Small for Gestational Age Calves: Part II—Reduced Fertility, Productive Performance, and Survival in Holstein Friesian Heifers Born Small for Their Gestational Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farms, Animals, and Management
2.2. Measurements and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Survival and Culling
3.2. Growth and Body Conditions in the First Year of Life
3.3. Fertility
3.4. Milk Production and Productive Lifespan
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mugnier, A.; Chastant, S.; Lyazrhi, F.; Saegerman, C.; Grellet, A. Definition of low birth weight in domestic mammals: A scoping review. Anim. Health Res. Rev. 2022, 23, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Berglund, B.; Steinbock, L.; Elvander, M. Causes of Stillbirth and Time of Death in Swedish Holstein Calves Examined Post Mortem. Acta Vet. Scand. 2003, 44, 111. [Google Scholar] [CrossRef]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef]
- Carroll, A.; Bleach, E.; Williams, L. 91. The influence of birth weight on dairy Holstein heifer calf health and growth prior to weaning. Anim. Sci. Proc. 2022, 13, 63–64. [Google Scholar] [CrossRef]
- Hurst, T.S.; Lopez-Villalobos, N.; Boerman, J.P. Predictive equations for early-life indicators of future body weight in Holstein dairy heifers. J. Dairy Sci. 2021, 104, 736–749. [Google Scholar] [CrossRef]
- Wuyts, J.L.J.; Pascottini, O.B.; Leroy, J.L.M.R. Relationship between birth weight and growth parameters of dairy calves and their fertility and milk production in later life: A retrospective longitudinal study. Vlaams Diergeneeskd. Tijdschr. 2021, 90, 59–68. [Google Scholar] [CrossRef]
- Mayer, C.; Joseph, K.S. Fetal growth: A review of terms, concepts and issues relevant to obstetrics. Ultrasound Obstet. Gynecol. 2013, 41, 136–145. [Google Scholar] [CrossRef]
- Platz, E.; Newman, R. Diagnosis of IUGR: Traditional Biometry. Semin. Perinatol. 2008, 32, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Suhag, A.; Berghella, V. Intrauterine Growth Restriction (IUGR): Etiology and Diagnosis. Curr. Obstet. Gynecol. Rep. 2013, 2, 102–111. [Google Scholar] [CrossRef]
- Mericq, V.; Martinez-Aguayo, A.; Uauy, R.; Iñiguez, G.; Van der Steen, M.; Hokken-Koelega, A. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 2017, 13, 50–62. [Google Scholar] [CrossRef]
- Ibáñez, L.; Ong, K.; Dunger, D.B.; de Zegher, F. Early development of adiposity and insulin resistance after catch-up weight gain in Small-for-Gestational-Age children. J. Clin. Endocrinol. Metab. 2006, 91, 2153–2158. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K. Catch-up growth in small for gestational age babies: Good or bad? Curr. Opin. Endocrinol. Diabetes Obes. 2007, 14, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; Jiménez, R.; de Zegher, F. Early puberty-menarche after precocious pubarche: Relation to prenatal growth. Pediatrics 2006, 117, 117–121. [Google Scholar] [CrossRef] [PubMed]
- de Zegher, F.; Ibáñez, L. Prenatal growth restraint followed by catch-up of weight: A hyperinsulinemic pathway to polycystic ovary syndrome. Fertil. Steril. 2006, 86, S4–S5. [Google Scholar] [CrossRef] [PubMed]
- Meesters, M.; Van Eetvelde, M.; Verdru, K.; Govaere, J.; Opsomer, G. Small for Gestational Age Calves: Part I—Concept and Definition, Contributing Prenatal Factors and Neonatal Body Morphometrics in Holstein Friesian Calves. Animals 2024, 14, 2125. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, A.J.; Rogers, G.W.; Cooper, J.B. Predicting body weight and wither height in Holstein heifers using body measurements. J. Dairy Sci. 1992, 75, 3576–3581. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, A.J.; Heinrichs, B.S.; Jones, C.M.; Erickson, P.S.; Kalscheur, K.F.; Nennich, T.D.; Heins, B.J.; Cardoso, F.C. Short communication: Verifying Holstein heifer heart girth to body weight prediction equations. J. Dairy Sci. 2017, 100, 8451–8454. [Google Scholar] [CrossRef]
- Schröder, U.J.; Staufenbiel, R. Invited Review: Methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of Backfat Thickness. J. Dairy Sci. 2006, 89, 1–14. [Google Scholar] [CrossRef]
- Hemme, T. IFCN Dairy Report 2012: For a Better Understanding of Milk Production World-Wide; IFCN-International Farm Comparison Network: Kiel, Germany, 2012; p. 208. [Google Scholar]
- R: A language and Environment for Statistical Computing, R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2019.
- Therneau, T.M. A Package for Survival Analysis in R; T.M. Therneau: Rochester, MN, USA, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Wathes, D.C.; Brickell, J.S.; Bourne, N.E.; Swali, A.; Cheng, Z. Factors influencing heifer survival and fertility on commercial dairy farms. Animal 2008, 2, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Brickell, J.S.; McGowan, M.M.; Pfeiffer, D.U.; Wathes, D.C. Mortality in Holstein-Friesian calves and replacement heifers, in relation to body weight and IGF-I concentration, on 19 farms in England. Animal 2009, 3, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Wennerström, E.C.M.; Simonsen, J.; Melbye, M. Long-Term Survival of Individuals Born Small and Large for Gestational Age. PLoS ONE 2015, 10, e0138594. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A.; Marcondes, M.I. Review: Overview of factors affecting productive lifespan of dairy cows. Animal 2020, 14, s155–s164. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, D.; Adams, S.; Bécotte, F.; Cue, R.; Moore, R.; Roy, R. Pour une vache, l’âge d’or c’est la 4e lactation. In Proceedings of the Symposium sur les Bovins Laitiers: Choix D’aujourd’hui Pour les Défis de Demain, CRAAQ—Le Centre de Référence en Agriculture et Agroalimentaire du Québec, Saint-Hyacinthe, QC, Canada, 5 November 2014; pp. 133–147. [Google Scholar]
- Boulton, A.C.; Rushton, J.; Wathes, D.C. An empirical analysis of the cost of rearing dairy heifers from birth to first calving and the time taken to repay these costs. Animal 2017, 11, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Dallago, G.M.; Wade, K.M.; Cue, R.I.; McClure, J.T.; Lacroix, R.; Pellerin, D.; Vasseur, E. Keeping dairy cows for longer: A critical literature review on dairy cow longevity in high milk-producing countries. Animals 2021, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Swali, A.; Wathes, D.C. Influence of primiparity on size at birth, growth, the somatotrophic axis and fertility in dairy heifers. Anim. Reprod. Sci. 2007, 102, 122–136. [Google Scholar] [CrossRef]
- Karlberg, J.; Albertsson-Wikland, K. Growth in full-term Small-for-Gestational-Age infants: From birth to final height. Pediatr. Res. 1995, 38, 733–739. [Google Scholar] [CrossRef]
- McGuire, M.A.; Vicini, J.L.; Bauman, D.E.; Veenhuizen, J.J. Insulin-like growth factors and binding proteins in ruminants and their nutritional regulation. J. Anim. Sci. 1992, 70, 2901–2910. [Google Scholar] [CrossRef]
- Wathes, D.C. Developmental Programming of Fertility in Cattle—Is It a Cause for Concern? Animals 2022, 12, 2654. [Google Scholar] [CrossRef]
- Greenwood, P.; Bell, A. Consequences of intra-uterine growth retardation for postnatal growth, metabolism and pathophysiology. Reprod. Suppl. 2003, 61, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.; Sizonenko, S.; Bassett, N. The transition from fetus to neonate—An endocrine perspective. Acta Paediatr. 1999, 88, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Brickell, J.S.; McGowan, M.M.; Wathes, D.C. Effect of management factors and blood metabolites during the rearing period on growth in dairy heifers on UK farms. Domest. Anim. Endocrinol. 2009, 36, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.F.; Chancellor, N.; Burn, C.C.; Wathes, D.C. Analysis of pre-weaning feeding policies and other risk factors influencing growth rates in calves on 11 commercial dairy farms. Animal 2018, 12, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Posont, R.J.; Yates, D.T. Postnatal nutrient repartitioning due to adaptive developmental programming. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Dolan, M.S.; Sorkin, J.D.; Hoffman, D.J. Birth weight is inversely associated with central adipose tissue in healthy children and adolescents. Obesity 2007, 15, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Aguayo, A.; Capurro, T.; Peña, V.; Iñiguez, G.; Hernández, M.I.; Avila, A.; Salazar, T.; Asenjo, S.; Mericq, V. Comparison of leptin levels, body composition and insulin sensitivity and secretion by OGTT in healthy, early pubertal girls born at either appropriate- or small-for-gestational age. Clin. Endocrinol. 2007, 67, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.N.; Barker, D.J.P. The thrifty phenotype hypothesis: Type 2 diabetes. Br. Med. Bull. 2001, 60, 5–20. [Google Scholar] [CrossRef]
- Bossaert, P.; Leroy, J.L.M.R.; De Vliegher, S.; Opsomer, G. Interrelations between glucose-induced insulin response, metabolic indicators, and time of first ovulation in high-yielding dairy cows. J. Dairy Sci. 2008, 91, 3363–3371. [Google Scholar] [CrossRef]
- Opsomer, G.; Wensing, T.; Laevens, H.; Coryn, M.; de Kruif, A. Insulin resistance: The link between metabolic disorders and cystic ovarian disease in high yielding dairy cows? Anim. Reprod. Sci. 1999, 56, 211–222. [Google Scholar] [CrossRef]
- Long, J.M.; Trubenbach, L.A.; Hobbs, K.C.; Poletti, A.E.; Steinhauser, C.B.; Pryor, J.H.; Long, C.R.; Wickersham, T.A.; Sawyer, J.E.; Miller, R.K.; et al. Maternal nutrient restriction in late pregnancy programs postnatal metabolism and pituitary development in beef heifers. PLoS ONE 2021, 16, e0249924. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.; Beever, D.; Bryant, M.; Wathes, D. First lactation ovarian function in dairy heifers in relation to prepubertal metabolic profiles. J. Endocrinol. 2004, 180, 63–75. [Google Scholar] [CrossRef]
- Swali, A.; Cheng, Z.; Bourne, N.; Wathes, D.C. Metabolic traits affecting growth rates of pre-pubertal calves and their relationship with subsequent survival. Domest. Anim. Endocrinol. 2008, 35, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Brickell, J.S.; Bourne, N.; McGowan, M.M.; Wathes, D.C. Effect of growth and development during the rearing period on the subsequent fertility of nulliparous Holstein-Friesian heifers. Theriogenology 2009, 72, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Swamy, G.K.; Østbye, T.; Skjærven, R. Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. JAMA 2008, 299, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- deKeyser, N.; Josefsson, A.; Bladh, M.; Carstensen, J.; Finnström, O.; Sydsjö, G. Premature birth and low birthweight are associated with a lower rate of reproduction in adulthood: A Swedish population-based registry study. Hum. Reprod. 2012, 27, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Thorsted, A.; Lauridsen, J.; Høyer, B.; Arendt, L.H.; Bech, B.; Toft, G.; Hougaard, K.; Olsen, J.; Bonde, J.P.; Ramlau-Hansen, C. Birth weight for gestational age and the risk of infertility: A Danish cohort study. Hum. Reprod. 2019, 35, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; de Zegher, F. Puberty after prenatal growth restraint. Horm. Res. 2006, 65, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Mossa, F.; Carter, F.; Walsh, S.W.; Kenny, D.A.; Smith, G.W.; Ireland, J.L.H.; Hildebrandt, T.B.; Lonergan, P.; Ireland, J.J.; Evans, A.C.O. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol. Reprod. 2013, 88, 92. [Google Scholar] [CrossRef]
- Mossa, F.; Evans, A.C.O. Review: The ovarian follicular reserve—Implications for fertility in ruminants. Animal 2023, 17, 100744. [Google Scholar] [CrossRef]
- Braw-Tal, R.; Pen, S.; Roth, Z. Ovarian cysts in high-yielding dairy cows. Theriogenology 2009, 72, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, T.; Opsomer, G.; Kruif, A.d. Aetiology and pathogenesis of cystic ovarian follicles in dairy cattle: A review. Reprod. Nutr. Dev. 2006, 46, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Swali, A.; Wathes, D.C. Influence of the dam and sire on size at birth and subsequent growth, milk production and fertility in dairy heifers. Theriogenology 2006, 66, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
Survival Until | SGA | AGA | LGA | p-Value * | |||
---|---|---|---|---|---|---|---|
N | % | N | % | N | % | ||
Birth | 44 | 100.0% | 207 | 100.0% | 22 | 100.0% | - |
First AI | 35 | 79.5% | 185 | 89.4% | 21 | 95.5% | 0.081 |
Conception | 32 | 72.7% | 177 | 85.5% | 20 | 90.9% | 0.062 |
1st Calving | 32 | 72.7% | 174 | 84.1% | 19 | 86.4% | 0.176 |
2nd Calving | 24 | 54.5% a | 153 | 73.9% b | 18 | 81.8% b | 0.019 |
3rd Calving ° | 17 | 38.6% | 120 | 58.0% | 11 | 50.0% | - |
4th Calving | 11 | 46 | 4 | - | |||
5th calving | 0 | 3 | 0 | - | |||
15 July 2023 | 13 | 29.5% | 93 | 44.9% | 10 | 45.5% |
All | SGA | AGA | LGA | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % Tot. (N = 273) | % Rem. | N | % Tot. (N = 44) | % Rem. | N | % Tot. (N = 207) | % Rem. | N | % Tot. (N = 22) | % Rem. | ||
Birth | 0 | 0.0% | 0.0% | 0 | 0.0% | 0.0% | 0 | 0.0% | 0.0% | 0 | 0.0% | 0.0% | |
Dead at 0–6 M | 21 | 7.7% | 7.7% | 5 | 11.4% | 11.4% | 15 | 7.2% | 7.2% | 1 | 4.5% | 4.5% | 0.63 |
Dead at 6–12 M | 4 | 1.5% | 1.6% | 2 | 4.5% | 5.1% | 2 | 1.0% | 1.0% | 0 | 0.0% | 0.0% | 0.14 |
Sold at 12 M–1st AI | 7 | 2.6% | 2.8% | 2 | 4.5% | 5.4% | 5 | 2.4% | 2.6% | 0 | 0.0% | 0.0% | 0.52 |
Sold: inability to conceive | 12 | 4.4% | 5.0% | 3 | 6.8% | 8.6% | 8 | 3.9% | 4.3% | 1 | 4.5% | 4.8% | 0.75 |
Dead/sold during 1st Lact. | 30 | 11.0% | 13.3% | 8 | 18.2% | 25.0% | 21 | 10.1% | 11.9% | 1 | 4.5% | 5.3% | 0.077 |
Dead/sold during 2nd Lact. | 46 | 16.8% | 23.5% | 6 | 13.6% | 25.0% | 33 | 15.9% | 21.2% | 7 | 31.8% | 38.9% | 0.27 |
Dead/sold during 3rd Lact. | 27 | 9.9% | 18.0% | 3 | 6.8% | 16.7% | 23 | 11.1% | 18.7% | 1 | 4.5% | 9.1% | |
Dead/sold during 4th Lact. | 6 | 2.2% | 4.9% | 2 | 4.5% | 13.3% | 4 | 1.9% | 4.0% | 0 | 0.0% | 0.0% |
ALL | SGA | AGA | LGA | p-Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | IQR | N | Mean ± SD | IQR | N | Mean ± SD | IQR | ||
EBW 6 M (kg) | 250 | 191 ± 25.9 | 39 | 187 ± 25.53 | 175.7–20.8 | 190 | 192 ± 26.6 | 178.7–208.2 | 21 | 198 ± 18.5 | 181.8–214.2 | 0.14 |
EBW 12 M (kg) | 232 | 343 ± 43.0 | 35 | 330 ± 31.3 a | 316.6–353.7 | 177 | 344 ± 44.7 b | 323.1–372.5 | 20 | 358 ± 40.4 b | 331.0–392.0 | 0.003 |
ADG 0–6 M (g/d) | 250 | 856 ± 147.1 | 39 | 858 ± 148.4 | 793.0–955.4 | 190 | 856 ± 151.8 | 787.1–955.0 | 21 | 856 ± 98.4 | 777.2–944.2 | 0.90 |
ADG 6–12 M (g/d) | 231 | 847 ± 170.3 | 35 | 799 ± 145.2 | 757.8–896.7 | 176 | 853 ± 175.9 | 749.4–965.5 | 20 | 887 ± 179.0 | 833.5–1009.0 | 0.10 |
BFT 1st AI (mm) | 224 | 11.3 ± 2.86 | 34 | 11.1 ± 2.25 | 10.3–12.0 | 170 | 11.4 ± 2.92 | 9.0–13.0 | 20 | 11.4 ± 3.34 | 9.0–13.3 | 0.54 |
All | SGA | AGA | LGA | p-Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | IQR | N | Mean ± SD | IQR | N | Mean ± SD | IQR | ||
Age 1st AI (d) | 241 | 425 ± 56.9 | 35 | 425 ± 46.8 | 392–454 | 185 | 426 ± 58.3 | 379–458 | 21 | 418 ± 61.3 | 376–453 | 0.78 |
# AI/ins. heifer | 241 | 1.8 ± 1.22 | 35 | 2.4 ± 1.57 a | 2.0–3.0 | 185 | 1.7 ± 1.14 b | 1.0–2.0 | 21 | 1.5 ± 0.87 b | 1.0–2.0 | 0.01 |
# AI/p | 229 | 1.7 ± 1.08 | 32 | 2.3 ± 1.50 a | 2.0–3.0 | 177 | 1.7 ± 0.98 b | 1.0–2.0 | 20 | 1.5 ± 0.89 b | 1.0–2.0 | 0.006 |
Age conception (d) | 229 | 449 ± 69.8 | 32 | 469 ± 61.0 | 419–503 | 177 | 448 ± 71.4 | 396–477 | 20 | 424 ± 61.7 | 381–453 | 0.22 |
Age 1st calving (d) | 225 | 723 ± 71.8 | 32 | 744 ± 63.6 | 698–786 | 174 | 722 ± 73.2 | 670–749 | 19 | 696 ± 63.4 | 652–730 | 0.17 |
All | SGA | AGA | LGA | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | IQR | N | Mean ± SD | IQR | N | Mean ± SD | IQR | ||
Lactation length (d) | 222 | 324 ± 103.1 | 31 | 296 ± 116.7 | 286–331 | 172 | 328 ± 104.4 | 285–346 | 19 | 333 ± 50.5 | 310–345 | 0.26 |
305d milk (kg) | 222 | 9189 ± 1615.4 | 31 | 8765 ± 1688.7 | 7319–10175 | 172 | 9213 ± 1609.2 | 8172–10,221 | 19 | 9667 ± 1458.6 | 8550–10,728 | 0.23 |
305d fat (kg) | 222 | 374 ± 58.0 | 31 | 369 ± 68.7 | 315–414 | 172 | 372 ± 55.9 | 336–413 | 19 | 398 ± 55.6 | 360–425 | 0.53 |
305d protein (kg) | 222 | 315 ± 53.6 | 31 | 307 ± 59.5 | 257–348 | 172 | 315 ± 53.1 | 285–353 | 19 | 329 ± 47.8 | 297–261 | 0.34 |
305d ECM (kg) | 222 | 10,005 ± 1562.2 | 31 | 9745 ± 1788.3 | 8423–11,036 | 172 | 9990 ± 1525.0 | 8964–11,065 | 19 | 10,569 ± 1443.6 | 9562–11,490 | 0.38 |
All | SGA | AGA | LGA | p-Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | N | Mean ± SD | IQR | N | Mean ± SD | IQR | N | Mean ± SD | IQR | ||
Lifespan (d) | 157 | 1087 ± 585.0 | 31 | 959 ± 612.1 | 507–1457 | 114 | 1121 ± 587.4 | 731–1577 | 12 | 1099 ± 477.7 | 902–1425 | 0.51 |
Productive life (d) | 109 | 678 ± 358.6 | 19 | 597 ± 424.3 | 234–877 | 81 | 702 ± 352.3 | 456–1008 | 9 | 633 ± 256.9 | 448–817 | 0.48 |
Lifetime milk (kg) | 83 | 19,019 ± 10,861.9 | 13 | 15,392 ± 13,513.8 | 2781–25,108 | 63 | 20,017 ± 10,419.0 | 11,220–26,183 | 7 | 16,772 ± 8976.3 | 9202–22,345 | 0.54 |
Milk per day of life (kg) | 83 | 12.4 ± 5.21 | 13 | 9.5 ± 6.72 | 3.1–13.8 | 63 | 13.0 ± 4.83 | 9.7–16.2 | 7 | 12.3 ± 4.08 | 8.8–14.9 | 0.11 |
Milk per productive day (kg) | 83 | 25.9 ± 5.94 | 13 | 21.2 ± 8.73 a | 20.0–28.5 | 63 | 26.9 ± 5.01 b | 24.7–30.4 | 7 | 26.3 ± 3.38 b | 24.8–28.3 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meesters, M.; Van Eetvelde, M.; Verdru, K.; Govaere, J.; Opsomer, G. Small for Gestational Age Calves: Part II—Reduced Fertility, Productive Performance, and Survival in Holstein Friesian Heifers Born Small for Their Gestational Age. Animals 2024, 14, 2157. https://doi.org/10.3390/ani14152157
Meesters M, Van Eetvelde M, Verdru K, Govaere J, Opsomer G. Small for Gestational Age Calves: Part II—Reduced Fertility, Productive Performance, and Survival in Holstein Friesian Heifers Born Small for Their Gestational Age. Animals. 2024; 14(15):2157. https://doi.org/10.3390/ani14152157
Chicago/Turabian StyleMeesters, Maya, Mieke Van Eetvelde, Karel Verdru, Jan Govaere, and Geert Opsomer. 2024. "Small for Gestational Age Calves: Part II—Reduced Fertility, Productive Performance, and Survival in Holstein Friesian Heifers Born Small for Their Gestational Age" Animals 14, no. 15: 2157. https://doi.org/10.3390/ani14152157
APA StyleMeesters, M., Van Eetvelde, M., Verdru, K., Govaere, J., & Opsomer, G. (2024). Small for Gestational Age Calves: Part II—Reduced Fertility, Productive Performance, and Survival in Holstein Friesian Heifers Born Small for Their Gestational Age. Animals, 14(15), 2157. https://doi.org/10.3390/ani14152157