Khosravi, S.; Fournier, V.; Herault, M.; Lee, K.-J. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture 2014, 418–419, 11–16. [Google Scholar] [CrossRef]
- Cheng, W.; Chiu, C.-S.; Guu, Y.-K.; Tsai, S.-T.; Liu, C.-H. Expression of recombinant phytase of Bacillus subtilis E20 in Escherichia coli HMS 174 and improving the growth performance of white shrimp, Litopenaeus vannamei, juveniles by using phytase-pretreated soybean meal-containing diet. Aquac. Nutr. 2013, 19, 117–127. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Ambas, I.; Fotedar, R. Survival and Immunity of Marron Cherax cainii (Austin, 2002) Fed Bacillus mycoides Supplemented Diet under Simulated Transport. J. Aqua. Res. Dev. 2015, 7, 390. [Google Scholar] [CrossRef]
- Nugroho, R.A.; Fotedar, R. Dietary organic selenium improves growth, survival and resistance to Vibrio mimicus in cultured marron, Cherax cainii (Austin, 2002). Fish Shellfish Immunol. 2013, 35, 79–85. [Google Scholar] [CrossRef]
- Ambas, I.; Suriawan, A.; Fotedar, R. Immunological responses of customised probiotics-fed marron, Cherax tenuimanus, (Smith 1912) when challenged with Vibrio mimicus. Fish Shellfish Immunol. 2013, 35, 262–270. [Google Scholar] [CrossRef]
- Dao, T.T.T.; Fotedar, R.; Chaklader, M.R.; Howieson, J. Growth, health, and tail muscle composition of marron (Cherax cainii): A comparison of animal and plant protein dietary ingredients. Int. Aquat. Res. 2024, 16, 271–292. [Google Scholar] [CrossRef]
- Tulsankar, S.S.; Fotedar, R.; Cole, A.J.; Gagnon, M.M. Live plankton supplementation improves growth and health status of marron (Cherax cainii Austin 2002). Aquaculture 2022, 558, 738327. [Google Scholar] [CrossRef]
- Sang, H.M.; Fotedar, R. Prebiotic Mannan Oligosaccharide Diet Improves Health Status of the Digestive System of Marron, Cherax tenuimanus (Smith 1912). J. Appl. Aquac. 2010, 22, 240–250. [Google Scholar] [CrossRef]
- Stumpf, L.; Calvo, N.S.; Pietrokovsky, S.; López Greco, L.S. Nutritional vulnerability and compensatory growth in early juveniles of the “red claw” crayfish Cherax quadricarinatus. Aquaculture 2010, 304, 34–41. [Google Scholar] [CrossRef]
- Yildirim, M.; Aktaş, M. Could the growth of Litopenaeus vannamei be compensated by long-term cyclic feed deprivation and following refeeding? J. Appl. Aquac. 2019, 31, 224–235. [Google Scholar] [CrossRef]
- Stumpf, L.; López Greco, L.S. Compensatory Growth in Juveniles of Freshwater Redclaw Crayfish Cherax quadricarinatus Reared at Three Different Temperatures: Hyperphagia and Food Efficiency as Primary Mechanisms. PLoS ONE 2015, 10, e0139372. [Google Scholar] [CrossRef] [PubMed]
- Osman, G.Y.; Galal, M.A.; Sheir, S.; Soliman, M.M. Effect of starvation and drought on the activity of the freshwater crayfish, Procambarus clarkii. J. Biosci. Appl. Res. 2015, 1, 44–51. [Google Scholar] [CrossRef]
- Saputra, I.; Fotedar, R.; Gupta, S.K.; Siddik, M.A.B.; Foysal, M.J. Effects of different dietary protein sources on the immunological and physiological responses of marron, Cherax cainii (Austin and Ryan, 2002) and its susceptibility to high temperature exposure. Fish Shellfish Immunol. 2019, 88, 567–577. [Google Scholar] [CrossRef]
- Jussila, J.; Jago, J.; Tsvetnenko, E.; Dunstan, B.; Evans, L.H. Total and differential haemocyte counts in western rock lobsters (Panulirus cygnus George) under post-harvest stress. Mar. Freshw. Res. 1998, 48, 863–868. [Google Scholar] [CrossRef]
- Chen, Y.; Chi, S.; Zhang, S.; Dong, X.; Yang, Q.; Liu, H.; Tan, B.; Xie, S. Evaluation of the Dietary Black Soldier Fly Larvae Meal (Hermetia illucens) on Growth Performance, Intestinal Health, and Disease Resistance to Vibrio parahaemolyticus of the Pacific White Shrimp (Litopenaeus vannamei). Front. Mar. Sci. 2021, 8, 706463. [Google Scholar] [CrossRef]
- Pascual, C.; Sánchez, A.; Zenteno, E.; Cuzon, G.; Gabriela, G.; Brito, R.; Gelabert, R.; Hidalgo, E.; Rosas, C. Biochemical, physiological, and immunological changes during starvation in juveniles of Litopenaeus vannamei. Aquaculture 2006, 251, 416–429. [Google Scholar] [CrossRef]
- Zenteno-Savín, T.; Cortes-Jacinto, E.; Vázquez-Medina, J.P.; Villarreal-Colmenares, H. Oxidative damage in tissues of juvenile crayfish (Cherax quadricarinatus von Martens, 1868) fed with different levels of proteins and lipid. Hidrobiológica 2008, 18, 147–154. [Google Scholar]
- Sánchez-Paz, A.; García-Carreño, F.; Hernández-López, J.; Muhlia-Almazán, A.; Yepiz-Plascencia, G. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J. Exp. Mar. Biol. Ecol. 2007, 340, 184–193. [Google Scholar] [CrossRef]
- Comoglio, L.; Gaxiola, G.; Roque, A.; Cuzon, G.; Amin, O. The effect of starvation on refeeding, digestive enzyme activity, oxygen consumption, and ammonia excretion in juvenile white shrimp Litopenaeus vannamei. J. Shellfish Res. 2004, 23, 243–249. [Google Scholar]
- Zhang, P.; Zhang, X.; Li, J.; Gao, T. Effect of refeeding on the growth and digestive enzyme activities of Fenneropenaeus chinensis juveniles exposed to different periods of food deprivation. Aquac. Int. 2010, 18, 1191–1203. [Google Scholar] [CrossRef]
- Muhlia-Almazán, A.; García-Carreño, F.L. Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 133, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.; Lv, H.; Jiang, X.; Liu, Y.; Hur, J.-w.; Esbon, M.; Samwel, C.; Superius, E.; Khalfan, Z.; Gao, Y.; et al. Effects of starvation on enzyme activities and intestinal microflora composition in loach (Paramisgurnus dabryanus). Aquac. Rep. 2020, 18, 100467. [Google Scholar] [CrossRef]
- Yao, W.; Li, X.; Kabir Chowdhury, M.A.; Wang, J.; Leng, X. Dietary protease, carbohydrase and micro-encapsulated organic acid salts individually or in combination improved growth, feed utilization and intestinal histology of Pacific white shrimp. Aquaculture 2019, 503, 88–95. [Google Scholar] [CrossRef]
- Habtamu Fekadu, G.; Negussie, R. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. Int. J. Food. Sci. Nutr. 2014, 3, 284–289. [Google Scholar] [CrossRef]
- Dai, W.F.; Zhang, J.J.; Qiu, Q.F.; Chen, J.; Yang, W.; Ni, S.; Xiong, J.B. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities. Fish Shellfish Immunol. 2018, 80, 191–199. [Google Scholar] [CrossRef]
- Calvo, N.S.; Stumpf, L.; Sacristán, H.J.; López Greco, L.S. Energetic reserves and digestive enzyme activities in juveniles of the red claw crayfish Cherax quadricarinatus nearby the point-of-no-return. Aquaculture 2013, 416–417, 85–91. [Google Scholar] [CrossRef]
- Jussila, J. Physiological Responses of Astacid and Parastacid Crayfishes (Crustacea: Decapoda) to Conditions of Intensive Culture. Doctoral Dissertation, University of Kuopio, Kuopio, Finland, 1997. [Google Scholar]
Ingredients * | Experimental Diets | |||||
---|---|---|---|---|---|---|
FM | PBM | BSFM | TH | LM | SBM | |
FM | 46.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PBM | 0.00 | 42.00 | 0.00 | 0.00 | 0.00 | 0.00 |
BSFM | 0.00 | 0.00 | 33.60 | 0.00 | 0.00 | 0.00 |
TH | 0.00 | 0.00 | 0.00 | 27.00 | 0.00 | 0.00 |
LM | 0.00 | 0.00 | 0.00 | 0.00 | 70.00 | 0.00 |
SBM | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 62.00 |
Wheat | 30.00 | 34.50 | 33.40 | 35.00 | 7.00 | 12.00 |
Corn/wheat starch | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 | 10.00 |
Cholesterol | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Canola oil | 2.00 | 1.50 | 0.00 | 0.00 | 2.00 | 4.00 |
Cod liver oil | 3.00 | 2.00 | 0.00 | 0.00 | 2.50 | 5.00 |
Vitamin premix | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Vitamin C | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Dicalcium phosphate | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Lecithin–soy | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Barley | 4.00 | 5.00 | 5.00 | 4.00 | 3.50 | 3.00 |
Casein | 0.00 | 0.00 | 13.00 | 19.00 | 0.00 | 0.00 |
Proximate composition (%dry weight) | ||||||
Crude protein (%) | 30.81 | 31.06 | 30.25 | 31.04 | 30.06 | 31.17 |
Crude lipid (%) | 12.99 | 13.75 | 13.27 | 12.32 | 12.95 | 12.21 |
Moisture (%) | 8.31 | 8.23 | 8.58 | 7.86 | 8.50 | 8.04 |
Ash (%) | 11.07 | 6.52 | 4.22 | 5.17 | 3.18 | 5.47 |
FM | PBM | BSFM | TH | LM | SBM | |
---|---|---|---|---|---|---|
Essential amino acids (g/100 g on dry matter basis) | ||||||
Histidine | 2.95 | 2.27 | 2.90 | 2.82 | 2.96 | 2.76 |
Threonine | 4.63 | 4.03 | 4.19 | 4.28 | 3.98 | 4.23 |
Lysine | 6.95 | 5.68 | 6.61 | 6.87 | 4.21 | 5.61 |
Arginine | 6.25 | 6.85 | 4.33 | 4.35 | 11.60 | 7.15 |
Methionine | 2.70 | 2.05 | 2.15 | 2.46 | 0.61 | 1.09 |
Valine | 5.51 | 5.09 | 6.24 | 6.04 | 4.59 | 5.26 |
Isoleucine | 4.70 | 4.25 | 4.98 | 4.88 | 4.77 | 5.04 |
Leucine | 8.18 | 7.73 | 8.42 | 8.53 | 7.88 | 8.53 |
Phenylalanine | 4.67 | 4.36 | 4.98 | 4.88 | 4.62 | 5.52 |
Non-essential amino acids (g/100 g on dry matter basis) | ||||||
Serine | 4.56 | 4.43 | 5.11 | 5.34 | 5.53 | 5.45 |
Glutamic acid | 16.00 | 17.66 | 20.04 | 20.60 | 22.58 | 20.21 |
Glycine | 8.14 | 10.40 | 3.99 | 4.41 | 4.81 | 4.56 |
Aspartic acid | 9.02 | 8.06 | 8.04 | 7.37 | 10.16 | 11.36 |
Alanine | 6.56 | 6.74 | 4.70 | 4.31 | 3.56 | 4.52 |
Proline | 6.56 | 8.02 | 9.00 | 9.46 | 4.96 | 5.84 |
Tyrosine | 2.63 | 2.38 | 4.33 | 3.42 | 3.18 | 2.86 |
Treatments | |
---|---|
SFM | Marron fed initially fish meal. |
SPBM | Marron fed initially poultry by-product meal. |
SBSFM | Marron fed initially black soldier fly meal. |
STH | Marron fed initially tuna hydrolysate. |
SLM | Marron fed initially a lupin meal. |
SSBM | Marron fed initially soybean meal. |
Treatments | IBW (g) | FBW (g) | WG (%) | SGR (%/Day) | Total Number of Moults | Moulting Rate (%) |
---|---|---|---|---|---|---|
SFM | 3.14 ± 0.06 | 3.32 ± 0.07 | 8.50 ± 2.26 | 0.13 ± 0.06 | 4 | 13.34 ± 3.34 |
SPBM | 3.01 ± 0.47 | 3.20 ± 0.56 | 7.02 ± 1.89 | 0.14 ± 0.03 | 3 | 10.00 ± 5.77 |
SBSFM | 3.48 ± 0.08 | 3.79 ± 0.11 | 9.56 ± 2.14 | 0.18 ± 0.04 | 4 | 13.34 ± 8.81 |
STH | 2.86 ± 0.53 | 3.00 ± 0.58 | 4.58 ± 0.61 | 0.09 ± 0.01 | 4 | 13.34 ± 3.34 |
SLM | 2.47 ± 0.29 | 2.60 ± 0.33 | 5.39 ± 1.35 | 0.10 ± 0.02 | 4 | 13.34 ± 6.67 |
SSBM | 2.83 ± 0.19 | 2.97 ± 0.13 | 6.43 ± 1.84 | 0.13 ± 0.05 | 4 | 13.34 ± 8.81 |
p value | 0.425 | 0.369 | 0.404 | 0.760 | 0.999 |
Index | Days | Marron Groups | |||||
---|---|---|---|---|---|---|---|
SFM | SPBM | SBSFM | STH | SLM | SSBM | ||
HM | 0 | 1 65.09 ± 2.25 b | 1 70.45 ± 0.98 c | 1 59.20 ± 2.14 a | 1 76.00 ± 2.71 d | 1 70.89 ± 2.81 cd | 1 66.07 ± 1.32 c |
15 | 2 69.92 ± 2.00 b | 2 76.56 ± 2.06 c | 2 67.13 ± 1.30 a | 2 80.40 ± 2.01 d | 2 78.01 ± 1.92 cd | 2 78.18 ± 2.03 c | |
30 | 3 77.04 ± 2.21 b | 3 79.26 ± 1.09 c | 3 63.56 ± 0.59 a | 3 83.07 ± 0.44 d | 3 83.80 ± 0.98 cd | 3 82.11 ± 1.09 c | |
45 | 3 79.98 ± 0.58 b | 3 79.93 ± 0.17 c | 3 78.21 ± 0.99 a | 3 80.41 ± 0.14 d | 3 82.36 ± 0.32 cd | 3 79.20 ± 0.07 c | |
TM | 0 | 1 80.60 ± 0.52 | 1 81.26 ± 0.52 | 1 79.52 ± 0.66 | 1 80.91 ± 0.89 | 1 79.89 ± 0.60 | 1 80.95 ± 0.47 |
15 | 2 3 82.67 ± 0.65 | 2 3 82.48 ± 1.23 | 2 3 81.71 ± 0.95 | 2 3 82.82 ± 0.87 | 2 3 83.63 ± 0.25 | 2 3 83.54 ± 0.29 | |
30 | 3 83.25 ± 0.28 | 3 83.93 ± 0.16 | 3 82.11 ± 0.53 | 3 82.73 ± 0.58 | 3 84.33 ± 0.39 | 3 83.83 ± 0.11 | |
45 | 2 82.65 ± 0.24 | 2 81.61 ± 0.15 | 2 82.56 ± 0.12 | 2 82.19 ± 0.15 | 2 82.34 ± 0.40 | 2 82.14 ± 0.57 | |
Hiw | 0 | 4 6.66 ± 0.26 abc | 4 6.30 ± 0.20 ab | 4 5.77 ± 0.13 ab | 4 6.82 ± 0.51 bc | 4 6.40 ± 0.26 a | 4 6.53 ± 0.32 c |
15 | 3 4.95 ± 0.18 abc | 3 4.31 ± 0.28 ab | 3 5.37 ± 0.15 ab | 3 4.97 ± 0.07 bc | 3 4.11 ± 0.20 a | 3 5.67 ± 0.23 c | |
30 | 2 3.69 ± 0.12 abc | 2 3.59 ± 0.23 ab | 2 3.50 ± 0.13 ab | 2 3.54 ± 0.29 bc | 2 3.29 ± 0.07 a | 2 4.50 ± 0.44 c | |
45 | 1 2.95 ± 0.19 abc | 1 3.16 ± 0.05 ab | 1 2.51 ± 0.20 ab | 1 3.34 ± 0.26 bc | 1 2.72 ± 0.08 a | 1 3.46 ± 0.18 c | |
Hid | 0 | 4 2.32 ± 0.09 ab | 4 1.86 ± 0.05 ab | 4 2.35 ± 0.10 c | 4 1.62 ± 0.14 a | 4 1.87 ± 0.21 ab | 4 2.21 ± 0.09 bc |
15 | 3 1.01 ± 0.10 ab | 3 1.39 ± 0.23 ab | 3 1.69 ± 0.24 c | 3 1.05 ± 0.07 a | 3 1.17 ± 0.24 ab | 3 1.22 ± 0.12 bc | |
30 | 2 0.85 ± 0.09 ab | 2 0.75 ± 0.08 ab | 2 1.28 ± 0.05 c | 2 0.61 ± 0.07 a | 2 0.53 ± 0.03 ab | 2 0.82 ± 0.13 bc | |
45 | 1 0.59 ± 0.05 ab | 1 0.64 ± 0.02 ab | 1 0.55 ± 0.05 c | 1 0.63 ± 0.07 a | 1 0.48 ± 0.01 ab | 1 0.72 ± 0.04 bc | |
Tiw | 0 | 3 26.79 ± 0.52 | 3 27.96 ± 0.96 | 3 29.82 ± 0.86 | 3 25.68 ± 0.93 | 3 27.93 ± 0.98 | 3 27.79 ± 0.61 |
15 | 2 3 27.16 ± 1.12 | 2 3 27.56 ± 1.33 | 2 3 27.41 ± 0.48 | 2 3 25.38 ± 1.48 | 2 3 25.84 ± 0.55 | 2 3 25.52 ± 0.76 | |
30 | 2 27.28 ± 0.74 | 2 26.48 ± 0.83 | 2 26.89 ± 0.48 | 2 25.91 ± 0.86 | 2 25.12 ± 0.22 | 2 24.51 ± 0.72 | |
45 | 1 21.94 ± 0.76 | 1 24.42 ± 0.77 | 1 21.56 ± 0.84 | 1 25.49 ± 0.99 | 1 24.28 ± 0.71 | 1 25.12 ± 0.55 | |
Tid | 0 | 2 5.20 ± 0.14 | 2 5.23 ± 0.07 | 2 6.10 ± 0.06 | 2 4.92 ± 0.36 | 2 5.62 ± 0.22 | 2 5.30 ± 0.24 |
15 | 1 4.88 ± 0.37 | 1 4.79 ± 0.81 | 1 4.93 ± 0.26 | 1 4.21 ± 0.33 | 1 4.20 ± 0.13 | 1 4.55 ± 0.25 | |
30 | 1 4.57 ± 0.05 | 1 4.25 ± 0.09 | 1 4.81 ± 0.16 | 1 4.47 ± 0.18 | 1 3.94 ± 0.12 | 1 3.97 ± 0.10 | |
45 | 1 3.81 ± 0.13 | 1 4.49 ± 0.15 | 1 3.77 ± 0.14 | 1 4.55 ± 0.22 | 1 4.28 ± 0.03 | 1 4.49 ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, T.T.T.; Fotedar, R. Can Different Dietary Protein Sources Influence the Survival, Growth, and Physiology of 0+Marron (Cherax cainii) Exposed to Feed Deprivation? Animals 2024, 14, 3591. https://doi.org/10.3390/ani14243591
Dao TTT, Fotedar R. Can Different Dietary Protein Sources Influence the Survival, Growth, and Physiology of 0+Marron (Cherax cainii) Exposed to Feed Deprivation? Animals. 2024; 14(24):3591. https://doi.org/10.3390/ani14243591
Chicago/Turabian StyleDao, Thi Thanh Thuy, and Ravi Fotedar. 2024. "Can Different Dietary Protein Sources Influence the Survival, Growth, and Physiology of 0+Marron (Cherax cainii) Exposed to Feed Deprivation?" Animals 14, no. 24: 3591. https://doi.org/10.3390/ani14243591
APA StyleDao, T. T. T., & Fotedar, R. (2024). Can Different Dietary Protein Sources Influence the Survival, Growth, and Physiology of 0+Marron (Cherax cainii) Exposed to Feed Deprivation? Animals, 14(24), 3591. https://doi.org/10.3390/ani14243591