Nutraceutical Supplement Mitigates Insulin Resistance in Horses with a History of Insulin Dysregulation During a Challenge with a High-Starch Diet
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Diets, and Housing
2.3. Experimental Procedures
Combined Glucose–Insulin Tolerance Test (CGIT)
2.4. Sample Analyses
Whole Blood Glucose and Plasma Insulin Concentrations
2.5. Data Analysis
Analysis of CGIT Results
2.6. Statistical Analysis
3. Results
3.1. Body Weight, Body Condition Score, and Age
3.2. Digital Pulse Scores
3.3. Combined Glucose Insulin Tolerance Test
4. Discussion
4.1. Laminitis and Insulin Dysregulation
4.2. Nutraceuticals
4.3. Dietary Starch Challenge Model
4.4. Hyperinsulinemia and Insulin Sensitivity
4.5. Dietary Starch Challenge Model and Grass Pasture Non-Structural Carbohydrates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marcato, P.S.; Perillo, A. Equine laminitis, new insights into the pathogenesis: A review. Large Anim. Rev. 2020, 26, 353–363. [Google Scholar]
- Mitchell, C.F.; Fugler, L.A.; Eades, S.C. The management of equine acute laminitis. Vet. Med. Res. Rep. 2014, 6, 39–47. [Google Scholar]
- Treiber, K.H.; Kronfeld, D.S.; Geor, R.J. Insulin resistance in equids: Possible role in laminitis. J. Nutr. 2006, 136 (Suppl. S7), 2094S–2098S. [Google Scholar] [CrossRef] [PubMed]
- de Laat, M.A.; Sillence, M.N.; Reiche, D.B. Phenotypic, hormonal, and clinical characteristics of equine endocrinopathic laminitis. J. Vet. Intern. Med. 2019, 33, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Karikoski, N.; Horn, I.; McGowan, T.; McGowan, C. The prevalence of endocrinopathic laminitis among horses presented for laminitis at a first-opinion/referral equine hospital. Domest. Anim. Endocrinol. 2011, 41, 111–117. [Google Scholar] [CrossRef]
- de Laat, M.A.; McGree, J.M.; Sillence, M.N. Equine hyperinsulinemia: Investigation of the enteroinsular axis during insulin dysregulation. Am. J. Physiol. -Endocrinol. Metab. 2016, 310, E61–E72. [Google Scholar] [CrossRef]
- Frank, N.; Tadros, E.M. Insulin dysregulation. Equine Vet. J. 2014, 46, 103–112. [Google Scholar] [CrossRef]
- Venugopal, C.; Eades, S.; Holmes, E.; Beadle, R. Insulin resistance in equine digital vessel rings: An in vitro model to study vascular dysfunction in equine laminitis. Equine Vet. J. 2011, 43, 744–749. [Google Scholar] [CrossRef]
- Patterson-Kane, J.; Karikoski, N.; McGowan, C. Paradigm shifts in understanding equine laminitis. Vet. J. 2018, 231, 33–40. [Google Scholar] [CrossRef]
- Kullmann, A.; Weber, P.; Bishop, J.; Roux, T.; Norby, B.; Burns, T.; McCutcheon, L.; Belknap, J.K.; Geor, R. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues. Equine Vet. J. 2016, 48, 626–632. [Google Scholar] [CrossRef]
- Morgan, R.A.; Keen, J.A.; Walker, B.R.; Hadoke, P.W. Vascular dysfunction in horses with endocrinopathic laminitis. PLoS ONE 2016, 11, e0163815. [Google Scholar] [CrossRef] [PubMed]
- Quinn, R.W.; Burk, A.O.; Hartsock, T.G.; Petersen, E.D.; Whitley, N.C.; Treiber, K.H.; Boston, R.C. Insulin Sensitivity in Thoroughbred Geldings: Effect of Weight Gain, Diet, and Exercise on Insulin Sensitivity in Thoroughbred Geldings. J. Equine Vet. Sci. 2008, 28, 728–738. [Google Scholar] [CrossRef]
- Pratt, S.E.; Geor, R.J.; McCutcheon, L.J. Effects of dietary energy source and physical conditioning on insulin sensitivity and glucose tolerance in standardbred horses. Equine Vet. J. Suppl. 2006, 38, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M.; Boston, R.C.; Stefanovski, D.; Kronfeld, D.S.; Harris, P.A. Obesity and diet affect glucose dynamics and insulin sensitivity in Thoroughbred geldings. J. Anim. Sci. 2003, 81, 2333–2342. [Google Scholar] [CrossRef] [PubMed]
- Bamford, N.; Potter, S.; Baskerville, C.; Harris, P.; Bailey, S. Effect of increased adiposity on insulin sensitivity and adipokine concentrations in different equine breeds adapted to cereal-rich or fat-rich meals. Vet. J. 2016, 214, 14–20. [Google Scholar] [CrossRef]
- Treiber, K.H.; Kronfeld, D.S.; Hess, T.M.; Byrd, B.M.; Splan, R.K.; Staniar, W.B. Evaluation of genetic and metabolic predispositions and nutritional risk factors for pasture-associated laminitis in ponies. J. Am. Vet. Med. Assoc. 2006, 228, 1538–1545. [Google Scholar] [CrossRef]
- Suagee, J.; Corl, B.; Hulver, M.; McCutcheon, L.; Geor, R. Effects of hyperinsulinemia on glucose and lipid transporter expression in insulin-sensitive horses. Domest. Anim. Endocrinol. 2011, 40, 173–181. [Google Scholar] [CrossRef]
- Macon, E.L.; Harris, P.; Bailey, S.; Caldwell Barker, A.; Adams, A. Identifying possible thresholds for nonstructural carbohydrates in the insulin dysregulated horse. Equine Vet. J. 2023, 55, 1069–1077. [Google Scholar] [CrossRef]
- DeBoer, M.L.; Hathaway, M.R.; Kuhle, K.J.; Weber, P.S.D.; Reiter, A.S.; Sheaffer, C.C.; Wells, M.S.; Martinson, K.L. Glucose and Insulin Response of Horses Grazing Alfalfa, Perennial Cool-Season Grass, and Teff Across Seasons. J. Equine Vet. Sci. 2018, 68, 33–38. [Google Scholar] [CrossRef]
- Tomal, A.; Szłapka-Kosarzewska, J.; Mironiuk, M.; Michalak, I.; Marycz, K. Arthrospira platensis enriched with Cr (III), Mg (II), and Mn (II) ions improves insulin sensitivity and reduces systemic inflammation in equine metabolic affected horses. Front. Endocrinol. 2024, 15, 1382844. [Google Scholar] [CrossRef]
- Fresa, K.; Catandi, G.D.; Whitcomb, L.; Gonzalez-Castro, R.A.; Chicco, A.J.; Carnevale, E.M. Adiposity in mares induces insulin dysregulation and mitochondrial dysfunction which can be mitigated by nutritional intervention. Sci. Rep. 2024, 14, 13992. [Google Scholar] [CrossRef] [PubMed]
- Penlioglou, T.; Papanas, N. Nutraceuticals for Insulin Resistance and Type 2 Diabetes Mellitus. In Nutraceuticals and Cardiovascular Disease: An Evidence-Based Approach for Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2021; pp. 107–115. [Google Scholar]
- Vervuert, I.; Stratton-Phelps, M. The safety and efficacy in horses of certain nutraceuticals that claim to have health benefits. Vet. Clin. Equine Pract. 2021, 37, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Chameroy, K.; Frank, N.; Elliott, S.; Boston, R. Effects of a supplement containing chromium and magnesium on morphometric measurements, resting glucose, insulin concentrations and insulin sensitivity in laminitic obese horses. Equine Vet. J. 2011, 43, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Respondek, F.; Myers, K.; Smith, T.; Wagner, A.; Geor, R. Dietary supplementation with short-chain fructo-oligosaccharides improves insulin sensitivity in obese horses. J. Anim. Sci. 2011, 89, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Hess, T.M.; Rexford, J.; Hansen, D.K.; Ahrens, N.S.; Harris, M.; Engle, T.; Ross, T.; Allen, K.G. Effects of Ω-3 (n-3) fatty acid supplementation on insulin sensitivity in horses. J. Equine Vet. Sci. 2013, 33, 446–453. [Google Scholar] [CrossRef]
- Tinworth, K.D.; Harris, P.A.; Sillence, M.N.; Noble, G.K. Potential treatments for insulin resistance in the horse: A comparative multi-species review. Vet. J. 2010, 186, 282–291. [Google Scholar] [CrossRef]
- Hosseinzadeh, P.; Javanbakht, M.H.; Mostafavi, S.-A.; Djalali, M.; Derakhshanian, H.; Hajianfar, H.; Bahonar, A.; Djazayery, A. Brewer’s yeast improves glycemic indices in type 2 diabetes mellitus. Int. J. Prev. Med. 2013, 4, 1131. [Google Scholar]
- Spears, J.W.; Lloyd, K.E.; Siciliano, P.; Pratt-Phillips, S.; Goertzen, E.W.; McLeod, S.J.; Moore, J.; Krafka, K.; Hyda, J.; Rounds, W. Chromium propionate increases insulin sensitivity in horses following oral and intravenous carbohydrate administration. J. Anim. Sci. 2020, 98, skaa095. [Google Scholar] [CrossRef]
- Respondek, F.; Goachet, A.G.; Julliand, V. Effects of dietary short-chain fructooligosaccharides on the intestinal microflora of horses subjected to a sudden change in diet. J. Anim. Sci. 2008, 86, 316–323. [Google Scholar] [CrossRef]
- Abboud, K.Y.; Reis, S.K.; Martelli, M.E.; Zordão, O.P.; Tannihão, F.; de Souza, A.Z.Z.; Assalin, H.B.; Guadagnini, D.; Rocha, G.Z.; Saad, M.J.A. Oral glutamine supplementation reduces obesity, pro-inflammatory markers, and improves insulin sensitivity in DIO wistar rats and reduces waist circumference in overweight and obese humans. Nutrients 2019, 11, 536. [Google Scholar] [CrossRef]
- Sinha, S.; Haque, M.; Lugova, H.; Kumar, S. The effect of omega-3 fatty acids on insulin resistance. Life 2023, 13, 1322. [Google Scholar] [CrossRef] [PubMed]
- Gray, B.; Swick, J.; Ronnenberg, A.G. Vitamin E and adiponectin: Proposed mechanism for vitamin E-induced improvement in insulin sensitivity. Nutr. Rev. 2011, 69, 155–161. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Horses: Sixth Revised Edition; The National Academies Press: Washington, DC, USA, 2007; 360p. [Google Scholar]
- Henneke, D.; Potter, G.; Kreider, J.; Yeates, B. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Meier, A.; de Laat, M.; Pollitt, C.; Walsh, D.; McGree, J.; Reiche, D.B.; von Salis-Soglio, M.; Wells-Smith, L.; Mengeler, U.; Salas, D.M. A “modified Obel” method for the severity scoring of (endocrinopathic) equine laminitis. PeerJ 2019, 7, e7084. [Google Scholar] [CrossRef] [PubMed]
- Eiler, H.; Frank, N.; Andrews, F.M.; Oliver, J.W.; Fecteau, K.A. Physiologic assessment of blood glucose homeostasis via combined intravenous glucose and insulin testing in horses. Am. J. Vet. Res. 2005, 66, 1598–1604. [Google Scholar] [CrossRef]
- Loos, C.M.M.; Dorsch, S.C.; Elzinga, S.E.; Brewster-Barnes, T.; Vanzant, E.S.; Adams, A.A.; Urschel, K.L. A high protein meal affects plasma insulin concentrations and amino acid metabolism in horses with equine metabolic syndrome. Vet. J. 2019, 251, 105341. [Google Scholar] [CrossRef]
- Loos, C.M.; Urschel, K.L.; Vanzant, E.S.; Oberhaus, E.L.; Bohannan, A.D.; Klotz, J.L.; McLeod, K.R. Effects of bromocriptine on glucose and insulin dynamics in normal and insulin dysregulated horses. Front. Vet. Sci. 2022, 9, 889888. [Google Scholar] [CrossRef]
- Frank, N.; Bailey, S.; Bertin, F.-R.; Burns, T.; de Laat, M.; Durham, A.; Kritchevsky, J.; Menzies-Gow, N.; Recommendations for the Diagnosis and Management of Equine Metabolic Syndrome (EMS). Equine Endocrinology Group. 2022. Available online: https://equineendocrinologygroup.org/ (accessed on 18 November 2024).
- Grenager, N.S. Endocrinopathic laminitis. Vet. Clin. Equine Pract. 2021, 37, 619–638. [Google Scholar] [CrossRef]
- Sandow, C.; Fugler, L.; Leise, B.; Riggs, L.; Monroe, W.; Totaro, N.; Belknap, J.; Eades, S. Ex vivo effects of insulin on the structural integrity of equine digital lamellae. Equine Vet. J. 2019, 51, 131–135. [Google Scholar] [CrossRef]
- de Laat, M.d.; McGowan, C.; Sillence, M.; Pollitt, C. Equine laminitis: Induced by 48 h hyperinsulinaemia in Standardbred horses. Equine Vet. J. 2010, 42, 129–135. [Google Scholar] [CrossRef]
- Burns, T.; Watts, M.; Weber, P.; McCutcheon, L.; Geor, R.; Belknap, J. Distribution of insulin receptor and insulin-like growth factor-1 receptor in the digital laminae of mixed-breed ponies: An immunohistochemical study. Equine Vet. J. 2013, 45, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Rahnama, S.; Vathsangam, N.; Spence, R.; Medina-Torres, C.E.; Pollitt, C.C.; de Laat, M.A.; Bailey, S.R.; Sillence, M.N. Effects of an anti-IGF-1 receptor monoclonal antibody on laminitis induced by prolonged hyperinsulinaemia in Standardbred horses. PLoS ONE 2020, 15, e0239261. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.; Burns, T.; Hegedus, O.; Watts, M.; Weber, P.; Woltman, K.; Geor, R.; McCutcheon, L.; Eades, S.; Mathes, L. Lamellar events related to insulin-like growth factor-1 receptor signalling in two models relevant to endocrinopathic laminitis. Equine Vet. J. 2017, 49, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, T.C.; Tipton, T.; McFarlane, D. Neutrophil and cytokine dysregulation in hyperinsulinemic obese horses. Vet. Immunol. Immunopathol. 2012, 145, 283–289. [Google Scholar] [CrossRef]
- Jayathilake, W.; Furr, M.; Risco, C.; Lacombe, V.A. Equine insulin dysregulation causes tissue specific alterations of proinflammatory cytokines and acute phase proteins in a NF-kB independent manner. Vet. Immunol. Immunopathol. 2022, 253, 110500. [Google Scholar] [CrossRef]
- Suagee, J.K.; Corl, B.A.; Geor, R.J. A potential role for pro-inflammatory cytokines in the development of insulin resistance in horses. Animals 2012, 2, 243–260. [Google Scholar] [CrossRef]
- Tadros, E.M.; Frank, N.; Donnell, R.L. Effects of equine metabolic syndrome on inflammatory responses of horses to intravenous lipopolysaccharide infusion. Am. J. Vet. Res. 2013, 74, 1010–1019. [Google Scholar] [CrossRef]
- Davì, G.; Santilli, F.; Patrono, C. Nutraceuticals in diabetes and metabolic syndrome. Cardiovasc. Ther. 2010, 28, 216–226. [Google Scholar] [CrossRef]
- Nimesh, S.; Ashwlayan, V.D. Nutraceuticals in the management of diabetes mellitus. Pharm. Pharmacol. Int. J. 2018, 6, 114–120. [Google Scholar]
- McGowan, C.M.; Dugdale, A.H.; Pinchbeck, G.L.; Argo, C.M. Dietary restriction in combination with a nutraceutical supplement for the management of equine metabolic syndrome in horses. Vet. J. 2013, 196, 153–159. [Google Scholar] [CrossRef]
- Marycz, K.; Moll, E.; Grzesiak, J. Influence of functional nutrients on insulin resistance in horses with equine metabolic syndrome. Pak. Vet. J. 2014, 34, 189–192. [Google Scholar]
- O’Connor, C.; Lawrence, L.; Lawrence, A.S.; Janicki, K.; Warren, L.; Hayes, S. The effect of dietary fish oil supplementation on exercising horses. J. Anim. Sci. 2004, 82, 2978–2984. [Google Scholar] [CrossRef] [PubMed]
- King, S.; Abughazaleh, A.; Webel, S.; Jones, K. Circulating fatty acid profiles in response to three levels of dietary omega-3 fatty acid supplementation in horses. J. Anim. Sci. 2008, 86, 1114–1123. [Google Scholar] [CrossRef]
- Elzinga, S.E.; Betancourt, A.; Stewart, J.C.; Altman, M.H.; Barker, V.D.; Muholland, M.; Bailey, S.; Brennan, K.M.; Adams, A.A. Effects of docosahexaenoic acid–rich microalgae supplementation on metabolic and inflammatory parameters in horses with equine metabolic syndrome. J. Equine Vet. Sci. 2019, 83, 102811. [Google Scholar] [CrossRef]
- Hoffman, R.; Kayser, J.; Lampley, R.; Haffner, J. Dietary fish oil supplementation affects plasma fatty acids and glycemic response but not insulin sensitivity in horses. J. Equine Vet. Sci. 2011, 31, 252–253. [Google Scholar] [CrossRef]
- Brennan, K.M.; Graugnard, D.E.; Spry, M.L.; Brewster-Barnes, T.; Smith, A.C.; Schaeffer, R.E.; Urschel, K.L. Effects of a docosahexaenoic acid–rich microalgae nutritional product on insulin sensitivity after prolonged dexamethasone treatment in healthy mature horses. Am. J. Vet. Res. 2015, 76, 889–896. [Google Scholar] [CrossRef]
- Dollet, L.; Kuefner, M.; Caria, E.; Rizo-Roca, D.; Pendergrast, L.; Abdelmoez, A.M.; Karlsson, H.K.; Bjrnholm, M.; Dalbram, E.; Treebak, J.T. Glutamine regulates skeletal muscle immunometabolism in type 2 diabetes. Diabetes 2022, 71, 624–636. [Google Scholar] [CrossRef] [PubMed]
- da Costa Cordeiro, H.E.C.; de Oliveira, D.F.; Hunka, M.M.; Manso Filho, H.C. Influence of Glutamine and Glutamate Supplementation in the Blood Levels of Horses. Acta Sci. Vet. 2019, 47, 1–7. [Google Scholar]
- De Siqueira, R.F.; Filho, H.C.M.; Fernandes, W.R. Glutamine supplementation affects Th1 and Th2 cell populations in endurance horses. Comp. Exerc. Physiol. 2020, 16, 259–266. [Google Scholar] [CrossRef]
- Fagan, M.M.; Harris, P.; Adams, A.; Pazdro, R.; Krotky, A.; Call, J.; Duberstein, K.J. Form of vitamin E supplementation affects oxidative and inflammatory response in exercising horses. J. Equine Vet. Sci. 2020, 91, 103103. [Google Scholar] [CrossRef]
- Garcia, E.I.C.; Elghandour, M.M.; Khusro, A.; Alcala-Canto, Y.; Tirado-González, D.N.; Barbabosa-Pliego, A.; Salem, A.Z. Dietary supplements of vitamins E, C, and β-carotene to reduce oxidative stress in horses: An overview. J. Equine Vet. Sci. 2022, 110, 103863. [Google Scholar] [CrossRef] [PubMed]
- Asbaghi, O.; Nazarian, B.; Yousefi, M.; Anjom-Shoae, J.; Rasekhi, H.; Sadeghi, O. Effect of vitamin E intake on glycemic control and insulin resistance in diabetic patients: An updated systematic review and meta-analysis of randomized controlled trials. Nutr. J. 2023, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Weyer, C.; Funahashi, T.; Tanaka, S.; Hotta, K.; Matsuzawa, Y.; Pratley, R.E.; Tataranni, P.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 2001, 86, 1930–1935. [Google Scholar] [CrossRef] [PubMed]
- Kearns, C.F.; McKeever, K.H.; Roegner, V.; Brady, S.M.; Malinowski, K. Adiponectin and leptin are related to fat mass in horses. Vet. J. 2006, 172, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Wray, H.; Elliott, J.; Bailey, S.R.; Harris, P.A.; Menzies-Gow, N.J. Plasma concentrations of inflammatory markers in previously laminitic ponies. Equine Vet. J. 2013, 45, 546–551. [Google Scholar] [CrossRef]
- Chen, W.Y.; Chen, C.J.; Liu, C.H.; Mao, F. Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/HlJ diabetic mice. Diabetes Obes. Metab. 2009, 11, 293–303. [Google Scholar] [CrossRef]
- Yanni, A.E.; Stamataki, N.S.; Konstantopoulos, P.; Stoupaki, M.; Abeliatis, A.; Nikolakea, I.; Perrea, D.; Karathanos, V.T.; Tentolouris, N. Controlling type-2 diabetes by inclusion of Cr-enriched yeast bread in the daily dietary pattern: A randomized clinical trial. Eur. J. Nutr. 2018, 57, 259–267. [Google Scholar] [CrossRef]
- Pagan, J.; Jackson, S.G.; Duren, S.E. The effect of chromium supplementation on metabolic response to exercise in thoroughbred horses. Equine Nutr. Physiol. Soc. 1995, 14, 96–101. [Google Scholar]
- Treiber, K.H.; Boston, R.C.; Kronfeld, D.S.; Staniar, W.B.; Harris, P.A. Insulin resistance and compensation in Thoroughbred weanlings adapted to high-glycemic meals. J. Anim. Sci. 2005, 83, 2357–2364. [Google Scholar] [CrossRef]
- Meier, A.; Reiche, D.; de Laat, M.; Pollitt, C.; Walsh, D.; Sillence, M. The sodium-glucose co-transporter 2 inhibitor velagliflozin reduces hyperinsulinemia and prevents laminitis in insulin-dysregulated ponies. PLoS ONE 2018, 13, e0203655. [Google Scholar] [CrossRef]
- Meier, A.D.; de Laat, M.A.; Reiche, D.B.; Pollitt, C.C.; Walsh, D.M.; McGree, J.M.; Sillence, M.N. The oral glucose test predicts laminitis risk in ponies fed a diet high in nonstructural carbohydrates. Domest. Anim. Endocrinol. 2018, 63, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Kronfeld, D.; Treiber, K.; Hess, T.; Boston, R. Insulin resistance in the horse: Definition, detection, and dietetics. J. Anim. Sci. 2005, 83 (Suppl. S13), E22–E31. [Google Scholar] [CrossRef]
- Toth, F.; Frank, N.; Martin-Jimenez, T.; Elliott, S.B.; Geor, R.J.; Boston, R.C. Measurement of C-peptide concentrations and responses to somatostatin, glucose infusion, and insulin resistance in horses. Equine Vet. J. 2010, 42, 149–155. [Google Scholar] [CrossRef]
- Asplin, K.E.; Sillence, M.N.; Pollitt, C.C.; McGowan, C.M. Induction of laminitis by prolonged hyperinsulinaemia in clinically normal ponies. Vet. J. 2007, 174, 530–535. [Google Scholar] [CrossRef]
- Wineland, N. Lameness and Laminitis in US Horses; N Series 32790; United States Department of Agriculture, National Animal Health Monitoring System: Wasington, DC, USA, 2000. [Google Scholar]
- Coleman, M.C.; Belknap, J.K.; Eades, S.C.; Galantino-Homer, H.L.; Hunt, R.J.; Geor, R.J.; McCue, M.E.; McIlwraith, C.W.; Moore, R.M.; Peroni, J.F. Case-control study of risk factors for pasture-and endocrinopathy-associated laminitis in North American horses. J. Am. Vet. Med. Assoc. 2018, 253, 470–478. [Google Scholar] [CrossRef]
- Longland, A.C.; Byrd, B.M. Pasture nonstructural carbohydrates and equine laminitis. J. Nutr. 2006, 136, 2099S–2102S. [Google Scholar] [CrossRef] [PubMed]
- Van Eps, A.; Pollitt, C. Equine laminitis induced with oligofructose. Equine Vet. J. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Carter, R.A.; Treiber, K.H.; Geor, R.J.; Douglass, L.; Harris, P.A. Prediction of incipient pasture-associated laminitis from hyperinsulinaemia, hyperleptinaemia and generalised and localised obesity in a cohort of ponies. Equine Vet. J. 2009, 41, 171–178. [Google Scholar] [CrossRef]
- Harrison, R.; Murray, J. A preliminary study of grazing intakes of ponies with and without a history of laminitis. Livest. Sci. 2016, 186, 2–5. [Google Scholar] [CrossRef]
- Allen, E.; Sheaffer, C.; Martinson, K. Forage nutritive value and preference of cool-season grasses under horse grazing. Agron. J. 2013, 105, 679–684. [Google Scholar] [CrossRef]
- Jensen, K.B.; Harrison, P.; Chatterton, N.J.; Bushman, B.S.; Creech, J.E. Seasonal trends in nonstructural carbohydrates in cool-and warm-season grasses. Crop Sci. 2014, 54, 2328–2340. [Google Scholar] [CrossRef]
- Bott, R.C.; Greene, E.A.; Koch, K.; Martinson, K.L.; Siciliano, P.D.; Williams, C.; Trottier, N.L.; Burk, A.; Swinker, A. Production and environmental implications of equine grazing. J. Equine Vet. Sci. 2013, 33, 1031–1043. [Google Scholar] [CrossRef]
Nutrient | Concentrate | Grass Hay |
---|---|---|
% of DM | ||
DE (Mcal/kg) | 3.4 | 2.07 |
Crude protein | 16.5 | 10.1 |
Acid detergent fiber | 9.1 | 36.8 |
Neutral detergent fiber | 20.1 | 62.4 |
Water-soluble carbohydrates | 7.8 | 11.2 |
Ethanol-soluble carbohydrates | 6.4 | 6.9 |
Starch | 35.1 | 2.2 |
Non-fiber Carbohydrates | 53.8 | 17.5 |
Calcium | 1.2 | 0.38 |
Phosphorus | 1.18 | 0.34 |
Magnesium | 0.22 | 0.17 |
Potassium | 1 | 1.84 |
Sodium | 0.286 | 0.017 |
PPM | ||
Iron | 158 | 201 |
Zinc | 163 | 18 |
Copper | 34 | 5 |
Manganese | 109 | 112 |
Molybdenum | 2 | 1.6 |
Phenotypic Measure | Placebo | Nutraceutical | SEM | p-Values |
---|---|---|---|---|
Initial body weight (kg) | 514.8 | 575.9 | 22.42 | 0.08 |
Delta body weight (kg) a | 18.1 | 16.1 | 3.07 | 0.65 |
Initial body condition score | 6.5 | 7.2 | 0.52 | 0.41 |
Delta body condition score a | −0.1 | −0.4 | 0.24 | 0.27 |
Age (years) * | 18.9 | 16.8 | 1.21 | 0.13 |
Initial CGIT measures | ||||
Delta glucose conc. 45 min (mg/dL) | −18.5 ± 12.3 | −21.1 ± 17.7 | - | - |
t = 75 insulin (µIU/mL) | 36.5 ± 20.90 | 33.5 ± 18.83 | - | - |
Time in positive phase (min) | 29.5 ± 6.48 | 30.2 ± 9.54 | - | - |
Glucose clearance rates (mg/dL/min) | 4.5 ± 1.06 | 4.8 ± 1.61 | - | - |
Week 1 | Week 2 | Week 3 | Week 4 | p-Values | |||
---|---|---|---|---|---|---|---|
Treat | Week | Treat*Week | |||||
Placebo | 0.33 ± 0.11 a | 0.47 ± 0.15 b | 0.50 ± 0.20 b | 0.34 ± 0.20 ab | 0.85 | 0.006 | 0.32 |
Nutraceutical | 0.16 ± 0.11 a | 0.47 ± 0.15 b | 0.61 ± 0.20 b | 0.56 ± 0.19 ab |
p-Values | ||||||
---|---|---|---|---|---|---|
Placebo | Nutraceutical | SEM | Treat | Covariate | Independence of Covariate a | |
Basal glucose conc. (mg/dL) | 98.0 | 93.5 | 2.18 | 0.17 | 0.1 | 0.97 |
Basal insulin conc. (µIU/mL) | 30.1 (17.33–52.33) | 31.6 (21.03–47.48) | NA | 0.90 | 0.06 | 0.86 |
Glucose 45 min conc. (mg/dL) | 101.4 | 78.1 | 7.39 | 0.04 | 0.60 | 0.82 |
Delta 45 glucose conc. (mg/dL) * | 3.5 | −15.5 | 6.24 | 0.05 | 0.68 | 0.79 |
Insulin 75 min conc. (µIU/mL) | 50.9 | 29.7 | 4.02 | 0.003 | 0.003 | 0.85 |
Glucose clearance rates in positive phase (mg/dL/min) | 2.8 | 4.5 | 0.53 | 0.05 | 0.43 | 0.73 |
Positive-phase glucose AUC (mg/dL/min) | 1889.3 | 1512.7 | 179.75 | 0.16 | 0.20 | 0.73 |
Time in positive phase (min) | 53.7 (36.79–78.47) | 32.1 (23.37–44.20) | NA | 0.03 | 0.82 | 0.89 |
Nadir glucose conc. (mg/dL) | 76.6 | 65.1 | 4.67 | 0.11 | 0.16 | 0.74 |
Time until nadir (min) | 103.1 | 76.9 | 7.53 | 0.03 | 0.95 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loos, C.; Castelein, A.; Vanzant, E.; Adam, E.; McLeod, K.R. Nutraceutical Supplement Mitigates Insulin Resistance in Horses with a History of Insulin Dysregulation During a Challenge with a High-Starch Diet. Animals 2024, 14, 3385. https://doi.org/10.3390/ani14233385
Loos C, Castelein A, Vanzant E, Adam E, McLeod KR. Nutraceutical Supplement Mitigates Insulin Resistance in Horses with a History of Insulin Dysregulation During a Challenge with a High-Starch Diet. Animals. 2024; 14(23):3385. https://doi.org/10.3390/ani14233385
Chicago/Turabian StyleLoos, Caroline, Annette Castelein, Eric Vanzant, Emma Adam, and Kyle R. McLeod. 2024. "Nutraceutical Supplement Mitigates Insulin Resistance in Horses with a History of Insulin Dysregulation During a Challenge with a High-Starch Diet" Animals 14, no. 23: 3385. https://doi.org/10.3390/ani14233385
APA StyleLoos, C., Castelein, A., Vanzant, E., Adam, E., & McLeod, K. R. (2024). Nutraceutical Supplement Mitigates Insulin Resistance in Horses with a History of Insulin Dysregulation During a Challenge with a High-Starch Diet. Animals, 14(23), 3385. https://doi.org/10.3390/ani14233385