Protective Effects of Niacin on Rumen Epithelial Cell Barrier Integrity in Heat-Stressed Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Diet, Experiment Design, and Animals
2.3. Temperature–Humidity Index Measurement
2.4. Sample Collection and Analysis
2.5. Intestinal Permeability Assay
2.6. Inflammatory Cytokines Assays
2.7. Histologic Analysis
2.8. Quantitative Real-Time Polymerase Chain Reaction
2.9. Statistical Analyses
3. Results
3.1. Subsection
3.1.1. Temperature-Humidity Index
3.1.2. Intestinal Permeability
3.1.3. Plasma Cytokine Profile
3.1.4. The Expression and Histological Analysis of Tight Junction Protein-Related Genes in Rumen Epithelium
4. Discussion
4.1. Effects of Niacin on Intestinal Permeability and Inflammatory Cytokines in Heat-Stressed Beef Cattle
4.2. Effects of Niacin on Gene Expression and Tissue Structure of Tight Junction Protein in Heat-Stressed Beef Cattle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaldur, T.; Kals, J.; Ööpik, V.; Zilmer, M.; Zilmer, K.; Eha, J.; Unt, E. Effects of heat acclimation on changes in oxidative stress and inflammation caused by endurance capacity test in the heat. Oxidative Med. Cell. Longev. 2014, 2014, 107137. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86 (Suppl. 1), E52–E77. [Google Scholar] [CrossRef]
- McCann, J.C.; Luan, S.; Cardoso, F.C.; Derakhshani, H.; Khafipour, E.; Loor, J.J. Induction of Subacute Ruminal Acidosis Affects the Ruminal Microbiome and Epithelium. Front. Microbiol. 2016, 7, 701. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, S.; Ding, J.; He, J.; Ma, L.; Bu, D. Effects of Heat Stress on the Ruminal Epithelial Barrier of Dairy Cows Revealed by Micromorphological Observation and Transcriptomic Analysis. Front. Genet. 2022, 12, 768209. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef]
- Marchiando, A.M.; Graham, W.V.; Turner, J.R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 2010, 5, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Havlin, J.M.; Robinson, P.H.; Garrett, J.E. Effects on post-fresh period milk production and fertility as a result of prior niacin supplementation of dairy cows during their fresh period. Livest. Sci. 2018, 214, 73–78. [Google Scholar] [CrossRef]
- Wrinkle, S.R.; Robinson, P.H.; Garrett, J.E. Niacin delivery to the intestinal absorptive site impacts heat stress and productivity responses of high producing dairy cows during hot conditions. Anim. Feed. Sci. Technol. 2012, 175, 33–47. [Google Scholar] [CrossRef]
- Zou, B.; Long, F.; Xue, F.; Qu, M.; Chen, C.; Zhang, X.; Xu, L. Alleviation effects of niacin supplementation on beef cattle subjected to heat stress: A metagenomic insight. Front. Microbiol. 2022, 13, 975346. [Google Scholar] [CrossRef]
- Holmes, E.; Kinross, J.; Gibson, G.R.; Burcelin, R.; Jia, W.; Pettersson, S.; Nicholson, J.K. Therapeutic modulation of microbiota-host metabolic interactions. Sci. Transl. Transl. Med. 2012, 4, 137rv6. [Google Scholar] [CrossRef]
- Malmuthuge, N.; Guan, L.L. Understanding host-microbial interactions in rumen: Searching the best opportunity for microbiota manipulation. J. Anim. Sci. Biotechnol. 2017, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Nookaew, I.; Sommer, N.; Fogelstrand, P.; Bäckhed, F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol. 2015, 16, 62. [Google Scholar] [CrossRef] [PubMed]
- Malmuthuge, N.; Liang, G.; Guan, L.L. Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes. Genome Biol. 2019, 20, 172. [Google Scholar] [CrossRef] [PubMed]
- Digby, J.E.; Martinez, F.; Jefferson, A.; Ruparelia, N.; Chai, J.; Wamil, M.; Greaves, D.R.; Choudhury, R.P. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Gambhir, D.; Ananth, S.; Veeranan-Karmegam, R.; Elangovan, S.; Hester, S.; Jennings, E.; Offermanns, S.; Nussbaum, J.J.; Smith, S.B.; Thangaraju, M.; et al. GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2208–2217. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, J.; Li, W.; Ma, H.; Gong, Q.; Kan, X.; Cao, Y.; Wang, J.; Fu, S. Niacin alleviates dairy cow mastitis by regulating the GPR109A/AMPK/NRF2 signaling pathway. Int. J. Mol. Sci. 2020, 21, 3321. [Google Scholar] [CrossRef]
- Dikmen, S.; Mateescu, R.G.; Elzo, M.A.; Hansen, P.J. Determination of the optimum contribution of Brahman genetics in an Angus-Brahman multibreed herd for regulation of body temperature during hot weather. J. Anim. Sci. 2018, 96, 2175–2183. [Google Scholar] [CrossRef]
- GB/T 19477-2004; Operating Procedures of Cattle Slaughtering. China National Standards: Beijing, China, 2004.
- Zhang, K.; Meng, M.; Gao, L.; Tu, Y.; Bai, Y. Sodium Butyrate Improves High-Concentrate-Diet-Induced Impairment of Ruminal Epithelium Barrier Function in Goats. J. Agric. Food Chem. 2018, 66, 8729–8736. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Zebeli, Q.; Patra, A.K.; Greco, G.; Amasheh, S.; Penner, G.B. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J. Dairy Sci. 2019, 102, 1866–1882. [Google Scholar] [CrossRef]
- Mani, V.; Weber, T.E.; Baumgard, L.H.; Gabler, N.K. Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock. J. Anim. Sci. 2012, 90, 1452–1465. [Google Scholar] [CrossRef]
- Khafipour, E.; Krause, D.O.; Plaizier, J.C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 2009, 92, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lei, Q.; Ma, H.; Jiang, M.; Yang, T.; Ma, Q.; Datsomor, O.; Zhan, K.; Zhao, G. Phloretin Protects Bovine Rumen Epithelial Cells from LPS-Induced Injury. Toxins 2022, 14, 337. [Google Scholar] [CrossRef] [PubMed]
- Singleton, K.D.; Wischmeyer, P.E. Oral glutamine enhances heat shock protein expression and improves survival following hyperthermia. Shock 2006, 25, 295–299. [Google Scholar] [CrossRef]
- Gadde, U.D.; Oh, S.; Lee, Y.; Davis, E.; Zimmerman, N.; Rehberger, T.; Lillehoj, H.S. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Res. Vet. Sci. 2017, 114, 236–243. [Google Scholar] [CrossRef]
- Klevenhusen, F.; Hollmann, M.; Podstatzky-Lichtenstein, L.; Krametter-Frötscher, R.; Aschenbach, J.R.; Zebeli, Q. Feeding barley grain-rich diets altered electrophysiological properties and permeability of the ruminal wall in a goat model. J. Dairy Sci. 2013, 96, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Li, S.Q.; Jiang, W.D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; et al. Deficiency of dietary niacin impaired intestinal mucosal immune function via regulating intestinal NF-κB, Nrf2 and MLCK signaling pathways in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 49, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.M.; Buettner, G.R.; Oberley, L.W.; Xu, L.; Matthes, R.D.; Gisolfi, C.V. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H509–H521. [Google Scholar] [CrossRef]
- Koch, F.; Thom, U.; Albrecht, E.; Weikard, R.; Nolte, W.; Kuhla, B.; Kuehn, C. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proc. Natl. Acad. Sci. USA 2019, 116, 10333–10338. [Google Scholar] [CrossRef]
- Pearce, S.C.; Sanz-Fernandez, M.V.; Hollis, J.H.; Baumgard, L.H.; Gabler, N.K. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs. J. Anim. Sci. 2014, 92, 5444–5454. [Google Scholar] [CrossRef]
- Gassler, N.; Rohr, C.; Schneider, A.; Kartenbeck, J.; Bach, A.; Obermüller, N.; Otto, H.F.; Autschbach, F. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G216–G228. [Google Scholar] [CrossRef]
- Heller, F.; Florian, P.; Bojarski, C.; Richter, J.; Christ, M.; Hillenbrand, B.; Mankertz, J.; Gitter, A.H.; Bürgel, N.; Fromm, M.; et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005, 129, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Poritz, L.S.; Harris, L.R., 3rd; Kelly, A.A.; Koltun, W.A. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig. Dis. Sci. 2011, 56, 2802–2809. [Google Scholar] [CrossRef]
- McCarthy, K.M.; Skare, I.B.; Stankewich, M.C.; Furuse, M.; Tsukita, S.; Rogers, R.A.; Lynch, R.D.; Schneeberger, E.E. Occludin is a functional component of the tight junction. J. Cell Sci. 1996, 109 Pt 9, 2287–2298. [Google Scholar] [CrossRef]
- Balda, M.S.; Matter, K. Tight junctions and the regulation of gene expression. Biochim. Biophys. Acta 2009, 1788, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Furuse, M.; Furuse, K.; Sasaki, H.; Tsukita, S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J. Cell Biol. 2001, 153, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293. [Google Scholar] [CrossRef]
- Inai, T.; Kobayashi, J.; Shibata, Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur. J. Cell Biol. 1999, 78, 849–855. [Google Scholar] [CrossRef]
- Bazzoni, G.; Martinez-Estrada, O.M.; Orsenigo, F.; Cordenonsi, M.; Citi, S.; Dejana, E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem. 2000, 275, 20520–20526. [Google Scholar] [CrossRef]
Items | Content (%) |
---|---|
Ingredients,% | |
Brewers grains | 20.00 |
Rice straw | 20.00 |
Corn | 46.80 |
Soybean meal | 9.00 |
Premix a | 2.40 |
NaHCO3 | 1.20 |
NaCl | 0.60 |
Total | 100.00 |
Nutrient composition,% | |
DM | 95.67 |
CP | 14.44 |
EE | 4.03 |
Ash | 8.31 |
NDF | 26.99 |
ADF | 11.62 |
Ca | 0.69 |
P | 0.36 |
Genes | Accession No. | Primer Sequences (5′ to 3′ Direction) |
---|---|---|
ZO-1 | XM_024982002.1 | Forward: TCTCGAAGATAGCCCTGCTG Reverse: AGGTCAAGCAGGAAGAGGAC |
Claudin-1 | NM_001001854.2 | Forward: CTTCATCCTGGCGTTTCTGG Reverse: AGACTTTGCACTGGATCTGC |
Claudin-4 | XM_027527588.1 | Forward: GCAACGACAAGCCCTACTC Reverse: AGCTCAGTCCAGGGAGAAAC |
Claudin-7 | XM_027519738.1 | Forward: ATTCTGAAGGCGGAAATGGC Reverse: GGGCGGTGATGATATTGTCG |
Occludin | NM_001082433.2 | Forward: AGATGCACGTTCGACCAATG Reverse: ATTACTCCGGGAGGAGAGGT |
β-actin | NM_173979.3 | Forward: CCCTGGAGAAGAGCTACGAG Reverse: CAGGAAGGAAGGCTGGAAGA |
Item | TN | HS | HN | p-Value | ||
---|---|---|---|---|---|---|
TN vs. HS | HS vs. HN | |||||
D-lactic acid (umol/mL) | Day 1 | 15.77 ± 1.88 | 16.68 ± 2.08 | 15.41 ± 2.19 | 0.756 | 0.906 |
Day 15 | 13.61 ± 2.33 | 13.66 ± 2.36 | 12.66 ± 2.07 | 0.990 | 0.760 | |
Day 30 | 18.69 ± 1.19 | 23.85 ± 0.92 | 22.09 ± 0.86 | 0.014 | 0.213 | |
Day 45 | 16.93 ± 0.69 | 22.13 ± 1.00 | 19.67 ± 0.67 | 0.005 | 0.086 | |
Day 60 | 16.8 ± 1.67 | 18.03 ± 1.03 | 16.14 ± 0.20 | 0.340 | 0.124 | |
DAO (ng/mL) | Day 1 | 5.83 ± 1.28 | 6.71 ± 0.84 | 6.62 ± 0.95 | 0.586 | 0.945 |
Day 15 | 5.93 ± 1.28 | 6.39 ± 0.3 | 6.04 ± 0.9 | 0.617 | 0.535 | |
Day 30 | 7.86 ± 0.29 | 10.4 ± 0.76 | 9.33 ± 0.63 | 0.020 | 0.260 | |
Day 45 | 8.38 ± 0.62 | 10.13 ± 0.73 | 9.32 ± 0.42 | 0.117 | 0.788 | |
Day 60 | 7.45 ± 1.39 | 8.31 ± 0.79 | 8.2 ± 0.84 | 0.609 | 0.936 | |
LPS (EU/L) | Day 1 | 12.14 ± 1.90 | 15.62 ± 1.79 | 12.78 ± 1.25 | 0.231 | 0.241 |
Day 15 | 14.97 ± 1.21 | 18.85 ± 1.46 | 16.91 ± 1.58 | 0.087 | 0.402 | |
Day 30 | 15.44 ± 2.22 | 24.91 ± 2.22 | 15.83 ± 0.71 | 0.013 | 0.020 | |
Day 45 | 13.73 ± 1.50 | 27.31 ± 2.17 | 22.76 ± 2.10 | 0.002 | 0.125 | |
Day 60 | 13.51 ± 1.88 | 18.67 ± 2.01 | 17.04 ± 2.02 | 0.110 | 0.589 |
Item (pg/mL) | TN | HS | HN | p-Value | ||
---|---|---|---|---|---|---|
TN vs. HS | HS vs. HN | |||||
IL-1β | Day 1 | 16.40 ± 1.52 | 27.46 ± 0.87 | 23.63 ± 0.83 | 0.001 | 0.019 |
Day 15 | 18.17 ± 1.22 | 27.84 ± 1.80 | 21.86 ± 1.28 | 0.004 | 0.035 | |
Day 30 | 16.48 ± 1.26 | 26.06 ± 1.83 | 21.19 ± 1.54 | 0.005 | 0.087 | |
Day 45 | 17.13 ± 2.12 | 27.42 ± 1.80 | 21.66 ± 1.63 | 0.01 | 0.056 | |
Day 60 | 16.32 ± 1.52 | 26.76 ± 1.84 | 21.83 ± 1.13 | 0.005 | 0.063 | |
IL-2 | Day 1 | 176.57 ± 19.55 | 313.21 ± 9.53 | 269.14 ± 8.02 | 0.001 | 0.012 |
Day 15 | 189.65 ± 22.12 | 314.54 ± 21.81 | 239.82 ± 5.53 | 0.007 | 0.016 | |
Day 30 | 183.95 ± 17.15 | 298.66 ± 22.10 | 231.74 ± 14.15 | 0.006 | 0.043 | |
Day 45 | 188.20 ± 25.47 | 314.70 ± 20.99 | 247.27 ± 23.21 | 0.009 | 0.075 | |
Day 60 | 206.69 ± 31.41 | 314.63 ± 18.15 | 256.18 ± 13.96 | 0.025 | 0.043 | |
IL-4 | Day 1 | 10.76 ± 0.87 | 6.25 ± 0.22 | 6.68 ± 0.39 | 0.002 | 0.369 |
Day 15 | 10.19 ± 0.96 | 6.21 ± 0.45 | 8.31 ± 0.64 | 0.01 | 0.036 | |
Day 30 | 10.35 ± 1.13 | 6.68 ± 0.52 | 8.79 ± 0.28 | 0.026 | 0.012 | |
Day 45 | 10.54 ± 1.39 | 6.31 ± 0.43 | 8.33 ± 0.51 | 0.027 | 0.022 | |
Day 60 | 10.21 ± 1.54 | 6.48 ± 0.43 | 7.68 ± 0.39 | 0.059 | 0.085 | |
IL-6 | Day 1 | 105.27 ± 7.19 | 163.80 ± 5.03 | 139.81 ± 3.94 | 0.001 | 0.009 |
Day 15 | 110.06 ± 4.69 | 166.25 ± 10.49 | 135.93 ± 6.89 | 0.003 | 0.052 | |
Day 30 | 111.78 ± 8.55 | 155.99 ± 10.43 | 128.08 ± 7.74 | 0.017 | 0.075 | |
Day 45 | 109.33 ± 9.64 | 163.76 ± 10.53 | 127.14 ± 6.73 | 0.009 | 0.026 | |
Day 60 | 113.20 ± 14.36 | 159.93 ± 10.88 | 136.11 ± 6.03 | 0.041 | 0.104 | |
TNF-α | Day 1 | 44.20 ± 3.94 | 71.76 ± 3.33 | 64.84 ± 1.82 | 0.002 | 0.118 |
Day 15 | 49.37 ± 3.80 | 75.35 ± 5.07 | 59.19 ± 2.88 | 0.006 | 0.032 | |
Day 30 | 43.45 ± 2.80 | 70.34 ± 5.08 | 55.25 ± 2.84 | 0.004 | 0.041 | |
Day 45 | 46.35 ± 5.34 | 74.13 ± 5.02 | 56.06 ± 3.45 | 0.009 | 0.025 | |
Day 60 | 49.94 ± 6.73 | 74.82 ± 4.25 | 60.68 ± 3.04 | 0.020 | 0.035 |
Item | TN | HS | HN | p-Value | |
---|---|---|---|---|---|
TN vs. HS | HS vs. HN | ||||
Rumen papillae length (μm) | 1599.07 ± 118.56 | 1482.88 ± 166.96 | 1561.53 ± 210.01 | 0.591 | 0.779 |
Rumen papillae width (μm) | 405.53 ± 61.33 | 559.32 ± 98.65 | 392.96 ± 42.67 | 0.234 | 0.173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, B.; Long, F.; Xue, F.; Chen, C.; Zhang, X.; Qu, M.; Xu, L. Protective Effects of Niacin on Rumen Epithelial Cell Barrier Integrity in Heat-Stressed Beef Cattle. Animals 2024, 14, 313. https://doi.org/10.3390/ani14020313
Zou B, Long F, Xue F, Chen C, Zhang X, Qu M, Xu L. Protective Effects of Niacin on Rumen Epithelial Cell Barrier Integrity in Heat-Stressed Beef Cattle. Animals. 2024; 14(2):313. https://doi.org/10.3390/ani14020313
Chicago/Turabian StyleZou, Bicheng, Fan Long, Fuguang Xue, Chuanbin Chen, Xian Zhang, Mingren Qu, and Lanjiao Xu. 2024. "Protective Effects of Niacin on Rumen Epithelial Cell Barrier Integrity in Heat-Stressed Beef Cattle" Animals 14, no. 2: 313. https://doi.org/10.3390/ani14020313
APA StyleZou, B., Long, F., Xue, F., Chen, C., Zhang, X., Qu, M., & Xu, L. (2024). Protective Effects of Niacin on Rumen Epithelial Cell Barrier Integrity in Heat-Stressed Beef Cattle. Animals, 14(2), 313. https://doi.org/10.3390/ani14020313