Appeasing Substance Administration at Feedlot Entry Impacted Temperament, Pen Behavior, Immunocompetence, and Meat Quality of Beef Heifers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Sample Collection
2.2. Laboratory Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. BAS Effects on Growth
4.2. BAS Effects on Acute-Phase Proteins and Cortisol
4.3. BAS Effects on Response to Vaccination
4.4. BAS Effects on Temperament and Pen Behavior
4.5. BAS Effects on Carcass and Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duff, G.C.; Galyean, M.L. BOARD-INVITED REVIEW: Recent Advances in Management of Highly Stressed, Newly Received Feedlot Cattle. J. Anim. Sci. 2007, 85, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.A.; Forsberg, N.E. Influence of Stress and Nutrition on Cattle Immunity. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 105–149. [Google Scholar] [CrossRef] [PubMed]
- Cappellozza, B.I.; Bastos, J.P.; Cooke, R.F. Short Communication: Administration of an Appeasing Substance to Bos Indicus-Influenced Beef Cattle Improves Performance after Weaning and Carcass pH. Livest. Sci. 2020, 238, 104067. [Google Scholar] [CrossRef]
- Liberles, S.D. Mammalian Pheromones. Annu. Rev. Physiol. 2014, 76, 151–175. [Google Scholar] [CrossRef] [PubMed]
- Cappellozza, B.I.; Cooke, R.F. Administering an Appeasing Substance to Improve Performance, Neuroendocrine Stress Response, and Health of Ruminants. Animals 2022, 12, 2432. [Google Scholar] [CrossRef]
- Vieira, D.G.; Vedovatto, M.; Fernandes, H.J.; Lima, E.D.A.; D’Oliveira, M.C.; Curcio, U.D.A.; Ranches, J.; Ferreira, M.F.; Sousa, O.A.D.; Cappellozza, B.I.; et al. Effects of an Appeasing Substance Application at Weaning on Growth, Stress, Behavior, and Response to Vaccination of Bos Indicus Calves. Animals 2023, 13, 3033. [Google Scholar] [CrossRef]
- Carrasco-García, A.A.; Pardío-Sedas, V.T.; León-Banda, G.G.; Ahuja-Aguirre, C.; Paredes-Ramos, P.; Hernández-Cruz, B.C.; Murillo, V.V. Effect of Stress during Slaughter on Carcass Characteristics and Meat Quality in Tropical Beef Cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 1656–1665. [Google Scholar] [CrossRef]
- Marques, R.S.; Cooke, R.F.; Francisco, C.L.; Bohnert, D.W. Effects of Twenty-Four Hour Transport or Twenty-Four Hour Feed and Water Deprivation on Physiologic and Performance Responses of Feeder Cattle1. J. Anim. Sci. 2012, 90, 5040–5046. [Google Scholar] [CrossRef] [PubMed]
- Baszczak, J.A.; Grandin, T.; Gruber, S.L.; Engle, T.E.; Platter, W.J.; Laudert, S.B.; Schroeder, A.L.; Tatum, J.D. Effects of Ractopamine Supplementation on Behavior of British, Continental, and Brahman Crossbred Steers during Routine Handling. J. Anim. Sci. 2006, 84, 3410–3414. [Google Scholar] [CrossRef]
- Cooke, R.F.; Bohnert, D.W.; Cappellozza, B.I.; Mueller, C.J.; Delcurto, T. Effects of Temperament and Acclimation to Handling on Reproductive Performance of Bos Taurus Beef Females1. J. Anim. Sci. 2012, 90, 3547–3555. [Google Scholar] [CrossRef]
- Enríquez, D.H.; Ungerfeld, R.; Quintans, G.; Guidoni, A.L.; Hötzel, M.J. The Effects of Alternative Weaning Methods on Behaviour in Beef Calves. Livest. Sci. 2010, 128, 20–27. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Offical Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P.; Conrad, H.R.; Pierre, N.R.S. A Theoretically-Based Model for Predicting Total Digestible Nutrient Values of Forages and Concentrates. Anim. Feed. Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine (NASEM). Nutrient Requirements of Beef Cattle, 8th ed.; National Academic Press: Washington, DC, USA, 2016. [Google Scholar]
- Cooke, R.F.; Arthington, J.D. Concentrations of Haptoglobin in Bovine Plasma Determined by ELISA or a Colorimetric Method Based on Peroxidase Activity. Anim. Physiol. Nutr. 2013, 97, 531–536. [Google Scholar] [CrossRef]
- Demetriou, J.; Drewes, P.; Gin, J. Ceruloplasmin. In Clinical Chemistry; Harper and Row: Hagerstown, MD, USA, 1974; pp. 857–864. [Google Scholar]
- Cooke, R.F. Invited Paper: Nutritional and Management Considerations for Beef Cattle Experiencing Stress-Induced Inflammation. Prof. Anim. Sci. 2017, 33, 1–11. [Google Scholar] [CrossRef]
- Rosenbaum, M.J.; Edwards, E.A.; Sullivan, E.V. Micromethods for Respiratory Virus Sero-Epidemiology. Health Lab. Sci. 1970, 7, 42–52. [Google Scholar] [PubMed]
- Richeson, J.T.; Beck, P.A.; Gadberry, M.S.; Gunter, S.A.; Hess, T.W.; Hubbell, D.S.; Jones, C. Effects of On-Arrival versus Delayed Modified Live Virus Vaccination on Health, Performance, and Serum Infectious Bovine Rhinotracheitis Titers of Newly Received Beef Calves1. J. Anim. Sci. 2008, 86, 999–1005. [Google Scholar] [CrossRef]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association: Champaign, IL, USA, 2016. [Google Scholar]
- Ramos, E. Avaliação Da Qualidade de Carnes: Fundamentos e Metodologias; Universidade Federal de Vicosa: Viçosa, Brazil, 2007. [Google Scholar]
- Lemon, D.W. An Improved TBA Test for Rancidity; New Series Circular No. 51; Fisheries and Marine Service: Halifax, NS, Canada, 1975. [Google Scholar]
- Cooke, R.F.; Millican, A.; Brandão, A.P.; Schumaher, T.F.; De Sousa, O.A.; Castro, T.; Farias, R.S.; Cappellozza, B.I. Short Communication: Administering an Appeasing Substance to Bos Indicus-Influenced Beef Cattle at Weaning and Feedlot Entry. Animal 2020, 14, 566–569. [Google Scholar] [CrossRef]
- Colombo, E.A.; Cooke, R.F.; Brandão, A.P.; Wiegand, J.B.; Schubach, K.M.; Duff, G.C.; Gouvêa, V.N.; Cappellozza, B.I. Administering an Appeasing Substance to Optimize Performance and Health Responses in Feedlot Receiving Cattle. J. Anim. Sci. 2020, 98, skaa339. [Google Scholar] [CrossRef]
- Schubach, K.M.; Cooke, R.F.; Daigle, C.L.; Brandão, A.P.; Rett, B.; Ferreira, V.S.M.; Scatolin, G.N.; Colombo, E.A.; D’Souza, G.M.; Pohler, K.G.; et al. Administering an Appeasing Substance to Beef Calves at Weaning to Optimize Productive and Health Responses during a 42-d Preconditioning Program. J. Anim. Sci. 2020, 98, skaa269. [Google Scholar] [CrossRef]
- Kekan, P.M.; Ingole, S.D.; Sirsat, S.D.; Bharucha, S.V.; Kharde, S.D.; Nagvekar, A.S. The Role of Pheromones in Farm Animals—A Review. Agric. Rev. 2017, 38, 83–93. [Google Scholar] [CrossRef]
- Grus, W.E.; Shi, P.; Zhang, Y.-P.; Zhang, J. Dramatic Variation of the Vomeronasal Pheromone Receptor Gene Repertoire among Five Orders of Placental and Marsupial Mammals. Proc. Natl. Acad. Sci. USA 2005, 102, 5767–5772. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.G.; Geesink, G.H.; Thompson, V.F.; Koohmaraie, M.; Goll, D.E. Is Z-Disk Degradation Responsible for Postmortem Tenderization? J. Anim. Sci. 1995, 73, 1351–1367. [Google Scholar] [CrossRef]
- Hamoen, J.R.; Vollebregt, H.M.; Van Der Sman, R.G.M. Prediction of the Time Evolution of pH in Meat. Food Chem. 2013, 141, 2363–2372. [Google Scholar] [CrossRef] [PubMed]
- Deters, E.L.; Hansen, S.L. Invited Review: Linking Road Transportation with Oxidative Stress in Cattle and Other Species. Appl. Anim. Sci. 2020, 36, 183–200. [Google Scholar] [CrossRef]
Items | Periods | |||
---|---|---|---|---|
d 0 to 7 | d 8 to 14 | d 15 to 21 | d 22 to 150 | |
Composition, dry matter (DM) basis | ||||
Grass silage 1, % | 80.7 | 66.3 | 43.1 | 12.0 |
Sugar cane bagasse, % | 0.00 | 0.00 | 0.00 | 7.16 |
Ground corn, % | 10.0 | 24.9 | 37.7 | 59.7 |
Soybean hull, % | 6.00 | 4.14 | 13.5 | 14.3 |
Soybean meal, % | 1.60 | 2.48 | 2.70 | 2.60 |
Commercial mix 2, % | 1.70 | 2.24 | 3.00 | 4.29 |
Nutritional profile 3, (DM) basis | ||||
CP, % | 9.61 | 10.8 | 12.5 | 14.0 |
Ash, % | 7.89 | 6.93 | 5.81 | 4.10 |
EE, % | 2.27 | 3.02 | 3.74 | 4.86 |
NDF % | 63.4 | 53.5 | 45.9 | 32.5 |
ADF, % | 39.9 | 33.0 | 28.1 | 19.3 |
TDN 4, % | 53.9 | 59.0 | 66.1 | 73.9 |
Nem 5, Mcal/kg | 1.37 | 1.45 | 1.54 | 1.63 |
Neg 5, Mcal/kg | 0.79 | 0.86 | 0.96 | 1.04 |
Items | Treatments | SEM | p-Value | ||
---|---|---|---|---|---|
Saline | BAS | Treatment | Treatment × Day | ||
Body weight, kg | 0.88 | 0.29 | |||
d 0 | 198 | 198 | 3.67 | ||
d 6 | 214 | 211 | 3.67 | ||
d 15 | 231 | 232 | 3.67 | ||
d 45 | 275 | 280 | 3.72 | ||
d 150 | 420 | 418 | 3.67 | ||
Average daily gain, kg/d | |||||
d 0 to 6 | 2.62 | 2.19 | 0.27 | 0.27 | |
d 0 to 15 | 2.18 | 2.29 | 0.14 | 0.58 | |
d 0 to 45 | 1.70 | 1.84 | 0.09 | 0.27 | |
d 0 to 150 | 1.48 | 1.47 | 0.04 | 0.82 | |
d 6 to 15 | 1.88 | 2.35 | 0.16 | 0.05 | |
d 6 to 45 | 1.56 | 1.79 | 0.08 | 0.05 | |
d 6 to 150 | 1.43 | 1.44 | 0.04 | 0.93 | |
d 15 to 45 | 1.46 | 1.63 | 0.10 | 0.26 | |
d 15 to 150 | 1.40 | 1.37 | 0.04 | 0.61 | |
d 45 to 150 | 1.39 | 1.32 | 0.04 | 0.31 |
Items 1 | Treatments | SEM | p-Value | ||
---|---|---|---|---|---|
Saline | BAS | Treatment | Treatment × Day | ||
IBR | |||||
Titers, log2 | <0.01 | 0.03 | |||
d 0 | 0.00 | 0.00 | 0.35 | ||
d 15 | 1.50 a | 3.17 b | 0.35 | ||
d 45 | 2.17 a | 3.84 b | 0.35 | ||
Seroconversion, % total | 0.12 | 0.09 | |||
d 0 | 0.00 | 0.00 | 8.60 | ||
d 15 | 66.7 x | 100 y | 8.60 | ||
d 45 | 100 | 100 | 8.60 | ||
PI3 | |||||
Titers, log2 | 0.10 | 0.09 | |||
d 0 | 0.32 | 0.57 | 0.41 | ||
d 15 | 3.59 | 4.50 | 0.41 | ||
d 45 | 2.87 x | 4.67 y | 0.41 | ||
Seroconversion, % total | 75.0 | 100 | 13.0 | 0.21 | 0.34 |
Items | Treatments | SEM | p-Value | ||
---|---|---|---|---|---|
Saline | BAS | Treatment | Treatment × Day | ||
Entry Score, 1–3 | 0.02 | <0.01 | |||
d 0 | 1.34 | 1.40 | 0.07 | ||
d 2 | 1.16 | 1.08 | 0.07 | ||
d 6 | 1.46 a | 1.17 b | 0.07 | ||
d 15 | 1.50 a | 1.17 b | 0.07 | ||
d 45 | 1.63 a | 1.31 b | 0.07 | ||
d 150 | 1.30 | 1.45 | 0.07 | ||
Chute score, 1–5 | 0.01 | 0.08 | |||
d 0 | 1.71 | 1.69 | 0.16 | ||
d 2 | 2.10 x | 1.69 y | 0.16 | ||
d 6 | 2.12 x | 1.47 y | 0.16 | ||
d 15 | 1.97 x | 1.46 y | 0.16 | ||
d 45 | 1.85 x | 1.45 y | 0.16 | ||
d 150 | 1.86 x | 1.47 y | 0.16 | ||
Exit score, 1–3 | 0.01 | 0.05 | |||
d 0 | 1.69 | 1.60 | 0.11 | ||
d 2 | 1.63 a | 1.30 b | 0.11 | ||
d 6 | 1.79 a | 1.40 b | 0.11 | ||
d 15 | 1.76 a | 1.25 b | 0.11 | ||
d 45 | 1.77 | 1.61 | 0.11 | ||
d 150 | 1.62 | 1.55 | 0.11 |
Items | Treatments | SEM | p-Value | |
---|---|---|---|---|
Saline | BAS | |||
min/day | ||||
Walking | 37.8 | 53.1 | 2.34 | <0.01 |
Drinking water | 9.52 | 11.9 | 0.81 | 0.04 |
Eating | 126 | 145 | 4.09 | <0.01 |
Lying | 115 | 119 | 4.34 | 0.50 |
Lying ruminating | 57.1 | 67.9 | 4.73 | 0.11 |
Total lying | 172 | 187 | 6.45 | 0.10 |
Standing idle | 207 | 170 | 5.74 | <0.01 |
Standing ruminating | 15.6 | 14.9 | 2.22 | 0.82 |
Total standing | 223 | 185 | 7.25 | <0.01 |
Total ruminating | 72.8 | 82.8 | 4.11 | 0.09 |
Playing | 5.91 | 4.81 | 0.92 | 0.40 |
Seeking | 4.64 | 1.30 | 0.32 | <0.01 |
Vocalizing | 9.56 | 5.96 | 1.54 | 0.10 |
% of the activities | ||||
Walking | 6.61 | 11.1 | 0.45 | <0.01 |
Drinking water | 1.55 | 1.95 | 0.13 | 0.03 |
Eating | 20.5 | 23.3 | 0.69 | <0.01 |
Lying | 19.4 | 19.8 | 0.81 | 0.69 |
Lying ruminating | 9.13 | 10.5 | 0.74 | 0.20 |
Total lying | 28.6 | 30.3 | 1.13 | 0.26 |
Standing idle | 36.5 | 28.7 | 1.17 | <0.01 |
Standing ruminating | 2.43 | 2.28 | 0.35 | 0.76 |
Total standing | 38.9 | 31.0 | 1.39 | <0.01 |
Total ruminating | 11.6 | 12.8 | 0.65 | 0.20 |
Playing | 0.94 | 0.75 | 0.14 | 0.36 |
Seeking | 0.93 | 0.23 | 0.06 | <0.01 |
Vocalizing | 2.05 | 1.32 | 0.45 | 0.26 |
Items 1 | Treatments | SEM | p-Value | |
---|---|---|---|---|
Saline | BAS | |||
Carcass traits | ||||
Hot carcass weight, kg | 220.54 | 221.33 | 3.45 | 0.87 |
Carcass yield, % | 51.75 | 51.92 | 0.27 | 0.67 |
pH (24 h) | 5.77 | 5.76 | 0.06 | 0.94 |
Temperature (24 h), °C | 7.60 | 8.02 | 0.19 | 0.11 |
Fat thickness, mm | 6.99 | 7.99 | 0.45 | 0.13 |
Ribeye area, cm2 | 71.9 | 72.8 | 1.91 | 0.76 |
Meat quality traits | ||||
WBSF, kgF/cm2 | 7.20 | 6.91 | 0.47 | 0.68 |
Marbling score, points | 430.0 | 440 | 15.8 | 0.66 |
Fat color | ||||
L* | 65.0 | 65.4 | 0.51 | 0.57 |
a* | 6.57 | 6.95 | 0.27 | 0.34 |
b* | 11.4 | 11.5 | 0.33 | 0.84 |
Meat color | ||||
L* | 39.9 | 39.3 | 0.84 | 0.60 |
a* | 18.4 | 18.1 | 0.66 | 0.77 |
b* | 8.95 | 8.33 | 0.52 | 0.41 |
Exudate loss,% | 4.90 | 4.83 | 0.51 | 0.93 |
Cooking loss,% | 21.7 | 25.6 | 1.67 | 0.12 |
MFI | 89.2 | 97.9 | 3.54 | 0.10 |
TBARS, mg/g | 9.19 | 9.09 | 0.03 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, D.G.; Vedovatto, M.; Ferreira, M.F.; Ranches, J.; Cappellozza, B.I.; de Sousa, O.A.; Canuto, N.; de Nadai Bonin Gomes, M.; Fernandes, H.J. Appeasing Substance Administration at Feedlot Entry Impacted Temperament, Pen Behavior, Immunocompetence, and Meat Quality of Beef Heifers. Animals 2024, 14, 3517. https://doi.org/10.3390/ani14233517
Vieira DG, Vedovatto M, Ferreira MF, Ranches J, Cappellozza BI, de Sousa OA, Canuto N, de Nadai Bonin Gomes M, Fernandes HJ. Appeasing Substance Administration at Feedlot Entry Impacted Temperament, Pen Behavior, Immunocompetence, and Meat Quality of Beef Heifers. Animals. 2024; 14(23):3517. https://doi.org/10.3390/ani14233517
Chicago/Turabian StyleVieira, Douglas Gomes, Marcelo Vedovatto, Matheus Fellipe Ferreira, Juliana Ranches, Bruno Ieda Cappellozza, Osvaldo Alex de Sousa, Nelson Canuto, Marina de Nadai Bonin Gomes, and Henrique Jorge Fernandes. 2024. "Appeasing Substance Administration at Feedlot Entry Impacted Temperament, Pen Behavior, Immunocompetence, and Meat Quality of Beef Heifers" Animals 14, no. 23: 3517. https://doi.org/10.3390/ani14233517
APA StyleVieira, D. G., Vedovatto, M., Ferreira, M. F., Ranches, J., Cappellozza, B. I., de Sousa, O. A., Canuto, N., de Nadai Bonin Gomes, M., & Fernandes, H. J. (2024). Appeasing Substance Administration at Feedlot Entry Impacted Temperament, Pen Behavior, Immunocompetence, and Meat Quality of Beef Heifers. Animals, 14(23), 3517. https://doi.org/10.3390/ani14233517