Genomic Instability in the Lymphocytes of Dogs with Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Cell Culture
2.4. SCE Assay
2.5. SCGE Assay
2.6. Analysis
3. Results
3.1. SCE Assay
3.2. SCGE Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dolka, I.; Sapierzyński, R. Histopathology in veterinary oncology. Part IV. Mammary gland tumors in female dogs. Życie Wet. 2018, 93, 247–255. [Google Scholar]
- Baioni, E.; Scanziani, E.; Vincenti, M.C.; Leschiera, M.; Bozzetta, E.; Pezzolato, M.; Desiato, R.; Bertolini, S.; Maurella, C.; Ru, G. Estimating canine cancer incidence: Findings from a population-based tumour registry in northwestern Italy. BMC Vet. Res. 2017, 13, 187–198. [Google Scholar] [CrossRef]
- Sánchez, D.; Cesarman-Maus, G.; Amador-Molina, A.; Lizano, M. Oncolytic viruses for Canine cancer treatment. Cancers 2018, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Supsavhad, W.; Dirksen, W.P.; Martin, C.K.; Rosol, T.J. Animal models of head and neck squamous cell carcinoma. Vet. J. 2016, 210, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kalisz, G.; Wilkołek, P.; Taszkun, I.; Szczepanik, M. Diagnostics and treatment of squamous cell carcinoma in dogs. Weter. Prakt. 2018, 10, 22–26. [Google Scholar]
- Thomson, M. Squamous cell carcinoma of the nasal planum in cats and dogs. Clin. Tech. Small Anim. Pract. 2007, 22, 42–45. [Google Scholar] [CrossRef]
- Liu, D.; Xiong, H.; Ellis, A.E.; Northrup, N.C.; Dobbin, K.K.; Shin, D.M.; Zhao, S. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet. 2015, 11, e1005277. [Google Scholar] [CrossRef]
- Belluco, S.; Brisebard, E.; Watrelot, D.; Pillet, E.; Marchal, T.; Ponce, F. Digital squamous cell sarcinoma in dogs: Epidemiological, histological, and imunohistochemical study. Vet. Pathol. 2013, 50, 1078–1082. [Google Scholar] [CrossRef]
- Karyadi, D.M.; Karlins, E.; Decker, B.; von Holdt, B.M.; Carpintero-Ramirez, G.; Parker, H.G.; Wayne, R.K.; Ostrander, E.A. A copy number variant at the KITLG locus likely confers risk for canine squamous cell carcinoma of the digit. PLoS Genet. 2013, 9, e1003409. [Google Scholar] [CrossRef]
- Luff, J.; Rowland, P.; Mader, M.; Orr, C.; Yuan, H. Two canine papillomaviruses associated with metastatic squamous cell carcinoma in two related Basenji dogs. Vet. Pathol. 2016, 53, 1160–1163. [Google Scholar] [CrossRef]
- Jasik, A.; Reichert, M. Epidemiological analysis of canine skin tumors. Med. Wet. 2009, 65, 848–853. [Google Scholar]
- Dolka, I.; Motyl, T.; Malicka, E.; Sapierzyński, R. Canine mammary tumors—A model for studying breast cancer in women. Życie Wet. 2010, 85, 965–971. [Google Scholar]
- Gardner, H.L.; Fenger, J.M.; London, C.A. Dogs as a model for cancer. Annu. Rev. Anim. Biosci. 2016, 4, 199–222. [Google Scholar] [CrossRef]
- Reimann-Berg, N.; Bullerdiek, J.; Murua Escobar, H.; Nolte, I. Chromosome analyses in dogs. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2012, 40, 191–196. [Google Scholar] [CrossRef]
- Mizuno, T. Spontaneously occurring canine cancer as a relevant animal model for developing novel treatments for human cancers. Translat. Regulat. Sci. 2021, 3, 51–59. [Google Scholar] [CrossRef]
- Albarella, S.; Ciotola, F.; Dario, C.; Iannuzzi, L.; Barbieri, V.; Peretti, V. Chromosome instability in Mediterranean Italian buffaloes affected by limb malformation (transversal hemimelia). Mutagenesis 2009, 24, 471–474. [Google Scholar] [CrossRef]
- Wójcik, E.; Andraszek, K.; Ciszewska, M.; Smalec, E. Sister chromatid exchange as an index of chromosome insatbility in chondrodystrophic chickens (Gallus domesticus). Poult. Sci. 2013, 92, 84–89. [Google Scholar] [CrossRef]
- Tanaka, K.; Hirota, T. Chromosomal instability: A common feature and a therapeutic target of cancer. Biochim. Biophys. Acta 2016, 1866, 64–75. [Google Scholar] [CrossRef]
- Wilson, D.M.; Thompson, L.H. Molecular mechanisms of sister chromatid exchange. Mut. Res. 2007, 616, 11–23. [Google Scholar] [CrossRef]
- McGranahan, N.; Burrell, R.A.; Endesfelder, D.; Novelli, M.R.; Swanton, C. Cancer chromosomal instability: Therapeutic and diagnostic challenges. EMBO Rep. 2012, 13, 528–538. [Google Scholar] [CrossRef]
- Jefford, C.E.; Irminger-Finger, I. Mechanisms of chromosome instability in cancers. Crit. Rev. Oncol. Hematol. 2006, 59, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xun, Y.; Wang, M.; Sun, H.; Shi, S.; Guan, B.; Yu, C. Prognostic analysis of preoperative inflammatory biomarkers in patients with laryngeal squamous cell carcinoma. Ear Nose Throat J. 2020, 99, 371–378. [Google Scholar] [CrossRef]
- Rossner, P.; Boffetta, P.; Ceppi, M.; Bonassi, S.; Smerhovsky, Z.; Landa, K.; Juzova, D.; Šrám, R.J. Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environ. Health Perspect. 2005, 113, 517–520. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; Grilli, D.G.; Salvadori, D.M.F. Genomic instability in blood cells is able to predict the oral cancer risk: An experimental study in rats. J. Mol. Histol. 2008, 39, 481–486. [Google Scholar] [CrossRef]
- Han, J.; Qureshi, A.A.; Prescott, J.; Guo, Q.; Ye, L.; Hunter, D.J.; De Vivo, I. A prospective study of telomere length and the risk of skin cancer. J. Investig. Dermatol. 2009, 129, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Szyfter, K. A significance of genetic factor in initiation and progression of squamous cel carcinoma of larynx. Adv. Head Neck Surg. 2002, 1, 5–19. [Google Scholar]
- Kamlesh, D.; Suresh, B.; Jagdish, T.; Mansee, T.; Niharika, S. Identification of genetic instability in peripheral blood lymphocyte of oral squamous cell carcinoma patients assess by comet assay. J. Oral Maxillofac. Pathol. 2022, 26, 284. [Google Scholar] [CrossRef]
- Dhillon, V.S.; Kler, R.S.; Dhillon, I.K. Choromosome instabililty and sister chromatid exchange (SCE) studies in patients with carcinoma of cervix uteri. Cancer Genet. Cytogenet. 1996, 86, 54–57. [Google Scholar] [CrossRef]
- Salawu, A.; Wright, K.; Al-Kathiri, A.; Wyld, L.; Reed, M.; Sisley, K. Sister chromatid exchange and genomic instability in soft tissue sarcomas: Potential implications for response to DNA-damaging treatments. Sarcoma 2018, 7, 3082526. [Google Scholar] [CrossRef]
- Vodicka, P.; Polivkova, Z.; Sytarova, S.; Demova, H.; Kucerova, M.; Vodickova, L.; Polakova, V.; Naccarati, A.; Smerhovsky, Z.; Ambrus, M.; et al. Chromosomal damage in peripheral blood lymphocytes of newly diagnosed cancer patients and healthy controls. Carcinogenesis 2010, 31, 1238–1241. [Google Scholar] [CrossRef]
- Wolff, S.; Perry, P. Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 1974, 48, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Kucharova, M.; Hronek, M.; Rybakova, K.; Zadak, Z.; Stetina, R.; Joskova, V.; Patková, A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol. Res. 2019, 68, 1–15. [Google Scholar] [CrossRef]
- Gajski, G.; Zegura, B.; Ladeira, C.; Novak, M.; Sramkova, M.; Pourrut, B.; Del Bo’, C.; Milić, M.; Gutzkow, K.B.; Costa, S.; et al. The comet assay in animal models: From bugs to whales—(Part 2 Vertebrates). Mutat. Res. 2019, 781, 130–164. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Gedik, C.M.; Ewen, S.W.B.; Collins, A.R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int. J. Radiat. Biol. 1992, 62, 313–320. [Google Scholar] [CrossRef]
- Końca, K.; Lankoff, A.; Banasik, A.; Lisowska, H.; Kuszewski, T.; Góźdź, S. A cross-platform public domain PC image-analysis program for the comet assay. Mutat. Res. 2003, 534, 15–20. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Sapierzyński, R. Cutaneous lymphomas in dogs. Życie Weter. 2020, 95, 570–578. [Google Scholar]
- Sapierzynski, R.A. Toe tumours in dogs. Mag. Wet. 2005, 14, 28–31. [Google Scholar]
- Sapierzyński, R.A. Eyelid tumours in dogs and cats. E-Pol. J. Vet. Ophthalmol. 2012, 2, 1–13. [Google Scholar]
- Sobczynska-Rak, A.; Polkowska, I.; Smiech, A. Oral squamous cell carcinoma in dogs. Mag. Wet. 2009, 18, 784–787. [Google Scholar]
- Nowak, M.; Madej, J.A. Prevalence of neoplasms in domestic animals in Lower Silesia between 2000–2004. Med. Wet. 2006, 62, 900–904. [Google Scholar]
- Morais, C.S.D.; Affonso, P.R.A.M.; Bitencourt, J.A.; Wenceslau, A.A. Cytogenetic aspects of a canine breast carcinosarcoma—A case report. Genet. Mol. Res. 2017, 16, gmr16029433. [Google Scholar] [CrossRef] [PubMed]
- Szczerbal, I.; Świtoński, M. Clinical cytogenetics of the dog: A review. Animals 2021, 11, 947. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, V.; Kayikcioglu, F.; Alpas, I.; Zeyneloglu, H.; Haberbal, A. Sister chromatid exchange rate and alkaline comet assay stores in patients with ovarian cancer. Gynecol. Oncol. 2002, 54, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Zitzmann, S.; Westermann, F.; Arnold, K.; Brouwers, S.; Schwab, M.; Savelyeva, L. Increased rates of spontaneous sister chromatid exchange in lymphocytes of BRCA2+/− carriers of familial breast cancer clusters. Cancer Let. 2004, 210, 85–94. [Google Scholar] [CrossRef]
- Cefle, K.; Ucur, A.; Guney, N.; Ozturek, S.; Palanduz, S.; Tas, F.; Asoglu, O.; Bayrak, A.; Muslumanoglu, M.; Aydiner, A. Increased sister chromatid exchange frequency in young women with brest cancer and in their first-degree relatives. Cancer Genet. Cytogenet. 2006, 171, 65–67. [Google Scholar] [CrossRef]
- Kępka, K.; Wójcik, E.; Wysokińska, A. Identification of genomic instability in cows infected with BVD virus. Animals 2023, 13, 3800. [Google Scholar] [CrossRef]
- Cortés-Gutiérrez, E.I.; Cerda-Flores, R.M.; Leal-Garza, C.H. Sister chromatid exchanges in peripheral lymphocytes from women with carcinoma of the uterine cervix. Cancer Genet. Cytogenet. 2000, 122, 121–123. [Google Scholar] [CrossRef]
- Amor-Gueret, M. Bloom syndrome, genomic instability and cancer: The SOS-like hypothesis. Cancer Lett. 2006, 236, 1–12. [Google Scholar] [CrossRef]
- Heaton, P.R.; Ransley, R.; Charlton, C.J.; Mann, S.J.; Stevenson, J.; Smith, B.H.E.; Rawlings, J.M.; Harper, E.J. Application of single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes. J. Nutr. 2002, 132, 1598S–1603S. [Google Scholar] [CrossRef]
- Pereira, A.F.; Borges, P.; Fontbonne, A.; Cardoso, L.; Gaivão, I.; Martins-Bessa, A. The comet assay for detection of DNA damage in canine sperm. Reprod. Dom. Anim. 2017, 52, 1149–1152. [Google Scholar] [CrossRef] [PubMed]
- Pérez, N.; Berrío, A.; Jaramillo, J.E.; Urrego, R.; Arias, M.P. Exposure to cigarette smoke causes DNA damage in oropharyngeal tissue in dogs. Mutat. Res. 2014, 769, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, E.; Smalec, E.; Danielewicz, A. Sister chromatid exchange in selected horse breeds (Equus caballus). Arch. Anim. Breed. 2011, 54, 107–114. [Google Scholar] [CrossRef]
- Dernell, W.S.; Straw, R.C.; Withrow, S.J. Tumors of skeletal system. In Small Animal Clinical Onkology; Withrow, S.J., McEwen, E.G., Eds.; Saunders Company WB: Philadelphia, PA, USA, 2001; Volume 3, pp. 378–417. [Google Scholar]
- Perez Alenza, M.D.; Peña, L.; del Castillo, N.; Nieto, A.I. Factors influencing the incidence and prognosis of canine mammary tumours. J. Small Anim. Pract. 2000, 41, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Soukup, J.W.; Snyder, C.J.; Simmons, B.T.; Pinkerton, M.E. Clinical, histologic, and computed tomographic features of oral papillary squamous cell carcinoma in dogs: 9 cases (2008–2011). J. Vet. Dent. 2013, 30, 18–24. [Google Scholar] [CrossRef]
- Song, R.B.; Vite, C.H.; Bradley, C.W.; Cross, J.R. Postmortem evaluation of 435 cases of intracranial neoplasia in dogs and relationship of neoplasm with breed, age, and body weight. J. Vet. Intern. Med. 2013, 27, 1143–1152. [Google Scholar] [CrossRef]
- Miller, A.D.; Miller, C.R.; Rossmeisl, J.H. Canine primary intracranial cancer: A clinicopathologic and comparative review of glioma, meningioma, and choroid plexus tumors. Front. Oncol. 2019, 8, 1151. [Google Scholar] [CrossRef]
- Wójcik, E.; Szostek, M. Assessment of genome stability in various breeds of cattle. PLoS ONE 2019, 14, e0217799. [Google Scholar] [CrossRef]
Sex | SCE | SCGE | ||
---|---|---|---|---|
H | C | H | C | |
Mean ± SD | %T DNA | |||
F | 5.3 a ± 1.7 | 15.8 b ± 2.5 | 1.7 a | 35.1 b |
M | 5.1 a ± 1.5 | 15.3 b ± 2.3 | 3.1 a | 35.1 b |
Total | 5.2 a ± 1.6 | 15.6 b ± 2.4 | 2.4 a | 35.1 b |
Breed | Health | SCE | SCGE | ||
---|---|---|---|---|---|
F | M | F | M | ||
Mean ± SD | %T DNA | ||||
B1 | H | 5.4 a ± 1.6 | 5.1 a ± 1.5 | 1.7 a | 1.7 a |
C | 15.7 b ± 2.5 | 15.4 b ± 2.5 | 33.8 b | 35.9 b | |
B2 | H | 5.1 a ± 1.7 | 5.0 a ± 1.5 | 1.8 a | 4.6 a |
C | 16.0 b ± 2.6 | 15.2 b ± 2.5 | 36.3 b | 34.4 b | |
Total | 10.5 ± 5.7 | 10.2 ± 5.5 | 18.4 | 19.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, E.; Kot, E.; Wójcik, I.; Wysokińska, A.; Matusevičius, P. Genomic Instability in the Lymphocytes of Dogs with Squamous Cell Carcinoma. Animals 2024, 14, 2754. https://doi.org/10.3390/ani14192754
Wójcik E, Kot E, Wójcik I, Wysokińska A, Matusevičius P. Genomic Instability in the Lymphocytes of Dogs with Squamous Cell Carcinoma. Animals. 2024; 14(19):2754. https://doi.org/10.3390/ani14192754
Chicago/Turabian StyleWójcik, Ewa, Emilia Kot, Iga Wójcik, Anna Wysokińska, and Paulius Matusevičius. 2024. "Genomic Instability in the Lymphocytes of Dogs with Squamous Cell Carcinoma" Animals 14, no. 19: 2754. https://doi.org/10.3390/ani14192754
APA StyleWójcik, E., Kot, E., Wójcik, I., Wysokińska, A., & Matusevičius, P. (2024). Genomic Instability in the Lymphocytes of Dogs with Squamous Cell Carcinoma. Animals, 14(19), 2754. https://doi.org/10.3390/ani14192754