Seasonal Effects on the Performance of Finishing Pigs’ Carcass and Meat Quality in Indoor Environments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Slaughter Procedure
2.3. Meat Quality Analysis
2.4. Statistical Analysis
3. Results
3.1. Growth Performance of Finishers
3.2. Carcass Parameters
3.3. Meat Quality Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- Čobanović, N.; Jamnikar-Ciglenečki, U.; Kirbiš, A.; Križman, M.; Štukelj, M.; Vićić, I.; Karabasil, N. Coherence of clinical symptoms at antemortem inspection and pathological lesions at postmortem inspection in slaughter pigs. Kafkas Univ. Vet. Fak. Derg. 2020, 26, 533–539. [Google Scholar] [CrossRef]
- Kemp, B.; Verstegen, M.W.A. The influence of climatic environment on sows. In Energy Metabolism in Farm Animals Effects of Housing, Stress and Disease; Verstegen, M.W.A., Henken, A.M., Eds.; Martinus Nijhoff: Dortrecht, The Netherlands, 1987; p. 115. [Google Scholar]
- Van de Perre, V.; Permentier, L.; De Bie, S.; Verbeke, G.; Geers, R. Effect of unloading, lairage, pig handling, stunning and season on pH of pork. Meat Sci. 2010, 86, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Correa, J.; Gonyou, H.; Torrey, S.; Widowski, T.; Bergeron, R.; Crowe, T.; Laforest, J.P.; Faucitano, L. Welfare of pigs being transported over long distances using a pot-belly trailer during winter and summer. Animals 2014, 4, 200–213. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Čobanović, N.; Bošković, M.; Vasilev, D.; Dimitrijević, M.; Parunović, N.; Djordjević, J.; Karabasil, N. Effects of various pre-slaughter conditions on pig carcasses and meat quality in a low-input slaughter facility. S. Afr. J. Anim. Sci. 2016, 46, 380–390. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 3–9. [Google Scholar] [CrossRef]
- Owens, C.M.; Alvarado, C.Z.; Sams, A.R. Research developments in pale, soft, and exudative turkey meat in North America. Poult. Sci. 2009, 88, 1513–1517. [Google Scholar] [CrossRef]
- Freitas, A.S.; Carvalho, L.M.; Soares, A.L.; da Oliveira, M.E.S.; Madruga, M.S.; de Neto, A.C.S.; Carvalho, R.H.; Ida, E.I.; Shimokomaki, M. Pale, soft and exudative (PSE) and dark, firm and dry (DFD) meat determination in broiler chicken raised under tropical climate management conditions. Intern. J. Poult. Sci. 2017, 16, 81–87. [Google Scholar] [CrossRef]
- Santos, C.; Almeida, J.M.; Matias, E.C.; Fraqueza, M.J.; Roseiro, C.; Sardina, L. Influence of lairage environmental conditions and resting time on meat quality in pigs. Meat Sci. 1997, 45, 253–262. [Google Scholar] [CrossRef]
- D’Souza, D.N.; Leury, B.J.; Dunshea, F.R.; Warner, R.D. Effect of on-farm and pre-slaughter handling of pigs on meat quality. Austr. J. Agric. Res. 1998, 49, 1021–1025. [Google Scholar] [CrossRef]
- Huynh, T.T.T. Heat Stress in Growing Pigs. Ph.D. Thesis, Wageningen Institute of Animal Science, Wageningen, The Netherlands, 2005. [Google Scholar]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. EU 2010, 276, 33–79.
- Hungarian Feed Codex. Laboratory methods and operations (in Hungarian). Magy. Közlöny 2003, 42, 3388–3436. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Swine, 10th ed.; National Academy Press: Washington, DC, USA, 1997. [Google Scholar]
- Lukács, G. Colour Measurement; Műszaki Kiadó: Budapest, Hungary, 1982; p. 341. (In Hungarian) [Google Scholar]
- Honikel, K.O. Wasserbindungsvermögen von Fleisch. Fleischwirtschaft 1987, 67, 418–428. [Google Scholar]
- AMSA—American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurments of Meat; American Meat Science Association: Champaign, IL, USA, 2015. [Google Scholar]
- Lin-Schilstra, L.; Backus, G.; Snoek, H.; Mörlein, D. Consumers’ view on pork: Consumption motives and production preferences in ten European Union and four non-European Union countries. Meat Sci. 2022, 187, 108736. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.; Wu, J.; Wang, Y.; Cai, Q.; Li, X. Comparative analysis of productive performance and fattening efficiency of commercial pigs in China for two consecutive years. Sci. Rep. 2023, 13, 8154. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, W.; Le, H.H.; Cottrell, J.J.; Green, M.P.; Leury, B.J.; Dunshea, F.R.; Bell, A.W. Review: What have we learned about the effects of heat stress on the pig industry? Animal 2022, 16 (Suppl. 2), 100349. [Google Scholar] [CrossRef]
- Rauw, W.M.; de Mercado de la Peña, E.; Gomez-Raya, L.; García Cortés, L.A.; Ciruelos, J.J.; Gómez Izquierdo, E. Impact of environmental temperature on production traits in pigs. Sci. Rep. 2020, 10, 2106. [Google Scholar] [CrossRef]
- Čobanović, N.; Stajković, S.; Blagojević, B.; Betić, N.; Dimitrijević, M.; Vasilev, D.; Karabasil, N. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int. J. Biometeorol. 2020, 64, 1899–1909. [Google Scholar] [CrossRef]
- Liu, F.; Cottrell, J.J.; Furness, J.B.; Rivera, L.R.; Kelly, F.W.; Wijesiriwardana, U.; Pustovit, R.V.; Fothergill, L.J.; Bravo, D.M.; Celi, P.; et al. Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp. Physiol. 2016, 101, 801–810. [Google Scholar] [CrossRef]
- Lebret, B.; Meunier-Salaun, M.C.; Foury, A.; Mormède, P.; Dransfield, E.; Dourma, J.Y. Influence of rearing conditions on performance, behavioral, and physiological responses of pigs to preslaughter handling, carcass traits, and meat quality. J. Anim. Sci. 2006, 84, 2436–2447. [Google Scholar] [CrossRef]
- Goumon, S.; Brown, J.A.; Faucitano, L.; Bergeron, R.; Widowski, T.M.; Crowe, T.; Connor, M.L.; Gonyou, H.W. Effects of transport duration on maintenance behavior, heart rate and gastrointestinal tract temperature of market-weight pigs in 2 seasons. J. Anim. Sci. 2013, 91, 4925–4935. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.D.; Gaines, A.M.; Berg, E.P.; Allee, G.L. Diet modifications to improve finishing pig growth performance and pork quality attributes during periods of heat stress. J. Anim. Sci. 2005, 83, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Cruzen, S.M.; Boddicker, R.L.; Graves, K.L.; Johnson, T.P.; Arkfeld, E.K.; Baumgard, L.H.; Ross, J.W.; Safranski, T.J.; Lucy, M.C.; Lonergan, S.M. Carcass composition of market weight pigs subjected to heat stress in utero and during finishing. J. Anim. Sci. 2015, 93, 2587–2596. [Google Scholar] [CrossRef] [PubMed]
- Mun, H.-S.; Rathnayake, D.; Dilawar, M.A.; Jeong, G.; Yang, C.-J. Effect of ambient temperature on growth performances, carcass traits and meat quality of pigs. J. Appl. Anim. Res. 2022, 50, 103–108. [Google Scholar] [CrossRef]
- Rinaldo, D.; Mourot, J. Effects of tropical climate and season on growth, chemical composition of muscle and adipose tissue and meat quality in pigs. Anim. Res. 2001, 50, 507–521. [Google Scholar] [CrossRef]
- Rosenvold, K.; Andersen, H.J. Factors of significance for pork quality—A review. Meat Sci. 2003, 64, 219–237. [Google Scholar] [CrossRef]
- Fischer, K. Drip loss in pork: Influencing factors and relation to further meat quality traits. J. Anim. Breed. Genet. 2007, 124, 12–18. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Ježek, F.; Kameník, J.; Macharáčková, B.; Bogdanovičová, K.; Bednář, J. Cooking of meat: Effect on texture, cooking loss and microbiological quality—A review. Acta Vet. Brno 2019, 88, 487–496. [Google Scholar] [CrossRef]
- Guo, H.; Yuan, C.; Huang, Z.; Gui, H.; Yan, Y.; Xiong, G.; Pu, S. Evaluation of Water Mobility and Microstructure Changes of Frozen Pork Thawed by Different Thawing Methods. Preprints 2023, 2023071080. [Google Scholar] [CrossRef]
- Janiszewski, P.; Grześkowiak, E.; Lisiak, D.; Borys, B.; Borzuta, K.; Pospiech, E.; Poławska, E. The influence of thermal processing on the fatty acid profile of pork and lamb meat fed diet with increased levels of unsaturated fatty acids. Meat Sci. 2016, 111, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Faustman, C.; Cassens, R.G. The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods 1990, 1, 217–243. [Google Scholar] [CrossRef]
- Yang, P.; Hao, Y.; Feng, J.; Lin, H.; Feng, Y.; Wu, X.; Yang, X.; Gu, X. The expression of carnosine and its effect on the antioxidant capacity of Longissimus dorsi muscle in finishing pigs exposed to constant heat stress. Asian-Australas. J. Anim. Sci. 2014, 27, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Altmann, B.A.; Trinks, A.; Mörlein, D. Consumer preferences for the color of unprocessed animal foods. J. Food Sci. 2023, 88, 909–925. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Hermier, D.; Le Dividich, J. Influence of a high ambient temperature on lipid metabolism in the growing pig. J. Anim. Sci. 2001, 79, 81–87. [Google Scholar] [CrossRef]
- Qu, H.; Ajuwon, K.M. Adipose tissue-specific responses reveal an important role of lipogenesis during heat stress adaptation in pigs. J. Anim. Sci. 2018, 96, 975–989. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poultry Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- Kuo, T.; Harris, C.A.; Wang, J.-C. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol. Cell. Endocrinol. 2013, 380, 79–88. [Google Scholar] [CrossRef]
- Babinszky, L.; Halas, V. Innovative swine nutrition: Some present and potential applications of latest scientific findings for safe pork production. Ital. J. Anim. Sci. 2009, 8 (Suppl. 3), 7–20. [Google Scholar] [CrossRef]
- White, H.M.; Richert, B.T.; Schinckel, A.P.; Burgess, J.R.; Donkin, S.S.; Latour, M.A. Effects of temperature stress on growth performance and bacon quality in grow-finish pigs housed at two densities. J. Anim. Sci. 2008, 86, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.H.; Nishimura, T.; Takahashi, K. Relationship between development of intramuscular connective tissue and toughness of pork during growth of pigs. J. Anim. Sci. 1999, 77, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Aaslyng, M.D.; Jensen, H.; Karlsson, A.H. The gender background of texture attributes of pork loin. Meat Sci. 2018, 136, 79–84. [Google Scholar] [CrossRef] [PubMed]
Items | Summer | Autumn | ||||
---|---|---|---|---|---|---|
May | June | July | September | October | November | |
Average temperature (°C) | 18.84 | 20.56 | 21.55 | 16.59 | 11.81 | 5.95 |
Min. temperature (°C) | 11.34 | 14.68 | 14.62 | 9.96 | 5.30 | 1.76 |
Max. temperature (°C) | 26.36 | 27.26 | 28.89 | 24.52 | 19.48 | 10.96 |
Humidity (%) | 68.65 | 72.73 | 69.90 | 73.93 | 74.84 | 86.17 |
Temperature in building (°C) | 19–21 | 24–26 | 24–26 | 20–21 | 19–21 | 19–21 |
Items | Phase I (30–70 kg) | Phase II (70–110 kg) |
---|---|---|
Ingredients (%) | ||
Corn | 38 | 35.5 |
Barley | 32.61 | 34.4 |
Extr. soybean meal 46% | 18 | 11.5 |
Extr. sunflower meal 34% | 6.48 | 11.5 |
Sunflower oil | 2 | 1.5 |
Limestone | 0.8 | 0.9 |
MCP (monocalcium phosphate) | 0.5 | 0.2 |
Salt | 0.35 | 0.35 |
L-Lysine-HCL | 0.39 | 0.35 |
DL-Methionine | 0.12 | 0.1 |
Threonine | 0.1 | 0.1 |
Tryptophan 98% | 0.05 | 0 |
Aroma | 0.1 | 0.1 |
Zeolite universal | 0 | 1 |
Premix * | 0.5 | 0.5 |
Chemical composition (%) | ||
Digestible energy (MJ/kg) | 14.04 | 13.50 |
Crude protein | 17.2 | 16 |
Ash | 5 | 5.5 |
Calcium | 0.62 | 0.61 |
Phosphorus | 0.5 | 0.44 |
Standardised ileal digestible lysine | 0.99 | 0.84 |
Standardised ileal digestible methionine | 0.38 | 0.35 |
Standardised ileal digestible threonine | 0.63 | 0.57 |
Standardised ileal digestible tryptophan | 0.21 | 0.15 |
Traits | Season | Mean | Median | SD | p-Value |
---|---|---|---|---|---|
Initial age (d) | S | 93.50 | 93.50 | 1.17 | <0.001 |
A | 113.75 | 115.00 | 2.73 | ||
Initial body weight (kg) | S | 41.02 | 39.90 | 4.62 | N.S. |
A | 38.13 | 38.20 | 2.87 | ||
Days in growing–finishing phase (d) | S | 91.00 | 91.00 | 7.31 | <0.001 |
A | 74.17 | 74.00 | 5.64 | ||
Age at finishing (d) | S | 184.50 | 184.50 | 7.40 | N.S. |
A | 187.92 | 187.50 | 6.75 | ||
Final body weight (kg) | S | 110.47 | 107.90 | 7.17 | N.S. |
A | 112.75 | 112.50 | 6.18 | ||
Weight gain during growing–finishing phase (kg) | S | 69.45 | 69.10 | 7.62 | <0.001 |
A | 74.62 | 74.70 | 7.97 | ||
Average daily gain (g/day) | S | 768.23 | 766.40 | 111.91 | <0.001 |
A | 1009.54 | 1007.80 | 118.05 |
Traits | Season | Mean | Median | SD | p-Value |
---|---|---|---|---|---|
Warm carcass weight (kg) | S | 89.73 | 88.50 | 5.89 | N.S. |
A | 89.03 | 88.70 | 4.55 | ||
Cold left carcass weight (kg) | S | 43.65 | 42.60 | 2.69 | N.S. |
A | 43.22 | 43.70 | 2.22 | ||
Trunk length (cm) | S | 106.17 | 107.25 | 2.25 | <0.001 |
A | 100.79 | 101.00 | 2.82 | ||
Lean meat (%) | S | 61.55 | 62.25 | 2.03 | N.S. |
A | 59.99 | 59.70 | 2.59 | ||
Fat thickness on withers (mm) | S | 29.75 | 29.00 | 3.84 | <0.001 |
A | 37.67 | 37.00 | 6.11 | ||
Fat thickness on back (mm) | S | 18.25 | 18.00 | 4.99 | N.S. |
A | 21.17 | 21.00 | 5.18 | ||
Fat thickness on loin (mm) | S | 22.25 | 20.00 | 4.69 | <0.05 |
A | 26.42 | 25.50 | 5.16 | ||
Mean fat thickness (mm) | S | 23.42 | 22.00 | 4.10 | <0.05 |
A | 28.42 | 27,50 | 4.92 |
Traits | Season | Mean | Median | SD | p-Value |
---|---|---|---|---|---|
pH1 (45 min after slaughtering) | S | 6.18 | 6.20 | 0.18 | <0.001 |
A | 6.10 | 6.05 | 0.25 | ||
pH2 (24 h after slaughtering) | S | 5.62 | 5.60 | 0.08 | N.S. |
A | 5.64 | 5.62 | 0.22 | ||
Drip loss 24 h (%) | S | 7.44 | 7.38 | 2.05 | N.S. |
A | 6.18 | 6.39 | 1.49 | ||
Drip loss 48 h (%) | S | 6.34 | 5.97 | 1.99 | N.S. |
A | 5.44 | 3.89 | 3.61 | ||
Drip loss 72 h (%) | S | 5.34 | 4.86 | 2.10 | N.S. |
A | 4.57 | 4,28 | 1.79 | ||
Total drip loss (%) | S | 19.12 | 19.47 | 4.54 | <0.01 |
A | 16.19 | 15.32 | 4.68 | ||
Thawing loss (%) | S | 3.57 | 3.25 | 1.74 | N.S. |
A | 4.74 | 5.21 | 5.25 | ||
Cooking loss (%) | S | 37.23 | 39.91 | 8.75 | <0.001 + |
A | 20.65 | 20.83 | 4.62 | ||
Shear force (kg/s) | S | 2.63 | 2.39 | 0.79 | N.S. |
A | 2.93 | 3.08 | 0.76 | ||
L* | S | 71.73 | 70.88 | 3.81 | <0.01 |
A | 66.78 | 67.50 | 4.97 | ||
a* | S | 19.74 | 19.94 | 1.08 | N.S. # |
A | 18.42 | 20.52 | 5.47 | ||
b* | S | 6.38 | 6.44 | 0.53 | N.S. |
A | 7.36 | 7.13 | 2.74 |
Traits | Season | Mean | Median | SD | p-Value |
---|---|---|---|---|---|
Moisture (%) | S | 72.20 | 72.41 | 1.19 | N.S. |
A | 72.08 | 72.11 | 0.67 | ||
Intramuscular fat (%) | S | 4.79 | 4.94 | 1.88 | <0.01 |
A | 3.33 | 3.50 | 1.40 | ||
Protein (%) | S | 21.03 | 21.08 | 0.66 | <0.05 |
A | 23.20 | 21.96 | 3.75 | ||
Collagen (%) | S | 1.28 | 2.27 | 0.15 | <0.01 |
A | 1.13 | 1.18 | 0.15 | ||
Ash (%) | S | 2.05 | 2.04 | 0.11 | N.S. |
A | 2.11 | 2.11 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, F.; Kovács-Weber, M.; Bodnár, Á.; Pajor, F.; Egerszegi, I. Seasonal Effects on the Performance of Finishing Pigs’ Carcass and Meat Quality in Indoor Environments. Animals 2024, 14, 259. https://doi.org/10.3390/ani14020259
Albert F, Kovács-Weber M, Bodnár Á, Pajor F, Egerszegi I. Seasonal Effects on the Performance of Finishing Pigs’ Carcass and Meat Quality in Indoor Environments. Animals. 2024; 14(2):259. https://doi.org/10.3390/ani14020259
Chicago/Turabian StyleAlbert, Fruzsina, Mária Kovács-Weber, Ákos Bodnár, Ferenc Pajor, and István Egerszegi. 2024. "Seasonal Effects on the Performance of Finishing Pigs’ Carcass and Meat Quality in Indoor Environments" Animals 14, no. 2: 259. https://doi.org/10.3390/ani14020259
APA StyleAlbert, F., Kovács-Weber, M., Bodnár, Á., Pajor, F., & Egerszegi, I. (2024). Seasonal Effects on the Performance of Finishing Pigs’ Carcass and Meat Quality in Indoor Environments. Animals, 14(2), 259. https://doi.org/10.3390/ani14020259