Improving Milk Yield, Milk Quality, and Follicular Functionality Behavior in Dairy Cows from the Implementation of Microencapsulated Chili Pepper Supplements in Their Diets †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Location
2.3. Population
2.4. Synchronization Protocol
2.5. Ultrasonographic Methods
2.6. Follicular and Luteal Parameters
2.7. Milk Quantity and Quality Parameters
2.8. Blood Collection and Hormonal Dosage
2.9. Experimental Rations and Food Analysis
2.10. Statistical Analysis
2.11. Confidentiality
3. Results
3.1. Milk Yield and Composition
3.2. Ovarian Morphofunctionality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCoy, J.; Martínez-Ainswoth, N.; Scheppler, H.; Hedblom, G.; Adhikari, A.; McCornick, A.; Kantar, M.; McHale, L.; Barbolla, L.J.; Mercer, K.; et al. Population structure in diverse pepper (Capsicum spp.) accessions. BMC Res. Notes 2023, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pérez, T.; Gímez-García, M.R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hernández, S.C.; Carrillo-Rodríguez, J.C.; Vera-Guzmán, A.M.; Chávez-Servia, J.L.; Aquino-Bolaños, E.N.; Alba-Jiménez, J.E.; Vásquez Davila, M.A. Agromorphological Trair and Bioactive Compounds of Four Mexican Chili Peppers (Capsicum annuum var. annuum L.). Afr. J. Food Agric. Nutr. Dev. 2023, 23, 24487–24506. [Google Scholar]
- Hall, R.D.; Yeoman, M.M. The influence of intracellular pools of phenylalanine derivatives upon the synthesis of capsaicin by immobilized cell cultures of the chili pepper, Capsicum frutescens. Planta 1991, 185, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Damaralam Sahid, Z.; Syukur, M.; Maharijaya, A.; Nurchilis, W. Total phenolic and flavonoid contents, antioxidant, and α-glucosidase inhibitory activities of several big chili (Capsicum annuum L.) genotypes. Cienc. Rural 2023, 53, 1–8. [Google Scholar]
- Yang, S.; Liu, L.; Meng, L.; Hu, X. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet. Chem.-Biol. Interact. 2019, 297, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.M.; Coelho, B.S.L.; Vichi, T.M.; Santos, E.A.; Gondum, F.K.B.; Diniz, A.B.; Aguilar, E.C.; Cara, D.C.; Porto, L.C.J.; Castro, I.C.; et al. Oral supplementation with capsaicin reduces oxidative stress and IL-33 on a food allergy murine model. World Allergy Organ. J. 2019, 12, 100045. [Google Scholar] [CrossRef]
- Vittorazi Jr, P.C.; Takiya, C.S.; Nunes, A.T.; Chesini, R.G.; Bugoni, M.; Silva, G.G.; Silva, T.B.P.; Días, M.S.S.; Grigoletto, N.T.S.; Rennó, F.P. Feeding encapsulated pepper to dairy cows during the hot season improves performance without affecting core and skin. J. Dairy Sci. 2022, 105, 9542–9551. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Harper, M.T.; Melgar, A.; Räisänen, S.; Chen, X.; Nedelkov, K.; Fetter, M.; Ott, T.; Wall, E.H.; Hristov, A.N. Dietary supplementation with rumen-protected capsicum during the transition period improves the metabolic status of dairy cows. J. Dairy Sci. 2021, 104, 11609–11620. [Google Scholar] [CrossRef]
- An, Z.; Zhang, X.; Gao, S.; Zhou, D.; Riaz, U.; Abdelrahman, M.; Hua, G.; Yang, L. Effects of Capsicum Oleoresin Supplementation on Lactation Performance, Plasma Metabolites, and Nutrient Digestibility of Heat Stressed Dairy Cow. Animals 2022, 12, 797. [Google Scholar] [CrossRef]
- Oh, J.; Giallongo, F.; Frederick, T.; Pate, J.; Walusimbi, S.; Elias, R.J.; Hall, E.H.; Bravo, D.; Hristov, A.N. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J. Dairy Sci. 2015, 98, 6327–6339. [Google Scholar] [CrossRef] [PubMed]
- Abulaiti, A.; Ahmed, Z.; Naseer, Z.; El-Qaliouby, H.S.; Iqbal, M.F.; Hua, G.H.; Yang, L.G. Effect of capsaicin supplementation on lactational and reproductive performance of Holstein cows during summer. Anim. Prod. Sci. 2021, 61, 1321–1328. [Google Scholar] [CrossRef]
- Foskolos, A.; Ferret, A.; Siurana, A.; Castillejos, L.; Calsamiglia, S. Effects of Capsicum and Propyl-Prooane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows. Animals 2020, 10, 859. [Google Scholar] [CrossRef] [PubMed]
- Van Gastelen, S.; Yáñez-Ruiz, D.; Khelil-Arfa, H.; Blanchard, A.; Bannink, A. Effect of a blend of cinnamaldehyde, eugenol, and Capsicum oleoresin on methane emission and lactation performance of Holstein-Friesian dairy cows. J. Dairy Sci. 2024, 107, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, P.W.; Calsamiglia, S.; Fettet, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Sklan, D.; Ashkenazi, R.; Braun, A.; Devorin, A.; Tabori, K. Fatty acids, calcium soaps of fatty acids and cottonseeds fed to high yielding cows. J. Dairy Sci. 1992, 75, 2463–2472. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirement of Dairy Cow; National Academy Press: Cambridge, MA, USA, 2001. [Google Scholar]
- AOAC. Official Methods of Analysis; The Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds That Contain Non-Protein Nitrogen; Bulletin 339; University of Florida: Gainesville, FL, USA, 2000; pp. 1–25. [Google Scholar]
- Weiss, W.P.; Conrad, H.R.; Pierre, N.R.S.T.A. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Mutimura, M.; Ebong, C.; Rao, I.M.; Nsahlai, I.V. Effects of supplementation of Brachiaria brizantha cv. Piatá and Napier grass with Desmodium distortum on feed intake, digesta kinetics and milk production in crossbred dairy cows. Anim. Nutr. 2018, 4, 222–227. [Google Scholar] [CrossRef]
- Gross, J.J. Dairy cow physiology and production limits. Anim. Front. 2023, 13, 44–50. [Google Scholar] [CrossRef]
- Silvestre, T.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Martins, L.F.; Wall, E.; Hristov, A.N. Effects of a combination of Capsicum oleoresin and clove essential oil on metabolic status, lactational performance, and enteric methane emissions in dairy cows. J. Dairy Sci. 2022, 105, 9610–9622. [Google Scholar] [CrossRef]
- Ujita, A.; Negrão, J.A.; Vercesi Filho, A.E.; Fernandes, A.R.; El Faro, L. Milk lactoferrin and milk constituents in dairy Gyr heifers. Livest. Sci. 2019, 226, 87–92. [Google Scholar] [CrossRef]
- Ormston, S.; Davis, H.; Butler, G.; Chatzidimitriou, E.; Theodoridou, K.; Huws, S.; Yan, T.; Leifert, C.; Stergiadis, S. Productivity, efficiency and milk fatty acid profile of Jersey crossbred cows in low-input dairy systems. Anim.-Sci. Proc. 2022, 13, 54–55. [Google Scholar] [CrossRef]
- Charton, C.; Guinard-Flament, J.; Lefebvre, E.; Barbey, S.; Gallard, Y.; Boichard, D.; Larroque, H. Genetic parameters of milk production traits in response to a short once-daily milking period in crossbred Holstein × Normande dairy cows. J. Dairy. Sci 2018, 101, 2235–2247. [Google Scholar] [CrossRef]
- Kozerski, N.D.; Signoretti, R.D.; Souza, J.C.; Daley, V.S.; Freitas, J.A. Use of monensin in lactating crossbred dairy cows (Holstein × Gyr) raised on tropical pastures with concentrate supplementation. Anim. Feed. Sci. Technol. 2017, 232, 119–128. [Google Scholar] [CrossRef]
- Jayawardana, J.M.D.R.; Lopez-Villalobos, N.; McNaughton, L.R.; Hickson, R.E. Heritabilities and genetic and phenotypic correlations for milk production and fertility traits of spring-calved once-daily or twice-daily milking cows in New Zealand. J. Dairy Sci. 2023, 106, 1910–1924. [Google Scholar] [CrossRef]
- Sauls-Hiesterman, J.A.; Olagaray, K.E.; Sivinski, S.E.; Bradford, B.J.; Stevenson, J.S. First postpartum ovulation, metabolites and hormones in folicular fluid and blood in transition dairy cows supplemented with a Saccharomyces cerevisiae fermentation product. Theriogenology 2021, 164, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.F.; Donkin, S.S.; Pereira, M.N.; Pereira, R.A.N.; Peconick, A.P.; Santos, J.P.; Silva, R.B.; Caproni, V.R.; Parys, C.; Danes, M.A.C. Effect of protein level and methionine supplementation on dairy cows during the transition period. J. Dairy Sci. 2021, 104, 5467–5478. [Google Scholar] [CrossRef] [PubMed]
- Fandiño, I.; Calsamiglia, S.; Ferret, A.; Blanch, M. Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers. Anim. Feed. Sci. Technol. 2008, 145, 409–417. [Google Scholar] [CrossRef]
- Rodríguez-Prado, M.; Ferret, A.; Zwieten, J.; Gonzalez, L.; Bravo, D.; Calsamiglia, S. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high. Concentrate diet. J. Anim. Sci. 2012, 90, 1879–1884. [Google Scholar] [CrossRef]
- Silva, R.B.D.; Pereira, M.N.; Araujo, R.C.D.; Silva, W.D.R.; Pereira, R.A.N. A blend of essential oils improved feed efficiency and affected ruminal and systemic variables of dairy cows. Transl. Anim. Sci. 2020, 4, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Temmar, R.; Rodríguez-Prado, M.; Forgeard, G.; Rougier, C.; Calsamiglia, S. Interactions among Natural Active Ingredients to Improve the Efficiency of Rumen Fermentation In Vitro. Animals 2021, 11, 1205. [Google Scholar] [CrossRef] [PubMed]
- Zafra, M.A.; Molina, F.; Puerto, A. Effects of perivagal administration of capsaicin on post-surgical food intake. Auton. Neurosci. 2003, 107, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lechniak, D.; Szumacher-Strabel, M.; Patra, A.K.; Kozłowska, M.; Kolodziejski, P.; Gao, M.; Ślusarczyk, S.; Petriĉ, D.; Cieslak, A. The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J. Anim. Sci. Biotechnol. 2022, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Harper, M.; Giallongo, F.; Bravo, D.M.; Wall, E.H.; Hristov, A.N. Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows. J. Dairy Sci. 2017, 100, 1888–1901. [Google Scholar] [CrossRef] [PubMed]
- Spector, M.P. Encyclopedia of Microbiology, 3rd ed.; Elservier: Amsterdam, The Netherlands, 2009; pp. 242–264. [Google Scholar]
- Harmon, R.J. Mastitis and genetic evaluation for somatic cell count. J. Dairy Sci. 1994, 77, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.S.; Maggiti Junior, L.D.P.; Ferraz, P.A.; Vaconcelos, I.C.; Carvalho, J.V.G.D.S.; Loiola, M.V.G.; Bittencourt, R.F.; Madrigal-Valverde, M.; Cavalcante, A.K.S.; Barbosa, L.P.; et al. Effects of equine chorionic gonadotropin administered via the Baihui acupoint on follicular ovarian dynamics and the luteal function of cattle during an ovulation synchronization treatment regimen for fixed-time artificial insemination. Anim. Reprod. Sci. 2020, 223, 106631. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.; Silva, M.A.A.; Brandão Bittencourt, R.F.; Chalhoub, M.; Ribeiro Filho, A.D.L. Follicular diameter and fertility of dairy cows submitted to IATF protocol with adjustments in proestrus. Arch. Vet. Sci. 2017, 22, 40–49. [Google Scholar]
- Ferraz, P.A.; Silva, M.A.A.; Carôso, B.S.S.; Araujo, E.A.B.; Bittencourt, T.C.B.S.C.; Chalhoub, M.; Bittencourt, R.F.; Ribeiro Filho, A.L. Effect of eCG on the follicular dynamics and vascularization of crossbred cows with different circulating progesterone concentrations during synchronization of ovulation in an FTAI protocol. Pesqui. Vet. Bras. 2019, 39, 324–331. [Google Scholar] [CrossRef]
- Roa-Vega, M.L.; Ladino-Romero, E.A.; Hernández-Martínez, M.C. Indicadores de bioquímica sanguínea en bovinos suplementados con Cratylia argentea y Saccharomyces cerevisiae. Pastos Forrajes 2017, 40, 144–151. [Google Scholar]
- Wondie Alemu, T.; Schuermann, Y.; Madogwe, E.; St. Yves, A.; Dicks, N.; Bohrer, R.; Higginson, V.; Mondadori, R.G.; Priotto de Macedo, M.; Taibi, M.; et al. Severer body condition loss lower hepatic output of IGF1 with adverse effects on the dominant follicle in dairy cows. Animal 2024, 18, 101063. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.G.B.; Faria, J.V.; Santos, J.P.S.; Faria, R.X. Capsaicin: TRPV1-independent mechanisms and novel therapeutic possibilities. Eur. J. Pharmacol. 2020, 887, 173356. [Google Scholar] [CrossRef] [PubMed]
- Patowary, P.; Pathak, M.P.; Zaman, K.; Raju, P.S.; Chattopadhyay, P. Research progress of capsaicin responses to various pharmacological challenges. Biomed. Pharmacother. 2017, 96, 1501–1512. [Google Scholar] [CrossRef]
- Heather, C.; Bora, I.; Ma, L.; Zheng, J.; Schaefer, S. TRPV1 Channels are involved in niacin-induced cutaneous vasodilation in mice. J. Cardiovasc. Pharmacol. 2015, 65, 184–191. [Google Scholar]
- Wang, L.; Luo, M.; Wang, Y.; Galligan, J.; Wang, D.H. Impaired vasodilation in response to perivascular nerve stimulation in mesenteric arteries of TRPV1-null mutant mice. J. Hypertens. 2006, 24, 2399–2408. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.; Silva, M.A.A.; Brandão, T.O.; Nascimento, A.B.; Bittencourt, R.F.; Chalhoub, M.; Bittencourt, T.C.B.S.C.; Ribeiro Filho, A.L. Efficacy of the double PGF2 alpha dose-eCG association in proestrus of crossbred dairy cows submitted to IATF. Pesqui. Vet. Bras. 2018, 38, 1518–1527. [Google Scholar] [CrossRef]
- Acosta, T.J. Studies of Follicular Vascularity Associated with Follicle Selection and Ovulation in Cattle. J. Reprod. Dev. 2007, 53, 39–44. [Google Scholar] [CrossRef]
- Acosta, T.J.; Hayashi, K.G.; Marsui, M.; Miyamoto, A. Changes in Follicular Vascularity during the first follicular wave in lactating cows. J. Reprod. Dev. 2005, 51, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Narváez, H.J.; Quintero Rodríguez, L.E. Progesterone circulation and follicular growth in adapted Bos taurus cows. Vet. Res. Forum. 2023, 14, 397–400. [Google Scholar]
- Bonato, D.V.; Ferreira, E.B.; Gomes, D.N.; Bonato, F.G.C.; Droher, R.G.; Morotti, F.; Seneda, M.M. Follicular dynamics, luteal characteristics, and progesterone concentrations in synchronized lactating Holstein cows with high and low antral follicle counts. Theriogenology 2022, 179, 223–229. [Google Scholar] [CrossRef]
- Barreiros, T.R.R.; Blaschi, W.; Santos, G.M.G.; Morotti, F.; Andrade, E.R.; Baruselli, P.S.; Seneda, M.M. Dynamics of follicular growth and progesterone concentration in cyclic and anestrous suckling Nelore cows (Bos indicus) treated with progesterone, equine chorionic gonadotropin, or temporary calf removal. Theriogenology 2014, 81, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.M.G.D.; Bortolassi Junior, L.; Silva-Santos, K.C.; Dias, J.H.A.; Dias, I.D.S.; Seneda, M.M.; Morotti, F. Conception rate and pregnancy loss in fixed-time cattleembryo transfer programs are related to the luteal bloodperfusion but not to the corpus luteum size. Theriogenology 2023, 210, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Sitko, E.M.; Laplacette, A.; Duhatschek, D.; Rial, C.; Perez, M.M.; Tompkins, S.; Kerwin, A.L.; Domingues, R.R.; Wiltbank, M.C.; Giordano, J.O. The ovarian function and endocrine phenotypes of lactating dairy cows during the estrous cycle were associated with genomic-enhanced predictions of fertility potential. J. Dairy Sci. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Mion, B.; Madureira, G.; Spricigo, J.F.W.; King, K.; Van Winters, B.; LaMarre, J.; LeBlanc, S.J.; Steele, M.A.; Ribeiro, E.S. Effects of source of supplementary trace minerals in pre-and postpartum diets on reproductive biology and performance in dairy cows. J. Anim. Sci. 2023, 106, 5076–5095. [Google Scholar] [CrossRef] [PubMed]
Item (% of DM) | Supplement | Grass Pangola (Digitaria decumbens) | Corn Silage |
---|---|---|---|
Ground corn | 60.00 | - | - |
Soybean meal | 34.00 | - | - |
Urea | 3.20 | - | - |
Mineral 1 | 2.80 | - | - |
Chemical composition (% DM) 2 | |||
DM | 93.86 | 88.97 | 82.59 |
OM | 93.7 | 91.89 | 94.97 |
Ash | 6.30 | 8.11 | 5.03 |
CP | 25.39 | 5.60 | 8.10 |
EE | 4.00 | 5.50 | 4.97 |
NDF | 10.95 | 70.95 | 47.12 |
ADF | 6.97 | 39.66 | 24.81 |
Total digestible nutrients (g/kg) 3 | 582.46 | 64.76 | 73.44 |
Net energy (Mcal/kg of DM) 4 | 7.46 | 1.47 | 1.68 |
Item | Treatment 1 | EPM | p-Value 2 | |||
---|---|---|---|---|---|---|
CT | CP | Group | Week | Inter | ||
Production (kg/day) | ||||||
Milk production | 8.29 | 9.59 | 2.52 | 0.144 | <0.0001 | 0.011 |
FCM (3.5%) | 8.31 | 8.91 | 3.21 | 0.522 | 0.010 | 0.239 |
Fat | 0.03 | 0.03 | 0.16 | 0.780 | 0.043 | 0.302 |
Protein | 0.03 | 0.03 | 0.07 | 0.199 | 0.024 | 0.034 |
Lactose | 0.04 | 0.04 | 0.12 | 0.161 | <0.0001 | 0.019 |
TDE | 0.10 | 0.11 | 0.30 | 0.189 | 0.007 | 0.002 |
NFDE | 0.07 | 0.08 | 0.22 | 0.155 | 0.007 | 0.020 |
Composition | ||||||
Fat (%) | 3.31 | 3.15 | 1.22 | 0.528 | 0.195 | 0.436 |
Protein (%) | 3.11 | 3.01 | 0.31 | 0.217 | 0.125 | 0.881 |
Lactose (%) | 4.51 | 4.50 | 0.38 | 0.936 | <0.0001 | 0.725 |
TDE (%) | 11.52 | 11.39 | 1.26 | 0.617 | 0.129 | 0.142 |
NFDE (%) | 8.63 | 8.54 | 0.64 | 0.572 | 0.331 | 0.418 |
MUN (mg/dL) | 9.64 | 9.36 | 3.13 | 0.638 | <0.0001 | 0.406 |
SCC (unit/mL) | 112.52 | 154.94 | 131.47 | 0.282 | 0.670 | 0.462 |
Item | Treatment 1 | EPM | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
CT | CP | Group (G) | Week (W) | W × W | W × W × W | G × W | G × W × W | ||
FOLD8 (cm) | 0.93 ± 0.10 | 0.61 ± 0.11 | 0.113 | 0.011 | 0.772 | 0.669 | 0.597 | 0.651 | 0.683 |
FOLD9 (cm) | 1.21 ± 0.10 | 0.85 ± 0.11 | 0.094 | 0.001 | |||||
FOLD10 (cm) | 1.40 ± 0.09 | 1.02 ± 0.09 | 0.090 | <0.001 | |||||
FOLD11 (cm) | 1.43 ± 0.13 | 1.06 ± 0.13 | 0.131 | 0.001 | |||||
FOLAD8 (cm2) | 0.56 ± 0.08 | 0.35 ± 0.08 | 0.083 | 0.019 | 0.559 | 0.931 | 0.755 | 0.681 | 0.745 |
FOLAD9 (cm2) | 0.67 ± 0.07 | 0.45 ± 0.07 | 0.076 | 0.009 | |||||
FOLAD10 (cm2) | 0.83 ± 0.09 | 0.60 ± 0.09 | 0.109 | 0.047 | |||||
FOLAD11 (cm2) | 1.05 ± 0.16 | 0.80 ± 0.15 | 0.179 | 0.179 |
Item | Treatment 1 | p-Value 2 | |
---|---|---|---|
CT | CP | ||
FOLD (cm) | 1.44 ± 1.23 | 1.08 ± 1.12 | 0.009 |
FOLA (cm2) | 1.62 ± 0.25 | 1.00 ± 0.25 | 0.025 |
FOLGR (cm/d) | 0.66 ± 0.14 | 0.50 ± 0.14 | 0.254 |
HOV (h) | 75.49 ± 5.02 | 78.66 ± 5.40 | 0.582 |
Item | Treatment 1 | EPM | p-Value 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
CT | CP | Group (G) | Week (W) | W × W | W × W × W | G × W | G × W × W | ||
FOLVD8 (cm2) | 0.21 ± 0.03 | 0.17 ± 0.04 | 0.036 | 0.276 | 0.948 | 0.914 | 0.898 | 0.302 | 0.334 |
FOLVD9 (cm2) | 0.32 ± 0.04 | 0.24 ± 0.04 | 0.043 | 0.056 | |||||
FOLD10 (cm2) | 0.41 ± 0.05 | 0.31 ± 0.04 | 0.053 | 0.082 | |||||
FOLD11 (cm2) | 0.45 ± 0.07 | 0.39 ± 0.06 | 0.090 | 0.465 | |||||
%FOLVD8 | 35.58 ± 8.03 | 39.50 ± 9.12 | 9.567 | 0.843 | 0.307 | 0.284 | 0.262 | 0.246 | 0.235 |
%FOLVD9 | 45.05 ± 8.15 | 40.17 ± 8.68 | 8.562 | 0.576 | |||||
%FOLVD10 | 47.38 ± 7.56 | 47.51 ± 8.03 | 8.285 | 0.987 | |||||
%FOLVD11 | 25.80 ± 11.46 | 42.77 ± 10.70 | 14.40 | 0.254 |
Item | Treatment 1 | p-Value 2 | |
---|---|---|---|
CT | CP | ||
FOLV (cm) | 0.41 ± 0.08 | 0.36 ± 0.08 | 0.593 |
%FOLV | 37.66 ± 9.66 | 40.32 ± 9.95 | 0.079 |
Item | Treatment 1 | p-Value 2 | |
---|---|---|---|
CT | CP | ||
CLA cm2 | 3.05 ± 0.35 | 3.11 ± 0.37 | 0.900 |
CLV cm2 | 1.95 ± 0.38 | 1.95 ± 0.40 | 0.984 |
%CLV | 67.12 ± 9.68 | 65.13 ± 10.11 | 0.858 |
P4 | 2.87 ± 1.55 | 2.20 ± 1.82 | 0.374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrigal-Valverde, M.; Loiola, M.V.G.; Freitas Júnior, J.E.d.; Santiago, M.R.; Dantas, L.L.; Menezes, A.A.; de Matos Brandão Carneiro, I.; Xavier, G.M.; Araujo, E.A.B.; Pereira, J.R.; et al. Improving Milk Yield, Milk Quality, and Follicular Functionality Behavior in Dairy Cows from the Implementation of Microencapsulated Chili Pepper Supplements in Their Diets. Animals 2024, 14, 2361. https://doi.org/10.3390/ani14162361
Madrigal-Valverde M, Loiola MVG, Freitas Júnior JEd, Santiago MR, Dantas LL, Menezes AA, de Matos Brandão Carneiro I, Xavier GM, Araujo EAB, Pereira JR, et al. Improving Milk Yield, Milk Quality, and Follicular Functionality Behavior in Dairy Cows from the Implementation of Microencapsulated Chili Pepper Supplements in Their Diets. Animals. 2024; 14(16):2361. https://doi.org/10.3390/ani14162361
Chicago/Turabian StyleMadrigal-Valverde, Mónica, Marcus Vinicius Galvão Loiola, José E. de Freitas Júnior, Murilo R. Santiago, Lara Lôbo Dantas, Artur Azevedo Menezes, Isabella de Matos Brandão Carneiro, Gleice Mendes Xavier, Endrigo Adonis Braga Araujo, Juliana Reolon Pereira, and et al. 2024. "Improving Milk Yield, Milk Quality, and Follicular Functionality Behavior in Dairy Cows from the Implementation of Microencapsulated Chili Pepper Supplements in Their Diets" Animals 14, no. 16: 2361. https://doi.org/10.3390/ani14162361
APA StyleMadrigal-Valverde, M., Loiola, M. V. G., Freitas Júnior, J. E. d., Santiago, M. R., Dantas, L. L., Menezes, A. A., de Matos Brandão Carneiro, I., Xavier, G. M., Araujo, E. A. B., Pereira, J. R., & Bittencourt, R. F. (2024). Improving Milk Yield, Milk Quality, and Follicular Functionality Behavior in Dairy Cows from the Implementation of Microencapsulated Chili Pepper Supplements in Their Diets. Animals, 14(16), 2361. https://doi.org/10.3390/ani14162361