Early Detection of Chronic Kidney Disease Using Plasma Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 in Small-Breed Dogs: A Retrospective Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Processing and Biomarker Analysis
2.3. Chronic Kidney Disease Staging and Group Classification
2.4. Statistical Analysis
3. Results
3.1. Relationship and Distribution of Each Plasma Kidney Injury Biomarker
3.2. Identification of the Risk and Stage 1 Groups Using log2pKIM-1 and log2pNGAL Markers
3.3. Correlation between Biomarkers and Other Clinical Factors
3.4. Confirmation of Equivalence between Groups
3.5. Clinical Efficacy Comparison and Gray Area Determination of Renal Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cowgill, L.D.; Polzin, D.J.; Elliott, J.; Nabity, M.B.; Segev, G.; Grauer, G.F.; Brown, S.; Langston, C.; van Dongen, A.M. Is progressive chronic kidney disease a slow acute kidney injury? Vet. Clin. Small Anim. Pract. 2016, 46, 995–1013. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Cheng, Z.; Qian, Q. Intravenous Fluids and Acute Kidney Injury. Blood Purif. 2017, 43, 163–172. [Google Scholar] [CrossRef]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Almes, K.; Jewell, D.E. Serum Concentrations of Symmetric Dimethylarginine and Creatinine in Dogs with Naturally Occurring Chronic Kidney Disease. J. Vet. Intern. Med. 2016, 30, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Miyagawa, Y.; Takemura, N.; Hirose, H. Assessments of factors that affect glomerular filtration rate and indirect markers of renal function in dogs and cats. J. Vet. Med. Sci. 2010, 72, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Ghys, L.; Paepe, D.; Smets, P.; Lefebvre, H.; Delanghe, J.; Daminet, S. Cystatin C: A new renal marker and its potential use in small animal medicine. J. Vet. Intern. Med. 2014, 28, 1152–1164. [Google Scholar] [CrossRef] [PubMed]
- Von Hendy-Willson, V.E.; Pressler, B.M. An overview of glomerular filtration rate testing in dogs and cats. Vet. J. 2011, 188, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Paes-Leme, F.O.; Souza, E.M.; Paes, P.R.O.; Gomes, M.G.; Muniz, F.S.; Campos, M.T.G.; Peixoto, R.B.; Vaz de Melo, P.D.; Arndt, M.H.L.; Costa Val, A. Cystatin C and Iris: Advances in the Evaluation of Kidney Function in Critically Ill Dog. Front. Vet. Sci. 2021, 8, 721845. [Google Scholar] [CrossRef]
- McKenna, M.; Pelligand, L.; Elliott, J.; Walker, D.; Jepson, R. Clinical utility of estimation of glomerular filtration rate in dogs. J. Vet. Intern. Med. 2020, 34, 195–205. [Google Scholar] [CrossRef]
- Yu, A.S.L.; Chertow, G.M.; Luyckx, V.A.; Marsden, P.A.; Skorecki, K.; Taal, M.W. The renal biopsy. In Brenner & Rector’s the Kidney, 11th ed.; Elsevier: Philadelphia, PA, USA, 2020; pp. 862–871. [Google Scholar]
- Hokamp, J.A.; Cianciolo, R.E.; Boggess, M.; Lees, G.E.; Benali, S.L.; Kovarsky, M.; Nabity, M.B. Correlation of Urine and Serum Biomarkers with Renal Damage and Survival in Dogs with Naturally Occurring Proteinuric Chronic Kidney Disease. J. Vet. Intern. Med. 2016, 30, 591–601. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Miyagawa, Y.; Akabane, R.; Ogawa, M.; Nagakawa, M.; Miyakawa, H.; Takemura, N. Serum cystatin C concentration can be used to evaluate glomerular filtration rate in small dogs. J. Vet. Med. Sci. 2021, 82, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Pocar, P.; Scarpa, P.; Berrini, A.; Cagnardi, P.; Rizzi, R.; Borromeo, V. Diagnostic potential of simplified methods for measuring glomerular filtration rate to detect chronic kidney disease in dogs. J. Vet. Intern. Med. 2019, 33, 2105–2116. [Google Scholar] [CrossRef]
- Nivy, R.; Chaim, N.; Hanael, E.; Sutton, G.A.; Bruchim, Y.; Aroch, I.; Segev, G. Prospective evaluation of 5 urinary biomarkers as predictors of acute kidney injury in nonazotemic, hospitalized dogs. J. Vet. Intern. Med. 2021, 35, 2812–2820. [Google Scholar] [CrossRef]
- Ulleberg, T.; Robben, J.; Nordahl, K.M.; Ulleberg, T.; Heiene, R. Plasma creatinine in dogs: Intra- and inter-laboratory variation in 10 European veterinary laboratories. Acta Vet. Scand. 2011, 53, 25. [Google Scholar] [CrossRef]
- Lee, Y.J.; Chan, J.P.; Hsu, W.L.; Lin, K.W.; Chang, C.C. Prognostic factors and a prognostic index for cats with acute kidney injury. J. Vet. Intern. Med. 2012, 26, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Doi, K. Role of kidney injury in sepsis. J. Intensive Care 2016, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Hokamp, J.A.; Nabity, M.B. Renal biomarkers in domestic species. Vet. Clin. Pathol. 2016, 45, 28–56. [Google Scholar] [CrossRef]
- Nabity, M.B.; Lees, G.E.; Boggess, M.M.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Rakitin, A.; Aguiar, J.; Relford, R. Symmetric Dimethylarginine Assay Validation, Stability, and Evaluation as a Marker for the Early Detection of Chronic Kidney Disease in Dogs. J. Vet. Intern. Med. 2015, 29, 1036–1044. [Google Scholar] [CrossRef]
- Endre, Z.H.; Pickering, J.W.; Walker, R.J. Clearance and beyond: The complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am. J. Physiol. Renal Physiol. 2011, 301, F697–F707. [Google Scholar] [CrossRef]
- Zou, C.; Wang, C.; Lu, L. Advances in the study of subclinical AKI biomarkers. Front. Physiol. 2022, 13, 960059. [Google Scholar] [CrossRef]
- De Loor, J.; Daminet, S.; Smets, P.; Maddens, B.; Meyer, E. Urinary biomarkers for acute kidney injury in dogs. J. Vet. Intern. Med. 2013, 27, 998–1010. [Google Scholar] [CrossRef]
- Harjen, H.J.; Nicolaysen, T.V.; Negard, T.; Lund, H.; Saevik, B.K.; Anfinsen, K.P.; Moldal, E.R.; Zimmer, K.E.; Rortveit, R. Serial serum creatinine, SDMA and urinary acute kidney injury biomarker measurements in dogs envenomated by the European adder (Vipera berus). BMC Vet. Res. 2021, 17, 154. [Google Scholar] [CrossRef] [PubMed]
- Adiyanti, S.S.; Loho, T. Acute Kidney Injury (AKI) biomarker. Acta Med. Indones 2012, 44, 246–255. [Google Scholar]
- Kai, K.; Yamaguchi, T.; Yoshimatsu, Y.; Kinoshita, J.; Teranishi, M.; Takasaki, W. Neutrophil gelatinase-associated lipocalin, a sensitive urinary biomarker of acute kidney injury in dogs receiving gentamicin. J. Toxicol. Sci. 2013, 38, 269–277. [Google Scholar] [CrossRef]
- Albert, C.; Haase, M.; Albert, A.; Zapf, A.; Braun-Dullaeus, R.C.; Haase-Fielitz, A. Biomarker-Guided Risk Assessment for Acute Kidney Injury: Time for Clinical Implementation? Ann. Lab. Med. 2021, 41, 1–15. [Google Scholar] [CrossRef]
- Bruno, B.; Troia, R.; Dondi, F.; Maurella, C.; Gianella, P.; Lippi, I.; Tarducci, A.; Borrelli, A. Stage 1-Biomarkers of Kidney Injury in Dogs Undergoing Constant Rate Infusion of Hydroxyethyl Starch 130/0.4. Animals 2021, 11, 2555. [Google Scholar] [CrossRef]
- Axelsson, L.; Bergenfeldt, M.; Ohlsson, K. Studies of the release and turnover of a human neutrophil lipocalin. Scand. J. Clin. Lab. Investig. 1995, 55, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Philips, B.J.; Forni, L.G. Clinical review: Biomarkers of acute kidney injury: Where are we now? Crit. Care 2012, 16, 233. [Google Scholar] [CrossRef] [PubMed]
- Mishra, O.P.; Rai, A.K.; Srivastava, P.; Pandey, K.; Abhinay, A.; Prasad, R.; Mishra, R.N.; Schaefer, F. Predictive ability of urinary biomarkers for outcome in children with acute kidney injury. Pediatr. Nephrol. 2017, 32, 521–527. [Google Scholar] [CrossRef]
- Steinbach, S.; Weis, J.; Schweighauser, A.; Francey, T.; Neiger, R. Plasma and urine neutrophil gelatinase-associated lipocalin (NGAL) in dogs with acute kidney injury or chronic kidney disease. J. Vet. Intern. Med. 2014, 28, 264–269. [Google Scholar] [CrossRef]
- Haase, M.; Haase-Fielitz, A.; Bellomo, R.; Mertens, P.R. Neutrophil gelatinase-associated lipocalin as a marker of acute renal disease. Curr. Opin. Hematol. 2011, 18, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Sabbisetti, V.S.; Waikar, S.S.; Antoine, D.J.; Smiles, A.; Wang, C.; Ravisankar, A.; Ito, K.; Sharma, S.; Ramadesikan, S.; Lee, M.; et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 2014, 25, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Wang, N. Kidney injury molecule-1 in kidney disease. Ren. Fail. 2016, 38, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Bland, S.K.; Schmiedt, C.W.; Clark, M.E.; DeLay, J.; Bienzle, D. Expression of Kidney Injury Molecule-1 in Healthy and Diseased Feline Kidney Tissue. Vet. Pathol. 2017, 54, 490–510. [Google Scholar] [CrossRef]
- Zheng, J.S.; Jing, N.; Zhu, T.T.; Ruan, H.R.; Xue, W.; Rui, W. Screening of Early Diagnostic Markers of Gentamicin-induced Acute Kidney Injury in Canines. J. Vet. Res. 2019, 63, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, B.D.; Xu, F.; Sabbisetti, V.; Grgic, I.; Movahedi Naini, S.; Wang, N.; Chen, G.; Xiao, S.; Patel, D.; Henderson, J.M.; et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Investig. 2013, 123, 4023–4035. [Google Scholar] [CrossRef]
- Vaidya, V.S.; Ferguson, M.A.; Bonventre, J.V. Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 463–493. [Google Scholar] [CrossRef]
- van den Berg, M.F.; Schoeman, J.P.; Defauw, P.; Whitehead, Z.; Breemersch, A.; Goethals, K.; Daminet, S.; Meyer, E. Assessment of acute kidney injury in canine parvovirus infection: Comparison of kidney injury biomarkers with routine renal functional parameters. Vet. J. 2018, 242, 8–14. [Google Scholar] [CrossRef]
- Bexfield, N.H.; Heiene, R.; Gerritsen, R.J.; Risoen, U.; Eliassen, K.A.; Herrtage, M.E.; Michell, A.R. Glomerular filtration rate estimated by 3-sample plasma clearance of iohexol in 118 healthy dogs. J. Vet. Intern. Med. 2008, 22, 66–73. [Google Scholar] [CrossRef]
- International Renal Interest Society. IRIS Staging of CKD. Available online: http://www.iris-kidney.com/index.html (accessed on 27 April 2023).
- International Renal Interest Society. CKD Risk Factors. Available online: http://www.iris-kidney.com/education/education/risk_factors.html (accessed on 6 October 2023).
- Liu, X. Classification accuracy and cut point selection. Stat. Med. 2012, 31, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
- Savarese, A.; Probo, M.; Locatelli, C.; Zanzani, S.A.; Gazzonis, A.L.; Papa, M.; Brambilla, P.G. Reliability of symmetric dimethylarginine in dogs with myxomatous mitral valve disease as kidney biomarker. Open Vet. J. 2018, 8, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Kovarikova, S. Urinary biomarkers of renal function in dogs and cats: A review. Veterinární Medicína 2016, 60, 589–602. [Google Scholar] [CrossRef]
- Troth, S.P.; Vlasakova, K.; Amur, S.; Amin, R.P.; Glaab, W.E. Translational Safety Biomarkers of Kidney Injury. Semin. Nephrol. 2019, 39, 202–214. [Google Scholar] [CrossRef]
- Schmidt, I.M.; Srivastava, A.; Sabbisetti, V.; McMahon, G.M.; He, J.; Chen, J.; Kusek, J.W.; Taliercio, J.; Ricardo, A.C.; Hsu, C.Y.; et al. Plasma Kidney Injury Molecule 1 in CKD: Findings from the Boston Kidney Biopsy Cohort and CRIC Studies. Am. J. Kidney Dis. 2022, 79, 231–243.e1. [Google Scholar] [CrossRef] [PubMed]
- Moriya, H.; Mochida, Y.; Ishioka, K.; Oka, M.; Maesato, K.; Hidaka, S.; Ohtake, T.; Kobayashi, S. Plasma neutrophil gelatinase-associated lipocalin (NGAL) is an indicator of interstitial damage and a predictor of kidney function worsening of chronic kidney disease in the early stage: A pilot study. Clin. Exp. Nephrol. 2017, 21, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, N.E.; Hornum, M.; Jorgensen, K.A.; Hansen, J.M.; Bistrup, C.; Feldt-Rasmussen, B.; Flyvbjerg, A. Plasma neutrophil gelatinase associated lipocalin (NGAL) is associated with kidney function in uraemic patients before and after kidney transplantation. BMC Nephrol. 2012, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Gharishvandi, F.; Kazerouni, F.; Ghanei, E.; Rahimipour, A.; Nasiri, M. Comparative assessment of neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C as early biomarkers for early detection of renal failure in patients with hypertension. Iran. Biomed. J. 2015, 19, 76–81. [Google Scholar] [CrossRef]
- Wagoner, M.P.; Yang, Y.; McDuffie, J.E.; Klapczynski, M.; Buck, W.; Cheatham, L.; Eisinger, D.; Sace, F.; Lynch, K.M.; Sonee, M.; et al. Evaluation of Temporal Changes in Urine-based Metabolomic and Kidney Injury Markers to Detect Compound Induced Acute Kidney Tubular Toxicity in Beagle Dogs. Curr. Top. Med. Chem. 2017, 17, 2767–2780. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, B.; Lin, Z.; Qu, Z.; Huo, Y.; Wang, J.; Li, B. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs. Toxicol. Appl. Pharmacol. 2014, 280, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Palm, C.A.; Segev, G.; Cowgill, L.D.; LeRoy, B.E.; Kowalkowski, K.L.; Kanakubo, K.; Westropp, J.L. Urinary Neutrophil Gelatinase-associated Lipocalin as a Marker for Identification of Acute Kidney Injury and Recovery in Dogs with Gentamicin-induced Nephrotoxicity. J. Vet. Intern. Med. 2016, 30, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhou, X.; Qu, Z.; Sun, L.; Cheng, G.; Yang, Y.; Miao, Y.; Chen, X.; Li, B. Urinary biomarker evaluation for early detection of gentamycin-induced acute kidney injury. Toxicol. Lett. 2019, 300, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.Z.; Vlasakova, K.; Troth, S.P.; Peiffer, R.L.; Tournade, H.; Pasello Dos Santos, F.R.; Glaab, W.E.; Sistare, F.D. Performance Assessment of New Urinary Translational Safety Biomarkers of Drug-induced Renal Tubular Injury in Tenofovir-treated Cynomolgus Monkeys and Beagle Dogs. Toxicol. Pathol. 2018, 46, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Segev, G.; Daminet, S.; Meyer, E.; De Loor, J.; Cohen, A.; Aroch, I.; Bruchim, Y. Characterization of kidney damage using several renal biomarkers in dogs with naturally occurring heatstroke. Vet. J. 2015, 206, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Rossi, G.; Miller, D.W.; Cianciolo, R.E.; Raisis, A.L. Ability of different assay platforms to measure renal biomarker concentrations during ischaemia-reperfusion acute kidney injury in dogs. Res. Vet. Sci. 2021, 135, 547–554. [Google Scholar] [CrossRef]
- Nabity, M.B.; Lees, G.E.; Cianciolo, R.; Boggess, M.M.; Steiner, J.M.; Suchodolski, J.S. Urinary biomarkers of renal disease in dogs with X-linked hereditary nephropathy. J. Vet. Intern. Med. 2012, 26, 282–293. [Google Scholar] [CrossRef]
- Lee, Y.J.; Hu, Y.Y.; Lin, Y.S.; Chang, C.T.; Lin, F.Y.; Wong, M.L.; Kuo-Hsuan, H.; Hsu, W.L. Urine neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute canine kidney injury. BMC Vet. Res. 2012, 8, 248. [Google Scholar] [CrossRef]
- Segev, G.; Palm, C.; LeRoy, B.; Cowgill, L.D.; Westropp, J.L. Evaluation of Neutrophil Gelatinase-Associated Lipocalin as a Marker of Kidney Injury in Dogs. J. Vet. Intern. Med. 2013, 27, 1362–1367. [Google Scholar] [CrossRef]
- Scheemaeker, S.; Meyer, E.; Schoeman, J.P.; Defauw, P.; Duchateau, L.; Daminet, S. Urinary neutrophil gelatinase-associated lipocalin as an early biomarker for acute kidney injury in dogs. Vet. J. 2020, 255, 105423. [Google Scholar] [CrossRef]
- Ahn, H.J.; Hyun, C. Evaluation of serum neutrophil gelatinase-associated lipocalin (NGAL) activity in dogs with chronic kidney disease. Vet. Rec. 2013, 173, 452. [Google Scholar] [CrossRef]
- Hsu, W.L.; Lin, Y.S.; Hu, Y.Y.; Wong, M.L.; Lin, F.Y.; Lee, Y.J. Neutrophil gelatinase-associated lipocalin in dogs with naturally occurring renal diseases. J. Vet. Intern. Med. 2014, 28, 437–442. [Google Scholar] [CrossRef]
- Cao, J.; Lu, X.; Gao, F.; Zhang, X.; Xia, X.; Sun, H. Assessment of neutrophil gelatinase-associated lipocalin as an early biomarker for canine renal ischemia-reperfusion injury. Ann. Transl. Med. 2020, 8, 1491. [Google Scholar] [CrossRef]
- Peris, M.P.; Morales, M.; Ares-Gomez, S.; Esteban-Gil, A.; Gomez-Ochoa, P.; Gascon, M.; Moreno, B.; Castillo, J.A. Neutrophil Gelatinase-Associated Lipocalin (NGAL) Is Related with the Proteinuria Degree and the Microscopic Kidney Findings in Leishmania-Infected Dogs. Microorganisms 2020, 8, 1966. [Google Scholar] [CrossRef]
- Cortellini, S.; Pelligand, L.; Syme, H.; Chang, Y.M.; Adamantos, S. Neutrophil Gelatinase-Associated Lipocalin in Dogs with Sepsis Undergoing Emergency Laparotomy: A Prospective Case-Control Study. J. Vet. Intern. Med. 2015, 29, 1595–1602. [Google Scholar] [CrossRef]
- Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A specific and sensitive biomarker of kidney injury. Scand. J. Clin. Lab. Investig. Suppl. 2008, 241, 78–83. [Google Scholar] [CrossRef]
- Lippi, I.; Perondi, F.; Meucci, V.; Bruno, B.; Gazzano, V.; Guidi, G. Clinical utility of urine kidney injury molecule-1 (KIM-1) and gamma-glutamyl transferase (GGT) in the diagnosis of canine acute kidney injury. Vet. Res. Commun. 2018, 42, 95–100. [Google Scholar] [CrossRef]
- Dias, C.S.; Paz, L.N.; Solca, M.S.; Portela, R.W.D.; Bittencourt, M.V.; Pinna, M.H. Kidney Injury Molecule-1 in the detection of early kidney injury in dogs with leptospirosis. Comp. Immunol. Microbiol. Infect. Dis. 2021, 76, 101637. [Google Scholar] [CrossRef]
- Kules, J.; Bilic, P.; Beer Ljubic, B.; Gotic, J.; Crnogaj, M.; Brkljacic, M.; Mrljak, V. Glomerular and tubular kidney damage markers in canine babesiosis caused by Babesia canis. Ticks Tick. Borne Dis. 2018, 9, 1508–1517. [Google Scholar] [CrossRef]
- McDuffie, J.E.; Chen, Y.; Ma, J.Y.; Lee, S.; Lynch, K.M.; Hamlin, D.M.; Nguyen, L.; Rizzolio, M.; Sonee, M.; Snook, S. Cisplatin nephrotoxicity in male beagle dogs: Next-generation protein kidney safety biomarker tissue expression and related changes in urine. Toxicol. Res. 2016, 5, 1202–1215. [Google Scholar] [CrossRef]
- Sasaki, A.; Sasaki, Y.; Iwama, R.; Shimamura, S.; Yabe, K.; Takasuna, K.; Ichijo, T.; Furuhama, K.; Satoh, H. Comparison of renal biomarkers with glomerular filtration rate in susceptibility to the detection of gentamicin-induced acute kidney injury in dogs. J. Comp. Pathol. 2014, 151, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Yerramilli, M.; Farace, G.; Quinn, J.; Yerramilli, M. Kidney Disease and the Nexus of Chronic Kidney Disease and Acute Kidney Injury the Role of Novel Biomarkers as Early and Accurate Diagnostics. Vet. Clin. Small Anim. Pract. 2016, 46, 961–993. [Google Scholar] [CrossRef]
- Davis, J.; Raisis, A.L.; Miller, D.W.; Hosgood, G.L.; Rossi, G. Analytical validation and reference intervals for a commercial multiplex assay to measure five novel biomarkers for acute kidney injury in canine urine. Res. Vet. Sci. 2021, 139, 78–86. [Google Scholar] [CrossRef] [PubMed]
- van de Vrie, M.; Deegens, J.K.; van der Vlag, J.; Hilbrands, L.B. Effect of long-term storage of urine samples on measurement of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Am. J. Kidney Dis. 2014, 63, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Farmer, T.; Kapke, G.F. Assay validation for KIM-1: Human urinary renal dysfunction biomarker. Int. J. Biol. Sci. 2009, 5, 128–134. [Google Scholar] [CrossRef]
- Schuh, M.P.; Nehus, E.; Ma, Q.; Haffner, C.; Bennett, M.; Krawczeski, C.D.; Devarajan, P. Long-term Stability of Urinary Biomarkers of Acute Kidney Injury in Children. Am. J. Kidney Dis. 2016, 67, 56–61. [Google Scholar] [CrossRef]
- Pennemans, V.; De Winter, L.M.; Faes, C.; Van Kerkhove, E.; Reynders, C.; Rigo, J.M.; Swennen, Q.; Penders, J. Effect of pH on the stability of kidney injury molecule 1 (KIM-1) and on the accuracy of its measurement in human urine. Clin. Chim. Acta 2010, 411, 2083–2086. [Google Scholar] [CrossRef]
Examination Record | Control (n = 11) | Risk (n = 14) | Stage 1 (n = 43) | Stage 2 (n = 33) | Stage 3–4 (n = 16) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | |
Age (year) | 6.0 (1.5–7.0) | 11 | 10 * (8.1–11.8) | 14 | 10.3 ** (9.0–12.0) | 43 | 14.1 ***,††,‡‡ (12.0–15.3) | 33 | 10.5 * (4.9–16.4) | 16 |
NM(IM):NF(IF) | 7(1):3(0) | 11 | 11(0):2(1) | 14 | 30(0):12(1) | 43 | 17(2):13(1) | 33 | 9(1):4(2) | 16 |
BW (kg) | 4.3 (3.2–4.9) | 11 | 5.4 (4.6–6.5) | 14 | 3.8 (3.2–4.8) | 42 | 4.4 (3.0–5.4) | 33 | 4.3 (3.3–6.5) | 16 |
BCS (score) | 4.3 (3.6–5.1) | 10 | 4.9 (4.6–6.3) | 13 | 3.8 (3.1–4.6) | 40 | 4.6 (3.0–5.4) | 32 | 4.5 (3.5–6.5) | 15 |
sysBP (mmHg) | 127.0 (114.5–136.0) | 7 | 139.0 (126.0–144.0) | 13 | 137.0 (121.5–145.8) | 38 | 134.5 (126.3–141.8) | 32 | 140.0 (131.5–155.0) | 15 |
Parameters | Control (n = 11) | Risk (n = 14) | Stage 1 (n = 43) | Stage 2 (n = 33) | Stage 3–4 (n = 16) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RI | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | |
Anemia | 0 (0%) | 2 (6%) | 7 (23%) | 8 (25%) | 9 (56%) | ||||||
RBC (1012/L) | 5.65–8.87 | 7.12 (6.96–7.46) | 11 | 7.63 (6.70–8.32) | 13 | 7.19 (6.25–7.70) | 42 | 6.75 (6.09–7.43) | 32 | 5.99 *,†,‡‡ (4.90–7.13) | 16 |
HCT (%) | 37.3–61.7 | 49.8 (46.5–51.6) | 11 | 49.4 (47.1–54.0) | 13 | 46.7 (40.3–50.2) | 42 | 42.2 (38.5–47.8) | 32 | 35.0 ***,†††,‡‡‡,§§ (27.0–44.1) | 16 |
HGB (g/dL) | 13.1–20.5 | 17.3 (16.2–18.1) | 11 | 16.7 (15.2–18.0) | 13 | 16.3 (14.0–17.7) | 42 | 14.7 (13.5–16.9) | 32 | 12.6 ***,††,‡‡‡,§ (10.1–15.6) | 16 |
RETIC (K/µL) | 10–110 | 84.5 (71.1–95.8) | 11 | 88.5 (53.4–100.6) | 13 | 87.8 (57.2–115.6) | 42 | 88.9 (27.9–101.6) | 32 | 42.1 ‡‡‡ (17.1–65.1) | 16 |
Inflammation | 0 (0%) | 1 (3%) | 13 (42%) | 9 (28%) | 11 (69%) | ||||||
WBC # (109/L) | 5.05–16.7 | 10.15 (8.22–11.09) | 11 | 9.19 (8.07–12.84) | 13 | 9.71 (7.56–13.56) | 42 | 11.02 (7.62–14.18) | 32 | 11.52 (10.42–14.13) | 16 |
NEU # (K/µL) | 2.95–11.6 | 6.41 (4.98–7.10) | 11 | 7.82 (5.69–8.68) | 13 | 7.19 (5.05–9.99) | 42 | 7.99 (5.04–11.01) | 32 | 8.91 ** (7.47–11.68) | 16 |
LYM # (K/µL) | 1.05–5.1 | 3.07 (1.81–3.37) | 11 | 2.05 (1.25–2.75) | 13 | 2.10 (1.64–2.67) | 42 | 2.07 (1.64–2.38) | 32 | 1.75 (1.43–2.31) | 16 |
MONO # (K/µL) | 0.16–1.12 | 0.34 (0.29–0.43) | 11 | 0.42 (0.38–0.71) | 13 | 0.46 (0.33–0.71) | 42 | 0.46 (0.35–0.65) | 32 | 0.68 ** (0.49–1.24) | 16 |
CRP # (mg/dL) | 0.1–1 | 0.3 (0.2–0.3) | 8 | 0.3 (0.3–0.3) | 5 | 0.4 (0.3–0.7) | 19 | 0.7 ** (0.5–1.3) | 14 | 3.7 ***,†††,‡‡‡,§§ (1.9–9.2) | 11 |
Parameters | Control (n = 11) | Risk (n = 14) | Stage 1 (n = 43) | Stage 2 (n = 33) | Stage 3–4 (n = 16) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RI | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | Median (Q1–Q3) | N | |
BUN # (mg/dL) | 7–27 | 15 (13–16) | 11 | 17 (16–19) | 14 | 17 (12–23) | 43 | 32 **,†,‡‡‡ (18–47) | 33 | 54 ***,†††,‡‡‡,§§§ (45–81) | 16 |
sCr # (mg/dL) | 0.5–1.8 | 0.8 (0.6–0.9) | 11 | 0.9 (0.7–1.0) | 14 | 0.7 (0.6–0.9) | 43 | 1.4 ***,†,‡‡‡ (0.9–1.7) | 33 | 3.0 ***,†††,‡‡‡,§§§ (2.0–3.7) | 16 |
BCR # | 4–27 | 20 (16–26) | 11 | 21 (17–21) | 14 | 24 (16–31) | 43 | 26 (14–33) | 33 | 20 (13–32) | 16 |
SDMA # (µg/dL) | 0–14 | 9 (8–10) | 9 | 11 (9–12) | 14 | 12 ** (10–15) | 43 | 21 ***,†††,‡‡‡ (18–27) | 33 | 39 ***,†††,‡‡‡,§§§ (31–51) | 16 |
pNGAL # (ng/mL) | 1.9 (1.7–2.9) | 10 | 2.7 (1.9–3.9) | 14 | 5.7 ***,†† (3.6–8.7) | 41 | 6.6 ***,†† (5.0–9.1) | 32 | 23.0 ***,†††,‡‡‡,§§§ (13.9–29.3) | 15 | |
pKIM–1 # (ng/mL) | 2.3 (2.1–2.8) | 10 | 3.7 * (3.3–4.2) | 14 | 3.0 (2.7–3.8) | 43 | 5.2 ***,†,‡‡‡ (3.8–6.5) | 33 | 8.5 ***,†††,‡‡‡,§§§ (6.1–12.3) | 16 | |
TP (g/dL) | 5.2–8.2 | 6.6 (6.4–6.9) | 11 | 7.0 (6.9–7.3) | 12 | 6.9 (6.6–7.3) | 41 | 6.9 (6.5–7.4) | 26 | 7.1 (6.6–7.3) | 14 |
Albumin # (g/dL) | 2.3–4.0 | 3.4 (3.3–3.5) | 11 | 3.3 (3.1–3.4) | 12 | 3.2 (3.1–3.4) | 41 | 3.1 (2.8–3.3) | 26 | 3.0 **,‡ (2.8–3.2) | 14 |
Globulin # (g/dL) | 2.5–4.5 | 3.2 (3.1–3.3) | 11 | 3.8 (3.6–4.0) | 12 | 3.7 (3.4–3.9) | 40 | 3.5 (3.3–4.2) | 26 | 4.0 ** (3.7–4.4) | 14 |
A/G | 0.7–2.0 | 1.1 (1.0–1.1) | 11 | 0.9 (0.8–0.9) | 12 | 0.9 (0.8–0.9) | 41 | 0.8 * (0.7–1.0) | 26 | 0.8 *** (0.6–0.8) | 14 |
ALT # (U/L) | 10–125 | 57 (45–60) | 11 | 61 (57–85) | 11 | 60 (43–109) | 41 | 74 (44–131) | 26 | 29 (25–41) | 13 |
AST # (U/L) | 0–50 | 34 (31–42) | 10 | 34 (33–44) | 6 | 37 (29–58) | 28 | 30 (23–47) | 18 | 45 (34–91) | 8 |
ALP # (U/L) | 23–212 | 48 (34–110) | 11 | 134 (52–199) | 11 | 116 (77–295) | 42 | 107 (44–295) | 26 | 209 * (130–303) | 14 |
Amylase # (U/L) | 500–1500 | 483 (456–525) | 4 | 522 (459–565) | 4 | 633 (541–811) | 20 | 725 (700–937) | 10 | 1800 ***,†††,‡‡‡,§§§ (1579–3377) | 7 |
Lipase # (U/L) | 200–1800 | 835 (643–941) | 4 | 1005 (792–1228) | 6 | 682 (555–928) | 20 | 652 (465–923) | 11 | 976 § (827–4017) | 7 |
CK # (U/L) | 10–200 | 228 (77–233) | 5 | 81 (57–116) | 5 | 85 (53–123) | 17 | 61 (59–92) | 9 | 237 (169–318) | 5 |
Osmolality (mOsm/kg) | 290–330 | 306 (304–308) | 8 | 305 (299–309) | 10 | 304 (297–309) | 31 | 307 (301–316) | 25 | 315 †,‡‡‡,§§ (311–330) | 11 |
Na+ (mEq/L) | 144–160 | 154 (153–156) | 8 | 153 (151–156) | 11 | 154 (151–157) | 23 | 152 ‡ (147–154) | 31 | 152 (147–154) | 14 |
K+ # (mEq/L) | 3.5–5.8 | 4.2 (4.0–4.4) | 8 | 4.1 (3.9–4.5) | 11 | 4.1 (3.8–4.5) | 23 | 4.7 (4.3–4.9) | 31 | 4.9 (3.8–5.9) | 14 |
Ca2+ (mg/dL) | 7.9–12 | 9.7 (9.6–9.9) | 4 | 10.1 (9.9–10.2) | 6 | 9.8† (9.4–10.3) | 23 | 10.1 (9.4–10.7) | 18 | 10.3 (9.8–10.8) | 12 |
Cl− (mmol/L) | 109–122 | 118 (115–118) | 8 | 114 (113–116) | 11 | 114 (112–116) | 22 | 112 (110–115) | 31 | 111 (110–114) | 14 |
PO4– # (mg/dL) | 2.5–6.8 | 2.7 (2.5–3.3) | 4 | 3.2 (2.6–3.6) | 8 | 4.0 (3.6–5.1) | 23 | 4.3 (3.9–4.7) | 20 | 8.2 ***,†††,‡‡‡,§§§ (5.8–11.5) | 13 |
UP # (mg/dL) | 4 (4–4) | 1 | 29 (21–34) | 4 | 46 (14–102) | 24 | 30 (15–47) | 18 | 57 (36–236) | 11 | |
UC # (mg/dL) | 74 (74–74) | 1 | 76 (72–85) | 4 | 62 (17–127) | 24 | 73 (54–95) | 18 | 56 (23–64) | 11 | |
UPC # | 0–0.5 | 0.05 (0.05–0.05) | 1 | 0.37 (0.28–0.42) | 4 | 0.17 (0.09–1.48) | 24 | 0.39 (0.16–0.96) | 18 | 2.29 (1.01–5.86) | 11 |
USG # | 1.001–1.030 | 1.016 (1.016–1.016) | 1 | 1.028 (1.020–1.035) | 2 | 1.027 (1.019–1.034) | 28 | 1.014 (1.013–1.019) | 16 | 1.011 † (1.008–1.014) | 9 |
Parameters | Cut-Off (Unit) | AUC (95% CI) | Sensitivity, % (95% CI) | Specificity, % (95% CI) | LR+ | LR− |
---|---|---|---|---|---|---|
sCr | 0.95 (mg/dL) | 0.71 * (0.59–0.82) | 50.94 (41.56–60.26) | 90.91 (62.26–99.53) | 5.60 | 0.54 |
SDMA | 10.50 (µg/dL) | 0.86 *** (0.76–0.95) | 83.02 (74.75–88.98) | 77.78 (45.26–96.05) | 3.74 | 0.22 |
pNGAL | 3.30 (ng/mL) | 0.90 *** (0.83–0.97) | 81.37 (72.73–87.74) | 90.00 (59.58–99.49) | 8.14 | 0.21 |
pKIM-1 | 3.32 (ng/mL) | 0.90 *** (0.82–0.99) | 66.04 (56.60–74.35) | 100 (72.25–100.00) | - | 0.34 |
Parameters | Cut-Off (Unit) | AUC (95% CI) | Sensitivity, % (95% CI) | Specificity, % (95% CI) | LR+ | LR− |
---|---|---|---|---|---|---|
sCr | 0.95 (mg/dL) | 0.65 * (0.55–0.75) | 53.26 (43.14–63.12) | 76.00 (56.57–88.50) | 2.22 | 0.62 |
SDMA | 13.50 (µg/dL) | 0.84 ** (0.77–0.92) | 70.65 (60.67–78.98) | 91.30 (73.20–98.45) | 8.12 | 0.32 |
pNGAL | 4.19 (ng/mL) | 0.88 *** (0.80–0.95) | 76.14 (66.26–83.83) | 87.50 (69.00–95.66) | 6.09 | 0.27 |
pKIM-1 | 3.70 (ng/mL) | 0.72 *** (0.62–0.82) | 57.61 (47.41–67.20) | 79.17 (59.53–90.76) | 2.77 | 0.54 |
Parameters | Cut-Off (Unit) | AUC (95% CI) | Sensitivity, % (95% CI) | Specificity, % (95% CI) | LR+ | LR− |
---|---|---|---|---|---|---|
sCr | 1.25 (mg/dL) | 0.89 *** (0.83–0.96) | 69.39 (55.47–80.48) | 95.59 (87.81–98.80) | 15.73 | 0.32 |
SDMA | 16.50 (µg/dL) | 0.95 *** (0.90–0.99) | 85.71 (73.33–92.90) | 98.48 (91.90–99.92) | 56.39 | 0.15 |
pNGAL | 4.89 (ng/mL) | 0.75 *** (0.66–0.84) | 82.98 (69.86–91.11) | 60.00 (47.86–71.03) | 2.07 | 0.28 |
pKIM-1 | 4.14 (ng/mL) | 0.88 *** (0.81–0.95) | 79.59 (66.36–88.52) | 86.57 (76.40–92.77) | 5.93 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-S.; Kim, H.-J.; Do, S.-H. Early Detection of Chronic Kidney Disease Using Plasma Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 in Small-Breed Dogs: A Retrospective Pilot Study. Animals 2024, 14, 2313. https://doi.org/10.3390/ani14162313
Kim H-S, Kim H-J, Do S-H. Early Detection of Chronic Kidney Disease Using Plasma Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 in Small-Breed Dogs: A Retrospective Pilot Study. Animals. 2024; 14(16):2313. https://doi.org/10.3390/ani14162313
Chicago/Turabian StyleKim, Hyo-Sung, Han-Jun Kim, and Sun-Hee Do. 2024. "Early Detection of Chronic Kidney Disease Using Plasma Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 in Small-Breed Dogs: A Retrospective Pilot Study" Animals 14, no. 16: 2313. https://doi.org/10.3390/ani14162313