Enteropathogenic and Multidrug-Resistant blaCTX-M-Carrying E. coli Isolates from Dogs and Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Processing and Bacteria Identification
2.2. Antimicrobial Susceptibility Testing and Phenotypic Characterization of Extended-Spectrum Beta-Lactamase
2.3. DNA Extraction and Bacterial Genotypic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef]
- Bugarel, M.; Martin, A.; Fach, P.; Beutin, L. Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains: A basis for molecular risk assessment of typical and atypical EPEC strains. BMC Microbiol. 2011, 11, 142. [Google Scholar] [CrossRef]
- Gonzalez, A.; Cerqueira, A. Shiga toxin-producing Escherichia coli in the animal reservoir and food in Brazil. J. Appl. Microbiol. 2020, 128, 1568–1582. [Google Scholar] [CrossRef] [PubMed]
- Bibbal, D.; Ruiz, P.; Sapountzis, P.; Mazuy-Cruchaudet, C.; Loukiadis, E.; Auvray, F.; Forano, E.; Brugère, H. Persistent Circulation of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 in Cattle Farms: Characterization of Enterohemorrhagic Escherichia coli O157:H7 Strains and Fecal Microbial Communities of Bovine Shedders and Non-shedders. Front. Vet. Sci. 2022, 9, 852475. [Google Scholar] [CrossRef] [PubMed]
- Coura, F.M.; Lage, A.P.; Heinemann, M.B. Patotipos de Escherichia coli causadores de diarreia em bezerros: Uma atualização. Pesq. Vet. Bras. 2014, 34, 811–818. [Google Scholar] [CrossRef]
- Kjaergaard, A.B.; Carr, A.P.; Gaunt, M.C. Enteropathogenic Escherichia coli (EPEC) infection in association with acute gastroenteritis in 7 dogs from Saskatchewan. Can. Vet. J. 2016, 57, 964–968. [Google Scholar] [PubMed]
- Rodrigues, J.; Thomazini, C.M.; Lopes, C.A.M.; Dantas, L.O. Concurrent Infection in a Dog and Colonization in a Child with a Human Enteropathogenic Escherichia coli Clone. J. Clin. Microbiol. 2004, 42, 1388–1389. [Google Scholar] [CrossRef]
- Johnson, T.J.; Armstrong, J.R.; Johnston, B.; Merino-Velasco, I.; Jamborova, I.; Singer, R.S.; Johnson, J.R.; Bender, J.B. Occurrence and potential transmission of extended-spectrum beta-lactamase-producing extraintestinal pathogenic and enteropathogenic Escherichia coli in domestic dog faeces from Minnesota. Zoonoses Public Health 2022, 69, 888–895. [Google Scholar] [CrossRef]
- Das, S.; Kabir, A.; Chouhan, C.S.; Shahid, M.A.H.; Habib, T.; Rahman, M.; Nazir, K.N.H. Domestic cats are potential reservoirs of multidrug-resistant human enteropathogenic E. coli strains in Bangladesh. Saudi J. Biol. Sci. 2023, 30, 103786. [Google Scholar] [CrossRef]
- Jin, M.; Osman, M.; Green, B.A.; Yang, Y.; Ahuja, A.; Lu, Z.; Cazer, C.L. Evidence for the transmission of antimicrobial resistant bacteria between humans and companion animals: A scoping review. One Health 2023, 17, 100593. [Google Scholar] [CrossRef] [PubMed]
- M100-S30; Performance Standards for Antimicrobial Susceptibility. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- Jarlier, V.; Nicolas, M.-H.; Fournier, G.; Philippon, A. Extended Broad-Spectrum -Lactamases Conferring Transferable Resistance to Newer -Lactam Agents in Enterobacteriaceae: Hospital Prevalence and Susceptibility Patterns. Clin. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Fan, H.H.; Kleven, S.H.; Jackwood, M.W. Application of polymerase chain reaction with arbitrary primers to strain identification of Mycoplasma gallisepticum. Avian Dis. 1995, 39, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Franck, S.M.; Bosworth, B.T.; Moon, H.W. Multiplex PCR for Enterotoxigenic, Attaching and Effacing, and Shiga Toxin-Producing Escherichia coli Strains from Calves. J. Clin. Microbiol. 1998, 36, 1795–1797. [Google Scholar] [CrossRef]
- Tokuda, K.; Nishi, J.; Imuta, N.; Fujiyama, R.; Kamenosono, A.; Manago, K.; Kawano, Y. Characterization of typical and atypical enteroaggregative Escherichia coli in Kagoshima, Japan: Biofilm formation and acid resistance. Microbiol. Immunol. 2010, 54, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Blanco, J.E.; Blanco, J.; Alonso, M.P.; Balsalobre, C.; Mouriño, M.; Madrid, C.; Juárez, A. Polymerase chain reaction for detection of Escherichia coli strains producing cytotoxic necrotizing factor type 1 and type 2 (CNF1 and CNF2). J. Microbiol. Methods 1996, 26, 95–101. [Google Scholar] [CrossRef]
- Bonnet, R.; Dutour, C.; Sampaio, J.L.M.; Chanal, C.; Sirot, D.; Labia, R.; De Champs, C.; Sirot, J. Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240→Gly. Antimicrob. Agents Chemother. 2001, 45, 2269–2275. [Google Scholar] [CrossRef]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Characterization of an Anonymous Molecular Marker Strongly Linked to Escherichia coli Strains Causing Neonatal Meningitis. J. Clin. Microbiol. 2004, 42, 1770–1772. [Google Scholar] [CrossRef]
- Lescat, M.; Clermont, O.; Woerther, P.L.; Glodt, J.; Dion, S.; Skurnik, D.; Djossou, F.; Dupont, C.; Perroz, G.; Picard, B.; et al. Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ. Microbiol. Rep. 2013, 5, 49–57. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant; extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Coura, F.M.; Diniz, A.N.; Oliveira Junior, C.A.; Lage, A.P.; Lobato, F.C.F.; Heinemann, M.B.; Silva, R.O.S. Detection of virulence genes and the phylogenetic groups of Escherichia coli isolated from dogs in Brazil. Cienc. Rural. 2018, 48, e20170478. [Google Scholar] [CrossRef]
- Puño-Sarmiento, J.; Medeiros, L.; Chiconi, C.; Martins, F.; Pelayo, J.; Rocha, S.; Blanco, J.; Blanco, M.; Zanutto, M.; Kobayashi, R.; et al. Detection of diarrheagenic Escherichia coli strains isolated from dogs and cats in Brazil. Vet. Microbiol. 2013, 166, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Treier, A.; Stephan, R.; Stevens, M.J.A.; Cernela, N.; Nüesch-Inderbinen, M. High Occurrence of Shiga Toxin-Producing Escherichia coli in Raw Meat-Based Diets for Companion Animals—A Public Health Issue. Microorganisms 2021, 9, 1556. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Cunha, R.; Martins, C.; Martínez-Álvarez, S.; Safia Chenouf, N.; Pimenta, P.; Pereira, A.R.; Ramos, S.; Sadi, M.; Martins, Â.; et al. Antimicrobial Resistance Genes and Diversity of Clones among Faecal ESBL-Producing Escherichia coli Isolated from Healthy and Sick Dogs Living in Portugal. Antibiotics 2021, 10, 1013. [Google Scholar] [CrossRef]
- Abreu-Salinas, F.; Díaz-Jiménez, D.; García-Meniño, I.; Lumbreras, P.; López-Beceiro, A.M.; Fidalgo, L.E.; Rodicio, M.R.; Mora, A.; Fernández, J. High Prevalence and Diversity of Cephalosporin-Resistant Enterobacteriaceae Including Extraintestinal Pathogenic E. coli CC648 Lineage in Rural and Urban Dogs in Northwest Spain. Antibiotics 2020, 9, 468. [Google Scholar] [CrossRef]
- Sallem, R.B.; Gharsa, H.; Slama, K.B.; Rojo-Bezares, B.; Estepa, V.; Porres-Osante, N.; Jouini, A.; Klibi, N.; Sáenz, Y.; Boudabous, A.; et al. First Detection of CTX-M-1, CMY-2, and QnrB19 Resistance Mechanisms in Fecal Escherichia coli Isolates from Healthy Pets in Tunisia. Vector Borne Zoonotic Dis. 2013, 13, 98–102. [Google Scholar] [CrossRef]
- Tramuta, C.; Robino, P.; Nucera, D.; Salvarani, S.; Banche, G.; Malabaila, A.; Nebbia, P. Molecular characterization and antimicrobial resistance of faecal and urinary Escherichia coli isolated from dogs and humans in Italy. Vet. Ital. 2014, 50, 23–30. [Google Scholar]
- Harada, K.; Okada, E.; Shimizu, T.; Kataoka, Y.; Sawada, T.; Takahashi, T. Antimicrobial resistance, virulence profiles, and phylogenetic groups of fecal Escherichia coli isolates: A comparative analysis between dogs and their owners in Japan. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 139–144. [Google Scholar] [CrossRef]
- Yun, C.S.; Moon, B.Y.; Hwang, M.H.; Lee, S.K.; Ku, B.K.; Lee, K. Characterization of the pathogenicity of extraintestinal pathogenic Escherichia coli isolates from pneumonia-infected lung samples of dogs and cats in South Korea. Sci Rep. 2023, 13, 5575. [Google Scholar] [CrossRef]
- Bassetti, M.; Righi, E. Multidrug-resistant bacteria: What is the threat? Hematology 2013, 2013, 428–432. [Google Scholar] [CrossRef]
- Zogg, A.L.; Simmen, S.; Zurfluh, K.; Stephan, R.; Schmitt, S.N.; Nüesch-Inderbinen, M. High prevalence of extended-spectrum β-Lactamase producing enterobacteriaceae among clinical isolates from cats and dogs admitted to a veterinary hospital in Switzerland. Front. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Yokota, S.I.; Okubo, T.; Usui, M.; Fujii, N.; Tamura, Y. Phylogenetic association of fluoroquinolone and cephalosporin resistance of D-O1-ST648 Escherichia coli carrying blaCMY-2 from faecal samples of dogs in Japan. J. Med. Microbiol. 2014, 63, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Ghafourian, S.; Sadeghifard, N.; Soheili, S.; Sekawi, Z. Extended spectrum beta-lactamases: Definition, classification and epidemiology. Curr. Issues Mol. Biol. 2014, 17, 11–22. [Google Scholar]
- Miao, X.; Zhu, L.; Bai, X. Bacterial community assembly and beta-lactamase (bla) genes regulation in a full-scale chloraminated drinking water supply system. J. Environ. Chem. Eng. 2022, 10, 107677. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, G.; Del Giacomo, P.; Posteraro, B.; Sanguinetti, M.; Tumbarello, M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int. J. Mol. Sci. 2020, 21, 5090. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antimicrobial Resistance Laboratory Network. 2024. Available online: https://www.cdc.gov/antimicrobial-resistance-laboratory-networks/php/about/domestic.html (accessed on 11 July 2024).
- Cañada-García, J.E.; Pérez-Vázquez, M.; Oteo-Iglesias, J. RedLabRA; a Spanish Network of Microbiology Laboratories for the Surveillance of Antibiotic Resistant Microorganisms. Rev. Esp. Quimioter. 2021, 34, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Lob, S.H.; DeRyke, C.A.; Siddiqui, F.; Young, K.; Motyl, M.R.; Sahm, D.F. Prevalence of ESBL non-CRE Escherichia coli and Klebsiella pneumoniae among clinical isolates collected by the SMART global surveillance programme from 2015 to 2019. Int. J. Antimicrob. Agents 2022, 5, 106535. [Google Scholar] [CrossRef]
Function-Related Group | Target Gene | Primer Sequences | Amplicon Size (bp) | Reference |
---|---|---|---|---|
Antimicrobial resistance | blaCTX-M | 5′-CGCTTTGCGATGTGCAG-3′ | 550 | [18] |
5′-ACCCGCGATATCGTTGGT-3′ | ||||
Phylogroup | chuA | 5′-ATGGTACCGGACGAACCAAC-3′ | 288 | [14] |
5′-TGCCGCCAGTACCAAAGACA-3′ | ||||
yjaA | 5′-CAAACGTGAAGTGTCAGGAG-3′ | 211 | [14] | |
5′-AATGCGTTCCTCAACCTGTG-3′ | ||||
TspE4.C2 | 5′-CACTATTCGTAAGGTCATCC-3′ | 152 | [14] | |
5′-AGTTTATCGCTGCGGGTCGC-3′ | ||||
arpA | 5′-AACGCTATTCGCCAGCTTGC-3′ | 400 | [14] | |
5′-TCTCCCCATACCGTACGCTA-3′ | [14,19] | |||
arpA | 5′-GATTCCATCTTGTCAAAATATGCC-3′ | 301 | [20] | |
5′-GAAAAGAAAAAGAATTCCCAAGAG-3′ | ||||
trpA | 5′-AGTTTTATGCCCAGTGCGAG-3′ | 219 | [20] | |
5′-TCTGCGCCGGTCACGCCC-3′ | ||||
Virulence factors | stx1 | 5′-TTCGCTCTGCAATAGGTA-3′ | 555 | [15] |
5′-TTCCCCAGTTCAATGTAAGAT-3′ | ||||
stx2 | 5′-GTGCCTGTTACTGGGTTTTTCTTC-3′ | 118 | [15] | |
5′-AGGGGTCGATATCTCTGTCC-3′ | ||||
eae | 5′-ATATCCGTTTTAATGGCTATCT-3′ | 425 | [15] | |
5′-AATCTTCTGCGTACTGTGTTCA-3′ | ||||
aggR | 5′-CAGAATACATCAGTACACTG-3′ | 433 | [16] | |
5′-GAAGCTTACAGCCGATATA-3′ | ||||
cnf1 | 5′-GAACTTATTAAGGATAGT-3′ | 543 | [17] | |
5′-CATTATTTATAACGCTG-3′ | ||||
cnf2 | 5′-AATCTAATTAAAGAGAGAAC-3′ 5′-CATGCTTTGTATATCTA-3′ | 543 | [17] |
Phylogroup | Antimicrobial Resistance Profile% (N) | Virulence Profile% (N) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | ESBL | MDR | CFO | CIP | GEN | SUT | AMI | ERT | ENO | TET | EPEC (eae) | |
A | 29 | 13.8 (4) | 24.1 (7) | 0.0 | 17.24 (5) | 10.3 (3) | 31.0 (9) | 3.5 (1) | 0.0 (0) | 10.3 (3) | 20.7 (6) | 24.1 (7) |
B1 | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
B2 | 26 | 0.0 | 7.7 (2) | 3.9 (1) | 0.0 | 7.7 (2) | 26.9 (7) | 7.7 (2) | 7.7 (2) | 0.0 | 34.6 (9) | 19.2 (5) |
C | 4 | 0.0 | 50.0 (2) | 0.0 | 50.0 (2) | 0.0 | 50.0 (2) | 0.0 | 0.0 | 50.0 (2) | 50.0 (2) | 25.0 (1) |
D | 13 | 0.0 | 7.7 (1) | 0.0 | 0.0 | 7.7 (1) | 46.2 (6) | 7.7 (1) | 7.7 (1) | 7.7 (1) | 61.5 (8) | 7.7 (1) |
E | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 (2) |
F | 19 | 5.3 (1) | 5.3 (1) | 0.0 | 5.3 (1) | 5.3 (1) | 5.3 (1) | 0.0 | 0.0 | 5.3 (1) | 10.5 (2) | 21.0 (4) |
Total (97) | 5.2 (5) | 13.4 (13) | 1.0 (1) | 8.2 (8) | 7.2 (7) | 25.8 (25) | 4.1 (4) | 3.1 (3) | 7.2 (7) | 27.8 (27) | 20.6 (20) |
Antimicrobial Resistance Profile | E. coli Isolates | |
---|---|---|
AMI | 1.0% | (1/97) |
CIP | 1.0% | (1/97) |
ENO | 1.0% | (1/97) |
SUT | 5.2% | (5/97) |
TET | 9.3% | (9/97) |
CIP-SUT | 1.0% | (1/97) |
SUT-TET | 10.3% | (10/97) |
AMI-ERT-TET | 1.0% | (1/97) |
CIP-ENO-GEN-SUT | 2.1% | (2/97) |
AMI-CFO-ERT-SUT-TET | 1.0% | (1/97) |
AMI-ERT-GEN-SUT-TET | 1.0% | (1/97) |
CIP-ENO-GEN-SUT-TET | 4.1% | (4/97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feitosa, C.B.; dos Santos, G.S.; Gaeta, N.C.; Schiavi, G.d.S.; Vasconcelos, C.G.C.; Filho, J.M.; Heinemann, M.B.; Cortez, A. Enteropathogenic and Multidrug-Resistant blaCTX-M-Carrying E. coli Isolates from Dogs and Cats. Animals 2024, 14, 2463. https://doi.org/10.3390/ani14172463
Feitosa CB, dos Santos GS, Gaeta NC, Schiavi GdS, Vasconcelos CGC, Filho JM, Heinemann MB, Cortez A. Enteropathogenic and Multidrug-Resistant blaCTX-M-Carrying E. coli Isolates from Dogs and Cats. Animals. 2024; 14(17):2463. https://doi.org/10.3390/ani14172463
Chicago/Turabian StyleFeitosa, Catherine Biondo, Gabriel Siqueira dos Santos, Natalia Carrillo Gaeta, Gustavo da Silva Schiavi, Carla Gasparotto Chande Vasconcelos, Jonas Moraes Filho, Marcos Bryan Heinemann, and Adriana Cortez. 2024. "Enteropathogenic and Multidrug-Resistant blaCTX-M-Carrying E. coli Isolates from Dogs and Cats" Animals 14, no. 17: 2463. https://doi.org/10.3390/ani14172463
APA StyleFeitosa, C. B., dos Santos, G. S., Gaeta, N. C., Schiavi, G. d. S., Vasconcelos, C. G. C., Filho, J. M., Heinemann, M. B., & Cortez, A. (2024). Enteropathogenic and Multidrug-Resistant blaCTX-M-Carrying E. coli Isolates from Dogs and Cats. Animals, 14(17), 2463. https://doi.org/10.3390/ani14172463