A Functional 67-bp Duplication Locating at the Core Promoter Region within the Bovine ADIPOQ Gene Is Associated with Ovarian Traits and mRNA Expression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Experimental Animal and Data Collection
2.3. DNA Extraction from Different Tissue
2.4. PCR Amplification and Sequence Analysis
2.5. Molecular Evolutionary Tree Construction
2.6. cDNA Synthesis and Quantitative RT-PCR
2.7. Statistical Analyses
3. Results
3.1. Results of the Variable Duplication Locus Genotyping in the ADIPOQ
3.2. ADIPOQ Gene Sequence and Molecular Evolution Analysis
3.3. Estimation of Genetic Parameters of the 67-bp Mutation in the Chinese Holstein Cow Population
3.4. Correlation Analysis of ADIPOQ Gene Variants with Ovarian Traits
3.5. ADIPOQ mRNA Expression Analyses in Different Genotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norouzy, A.; Nassiry, M.R.; Eftekhari Shahrody, F.; Javadmanesh, A.; Sulimova, G.E. Identification of bovine leucocyte adhesion deficiency (BLAD) carriers in Holstein and Brown Swiss AI bulls in Iran. Genetika 2005, 41, 1697–1701. [Google Scholar] [CrossRef]
- Butler, W.R. Nutritional Interactions with Reproductive Performance in Dairy Cattle. Anim. Reprod. Sci. 2000, 60–61, 449–457. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Ding, X.; Ma, Y. Genome-Wide Association Analysis of Reproductive Traits in Chinese Holstein Cattle. Genes 2024, 15, 12. [Google Scholar] [CrossRef]
- Sangsritavong, S.; Combs, D.K.; Sartori, R.; Armentano, L.E.; Wiltbank, M.C. High Feed Intake Increases Liver Blood Flow and Metabolism of Progesterone and Estradiol-17β in Dairy Cattle. J. Dairy Sci. 2002, 85, 2831–2842. [Google Scholar] [CrossRef]
- Diskin, M.G.; Waters, S.M.; Parr, M.H.; Kenny, D.A. Pregnancy Losses in Cattle: Potential for Improvement. Reprod. Fertil. Dev. 2016, 28, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Gershon, E.; Dekel, N. Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. Int. J. Mol. Sci. 2020, 21, 4565. [Google Scholar] [CrossRef]
- Devoto, L.; Henríquez, S.; Kohen, P.; Strauss, J.F. The Significance of Estradiol Metabolites in Human Corpus Luteum Physiology. Steroids 2017, 123, 50–54. [Google Scholar] [CrossRef]
- Lande, R.; Thompson, R. Efficiency of Marker-Assisted Selection in the Improvement of Quantitative Traits. Genetics 1990, 124, 743–756. [Google Scholar] [CrossRef]
- da Silva Rosa, S.C.; Liu, M.; Sweeney, G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology 2021, 36, 134–149. [Google Scholar] [CrossRef]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Lv, Y.; Peng, Y.; Wu, Y.; Feng, Y.; Jia, T.; Xu, S.; Li, S.; Wang, W.; Tian, J.; et al. GCKR and ADIPOQ Gene Polymorphisms in Women with Gestational Diabetes Mellitus. Acta Diabetol. 2023, 60, 1709–1718. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T. Adiponectin and Adiponectin Receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef]
- Hou, S.H.; Zhao, Y.Y.; Wang, Y.Y.; Wang, H.J.; Qin, B.Y.; Zhang, N.F.; Le, B.Y.; Cheng, Z.M.; Gao, P.F.; Guo, X.H.; et al. Polymorphism of Adiponectin Gene Exon 2 in Different Pig Breeds and Its Relationship with Body Weights and Body Measurements in Shanxi White Pig. China Anim. Husb. Vet. Med. 2018, 45, 3497–3504. [Google Scholar]
- Morsci, N.S.; Schnabel, R.D.; Taylor, J.F. Association Analysis of Adiponectin and Somatostatin Polymorphisms on BTA1 with Growth and Carcass Traits in Angus Cattle. Anim. Genet. 2006, 37, 554–562. [Google Scholar] [CrossRef]
- Lord, E.; Ledoux, S.; Murphy, B.D.; Beaudry, D.; Palin, M.F. Expression of Adiponectin and Its Receptors in Swine. J. Anim. Sci. 2005, 83, 565–578. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.X.; Cao, W.W.; Zuo, M.; Zhang, W.Q. Meta-analysis of the rs1501299 and rs2241766 polymorphisms of the lipofuscin gene in association with polycystic ovary syndrome. Evid.-Based Med. 2019, 19, 299–308. [Google Scholar]
- Nikanfar, S.; Oghbaei, H.; Rastgar Rezaei, Y.; Zarezadeh, R.; Jafari-Gharabaghlou, D.; Nejabati, H.R.; Bahrami, Z.; Bleisinger, N.; Samadi, N.; Fattahi, A.; et al. Role of Adipokines in the Ovarian Function: Oogenesis and Steroidogenesis. J. Steroid Biochem. Mol. Biol. 2021, 209, 105852. [Google Scholar] [CrossRef]
- Tabandeh, M.R.; Hosseini, A.; Saeb, M.; Kafi, M.; Saeb, S. Changes in the Gene Expression of Adiponectin and Adiponectin Receptors (AdipoR1 and AdipoR2) in Ovarian Follicular Cells of Dairy Cow at Different Stages of Development. Theriogenology 2010, 73, 659–669. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, M.; Li, C.; Xu, Y.; Sun, J.; Lei, C.; Lan, X.; Zhang, C.; Chen, H. Identification and Genetic Effect of a Variable Duplication in the Promoter Region of the Cattle ADIPOQ Gene. Anim. Genet. 2014, 45, 171–179. [Google Scholar] [CrossRef]
- MacArthur Clark, J.A.; Sun, D. Guidelines for the Ethical Review of Laboratory Animal Welfare People’s Republic of China National Standard GB/T 35892-2018 [Issued 6 February 2018 Effective from 1 September 2018]. Anim. Models Exp. Med. 2020, 3, 103–113. [Google Scholar] [CrossRef]
- Regulations on Livestock and Poultry Identification and Farming Record Management. Chin. Poult. 2006, 57–58. Available online: https://kns.cnki.net/kcms2/article/abstract?v=sxrP1m9hSI8ZR0FF9TJaDKFqDjM4gkLXZoaO6Cjorhxuw88oSsipSQl02o5Gz4DZ0eIkgJXzrsZd_qFy5ErXwezoYvqHd4xF7qOnsg2MXvOseiTlyQCMZ92J2jq7KZ2zmFqRtnWQE-m-nGjjobhSE5k1bBcBmfnsAsDpZNdpRhsUTrKSZcBHxgFg9y3lX_l22jbDNPMNlf8=&uni (accessed on 23 July 2024).
- Liu, T.; Ju, X.; Zhang, M.; Wei, C.; Wang, D.; Wang, Z.; Lan, X.; Huang, X.-X. A 67-Bp Variable Duplication in the Promoter Region of the ADIPOQ Is Associated with Milk Traits in Xinjiang Brown Cattle. Anim. Biotechnol. 2022, 33, 1738–1745. [Google Scholar] [CrossRef]
- Zhang, S.; Dang, Y.; Zhang, Q.; Qin, Q.; Lei, C.; Chen, H.; Lan, X. Tetra-Primer Amplification Refractory Mutation System PCR (T-ARMS-PCR) Rapidly Identified a Critical Missense Mutation (P236T) of Bovine ACADVL Gene Affecting Growth Traits. Gene 2015, 559, 184–188. [Google Scholar] [CrossRef]
- Li, J.; Zhu, X.; Ma, L.; Xu, H.; Cao, X.; Luo, R.; Chen, H.; Sun, X.; Cai, Y.; Lan, X. Detection of a New 20-Bp Insertion/Deletion (Indel) within Sheep PRND Gene Using Mathematical Expectation (ME) Method. Prion 2017, 11, 143–150. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jia, W.; Zhang, J.; Li, X.; Pan, C.; Lei, C.; Chen, H.; Dang, R.; Lan, X. Determination of the novel genetic variants of goat stat5a, gene and their effects on body measurement traits in two Chinese native breeds. Small Rumin. Res. 2016, 121, 232–243. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nei, M.; Roychoudhury, A.K. Sampling Variances of Heterozygosity and Genetic Distance. Genetics 1974, 76, 379–390. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Z.; He, Z.; Tang, W.; Li, T.; Zeng, Z.; He, L.; Shi, Y. A Partition-Ligation-Combination-Subdivision EM Algorithm for Haplotype Inference with Multiallelic Markers: Update of the SHEsis (http://Analysis.Bio-x.Cn). Cell Res. 2009, 19, 519–523. [Google Scholar] [CrossRef]
- Pan, C.; Wu, C.; Jia, W.; Xu, Y.; Lei, C.; Hu, S.; Lan, X.; Chen, H. A Critical Functional Missense Mutation (H173R) in the Bovine PROP1 Gene Significantly Affects Growth Traits in Cattle. Gene 2013, 531, 398–402. [Google Scholar] [CrossRef]
- Lv, S.J.; Chen, F.Y.; Zhang, Z.J.; Wang, L.H.; Zhang, S.S.; Wang, E.Y.; Xu, Z.X.; Shi, Q.T. Identification of Candidate Genes for Cattle Reproductive Traits Using Selective Sweep Method. Henan Agric. Sci. 2020, 49, 133–138. [Google Scholar]
- Hu, J.; Li, Q.; Feng, T.; Ding, H.; Yang, Z.; Dong, W. The research on the relation between weight of ovary and quantity of the porcine oocytes. J. Northwest AF Univ. 2005, 12–15+20. [Google Scholar] [CrossRef]
- Maillard, V.; Uzbekova, S.; Guignot, F.; Perreau, C.; Ramé, C.; Coyral-Castel, S.; Dupont, J. Effect of Adiponectin on Bovine Granulosa Cell Steroidogenesis, Oocyte Maturation and Embryo Development. Reprod. Biol. Endocrinol. RBE 2010, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.J.; Gan, W.; Zhu, M. Enhancer-Promoter Interaction Prediction Based on Multi-feature Fusion. Comput. Sci. 2020, 47, 64–71. [Google Scholar]
- Zhao, X.Z.; Zhang, H.L.; Xu, S.F.; Liu, G.L. Analysis of the weight of reproductive traits in the breeding value assessment system of dairy cows. Chin. Dairy Cows 2019, 8–11. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Hao, C.; Tian, Y.; Fu, J. Effects of ADIPOQ Polymorphisms on PCOS Risk: A Meta-Analysis. Reprod. Biol. Endocrinol. RBE 2018, 16, 120. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′-3′) | Length | Function | References |
---|---|---|---|---|
ADIPOQ-F1 | AGAAATGTTCCCTCACCTCAGT | 471 | PCR | [19] |
ADIPOQ-R1 | CTCGGTACTCATGGGGAC | |||
ADIPOQ-F2 | ATTCCACACCTGAGGGGCT | 92 | qRT-PCR | - |
ADIPOQ-R2 | TCTTCCATGTTGTCCTCGCC | |||
β-actin-F1 | CAAGGCCAACCGTGAGAA | 96 | Reference gene | - |
β-actin-R1 | GCATACAGGGACAGCACAG |
Sample | Sample Size | Genotypic Frequencies | Allelic Frequencies | HWE | Population Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
II | ID | DD | p Values | D | I | p Values | Ho | He | Ne | PIC | ||
Ovarian Tissue | 2111 | 0.0005 | 0.013 | 0.9865 | p < 0.05 | 0.993 | 0.007 | p < 0.05 | 0.986 | 0.014 | 1.015 | 0.014 |
Oestrus Cycle | Quantitative Traits | Genotypes | p-Value | ||
---|---|---|---|---|---|
DD | ID | ||||
Late estrus | Ovary | length (mm) | 42.6 ± 0.4 (n = 380) | 36.8 ± 1.9 (n = 8) | 0.059 |
width (mm) | 22.1 ± 1.4 (n = 380) | 22.3 ± 2.7 (n = 8) | 0.957 | ||
height (mm) | 28.5 ± 0.3 (n = 379) | 26.1 ± 1.8 (n = 8) | 0.306 | ||
weight (g) | 12.5 ± 0.3 (n = 380) | 8.0 ± 0.5 (n = 8) | 0.012 * | ||
Mature follicle | number | 0.7 ± 0.1 (n = 246) | 0.8 ± 0.4 (n = 5) | 0.843 | |
diameter (mm) | 8.5 ± 0.5 (n = 194) | 11.0 ± 2.1 (n = 3) | 0.538 | ||
Corpus luteum | number | 1.2 ± 0.0 (n = 380) | 1.0 ± 0.0 (n = 8) | 0.279 | |
diameter (mm) | 18.3 ± 0.4 (n = 373) | 17.4 ± 2.1 (n = 8) | 0.724 | ||
Estrus interval | Ovary | length (mm) | 42.1 ± 0.3 (n = 1083) | 40.9 ± 2.5 (n = 11) | 0.642 |
width (mm) | 21.8 ± 0.2 (n = 1083) | 19.4 ± 0.9 (n = 11) | 0.028 * | ||
height (mm) | 24.9 ± 0.2 (n = 1083) | 25.5 ± 3.0 (n = 11) | 0.763 | ||
weight (g) | 11.2 ± 0.2 (n = 1082) | 9.2 ± 1.4 (n = 11) | 0.212 | ||
Mature follicle | number | 0.4 ± 0.0 (n = 919) | 0.4 ± 0.3 (n = 7) | 0.916 | |
diameter (mm) | 4.9 ± 0.2 (n = 702) | 4.4 ± 3.2 (n = 4) | 0.874 | ||
Corpus luteum | number | 1.7 ± 0.0 (n = 1085) | 1.5 ± 0.3 (n = 11) | 0.531 | |
diameter (mm) | 11.6 ± 0.3 (n = 903) | 12.8 ± 2.4 (n = 11) | 0.609 | ||
Corpus albicans | number | 0.6 ± 0.0 (n = 708) | 0.3 ± 0.3 (n = 3) | 0.728 | |
diameter (mm) | 1.5 ± 0.1 (n = 680) | 1.3 ± 1.3 (n = 3) | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, T.; Zhang, M.; Pan, C.; Liu, X.; Zhao, H.; Lan, X. A Functional 67-bp Duplication Locating at the Core Promoter Region within the Bovine ADIPOQ Gene Is Associated with Ovarian Traits and mRNA Expression. Animals 2024, 14, 2362. https://doi.org/10.3390/ani14162362
Li Y, Liu T, Zhang M, Pan C, Liu X, Zhao H, Lan X. A Functional 67-bp Duplication Locating at the Core Promoter Region within the Bovine ADIPOQ Gene Is Associated with Ovarian Traits and mRNA Expression. Animals. 2024; 14(16):2362. https://doi.org/10.3390/ani14162362
Chicago/Turabian StyleLi, Yufu, Tingting Liu, Mengyang Zhang, Chuanying Pan, Xu Liu, Haiyu Zhao, and Xianyong Lan. 2024. "A Functional 67-bp Duplication Locating at the Core Promoter Region within the Bovine ADIPOQ Gene Is Associated with Ovarian Traits and mRNA Expression" Animals 14, no. 16: 2362. https://doi.org/10.3390/ani14162362
APA StyleLi, Y., Liu, T., Zhang, M., Pan, C., Liu, X., Zhao, H., & Lan, X. (2024). A Functional 67-bp Duplication Locating at the Core Promoter Region within the Bovine ADIPOQ Gene Is Associated with Ovarian Traits and mRNA Expression. Animals, 14(16), 2362. https://doi.org/10.3390/ani14162362